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T6.1 ( S y l v e s t e r ’ s S i e v e - - f o r m u l a 20) Let X1, . . . ,Xn be finite sets. For J ⊆ {1, . . . ,n}, let
XJ :=

⋂
i∈J Xi with X/0 :=

⋃n
i=1 Xi. Prove that

∑
J∈P({1,...,n})

(−1)|J||XJ|= 0 , i.e. |X |= ∑
/0 6=J∈P({1,...,n})

(−1)|J|−1|XJ| .

(Proof : By induction on n. — Variant : For k = 1, . . . ,n, let Yk be the set of elements x ∈ X/0 which belong
to exactly k of the sets X1, . . . ,Xn. Then Yk,1≤ k ≤ n are pairwise disjoint. Using Exercise 6.2 (b) we shall
show that

∑
J∈P({1,...,n})
|J|even

|XJ|=
n

∑
k=1

2k−1|Yk|= ∑
J∈P({1,...,n})
|J|odd

|XJ| .

For k = 1, . . . ,n, there exists Jk := { j1, . . . , jk} ⊆ {1, . . . ,n} with #Jk = k and Yk = {x∈ X j for j ∈ Jk and x 6∈
X j for j 6∈ Jk}. therefore for J ⊆ {1, . . . ,n}, x ∈ XJ if and only if J ⊆ Jk for some k ∈ {1, . . . ,n}. Therefore
in the sum on RHS, the element x is counted exactly #Peven(Jk) = 2k−1 times (exactly once for each
J ∈Peven(Jk)). This proves the first equality above. •)

T6.2 Let I be a finite index set with n elements and let σi ∈N for i ∈ I, π := ∏i∈I σi, σ := ∑i∈I σi
and σH := ∑i∈H σi for H ⊆ I. Then

∑
H⊆I

(−1)|H|
(

σH

n

)
= (−1)n

π and ∑
H⊆I

(−1)|H|
(

σH

n+1

)
=

(−1)n

2
(σ −n)π ,

(Proof : We may assume I = {1, . . . ,n}. For J ∈P(I), let J′ := I \J. Let X =
⋃

i∈I Xi, where Xi are pairwise
disjoint subsets with |Xi| = σi. For a proof of the first formula consider the set Pn(X) and its subsets
Yi := {A ∈Pn(X) | A∩Xi = /0} and use the Sieve formula in T6.1 to find |

⋃
i∈I Yi|. Note Y/0 = ∪i∈IYi. If J ⊆ I,

J 6= /0, then

YJ = ∩ j∈JYj = {A ∈Pn(X) | A∩X j = /0 for all j ∈ J}=Pn(
⊎
i∈J′

Xi) and hence #YJ =

(
σJ′

n

)
.

Further, Pn(X)\Y/0 =Pn(X)\ (
⋃
i∈I

Yi) =
⋂
i∈I

(Pn(X)\Yi) = {A ∈Pn(X) | A∩Xi 6= /0 for all i ∈ I} and hence

(*) Pn(X)\Y/0 = {A ∈Pn(X) | #A∩Xi = 1 for all i ∈ I} and # (Pn(X)\Y/0) = σ1 · · ·σn = π .

i. e.
(

σ

n

)
= #Pn(X) = #Y/0 +π .

Now, by Sieve formula T6.1, we have

#Y/0 + ∑
J∈P(I) ,J 6= /0

(−1)#J ·#YJ = 0 and hence
(

σ

n

)
+ ∑

J′∈P(I) ,J′ 6=I
(−1)n−#J′ ·

(
σ ′J
n

)
= π .

Multiplying the last equality on both sides and noting n+n−#J′ = 2(n−#J′)+#J′, the proof of the first
equality is immediate. For the proof of second equality, using similar arguments, first prove the equality :

(**) Pn+1(X) \Y/0 = {A ∈ Pn+1(X) | #A∩X j = 1 for all j ∈ J ⊆ I , #J = n−1} and # (Pn+1(X)\Y/0) =

1
2(σ −n) ·π . i. e.

(
σ

n+1

)
= #Pn+1(X) = #Y/0 +

1
2
(σ −n) ·π and then use Sieve formula T6.1. •)

T6.3 Let X1, . . . ,Xn be finite subsets of a finite set Ω . For /0 6= J ⊆ {1, . . . ,n} , let XJ :=
⋂

i∈J Xi
and X := X/0 :=

⋃n
i=1 Xi . Further, for j = 1, . . . ,n , put ξ j := ∑J∈P j({1,...,n}) |XJ| and ξ0 := |Ω| .

Prove that

20This formula is attributed to Joseph Sylvester. J a m e s J o s e p h S y l v e s t e r (1814-1897) was an English
mathematician. He made fundamental contributions to matrix theory, invariant theory, number theory, partition theory
and combinatorics. He played a leadership role in American mathematics in the later half of the 19th century as a
professor at the Johns Hopkins University and as founder of the American Journal of Mathematics. It is sometimes also
named for Abraham de Moivre, Daniel da Silva or Henri Poincaré.
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(a)

∣∣∣∣∣ n⋂
i=1

(Ω\Xi)

∣∣∣∣∣ = n

∑
j=0

(−1) j
ξ j . (Hint : By Sieve formula T6.1, |X | = ∑

n
j=1(−1) j−1ξ j . Since

∩n
i=1(Ω\Xi) = Ω\∪n

i=1Xi = Ω\X , we get |∩n
i=1 (Ω\Xi)|= |Ω|− |X | .)

(b) For k = 1, . . . ,n , let Yk be the set of all those elements in X which belongs to exactly k of

the subsets X1, . . . ,Xn . Then show that |Ym|=
n

∑
r=m

(−1)r−m
(

r
m

)
ξr for all 1≤ m≤ n . (Hint : Let

1 ≤ k,m ≤ n and let m be fixed. Suppose that x ∈ Yk and (may) assume that x ∈ X1, . . . ,Xk and x 6∈ Xi

for all k < i ≤ n . If k < m , then x 6∈ Ym and hence x does not contribute anything to ξr for r ≥ m . If
k = m , then x ∈ Ym and in the sum on the LHS it contributes only to one term, namely, to

(m
m

)
ξm , since

ξm := ∑J∈Pm({1,...,n}) |XJ| and only one of these intersections, namely, X1 ∩ ·· · ∩Xm contains x . In the
remaining case k > m , x 6∈ Ym and hence x contributes nothing. On the other hand its contribution to ξr is(k

r

)
(one in each J ∈Pr({1, . . . ,k}) . Therefore if we let j = r−m , then the problem reduces to prove the

identity ∑
k−m
j=0 (−1) j

(m+ j
m

)( k
m+ j

)
= 0 which is stated in Exercise 6.2-(j)-(ii).)

T6.4 The purpose of this Exercise is to give an alternative proof of the T6.3-(b). Let Ω be a finite

set and let f : Ω×P(Ω)→R be the map defined by (x,A) 7→

{
0, if x 6∈ A,
1, if x ∈ A.

(See also indicator

functions Exercise Set 2, T2.26.)

Show that :
(a) For each A ∈P(Ω) , the map f (−,A) is the indicator function eA of A . In particular, for any
two subsets A,B ∈P(Ω) , we have :

(1) f (x,Ω\A) = 1− f (x,A) ;
(2) f (x,A∩B) = f (x,A) · f (x,B) ;
(3) f (x,A∪B) = f (x,A)+ f (x,B)− f (x,A∩B) ;
(4) |A|= ∑x∈Ω f (x,A) . (Hint : See the Exercise 1.??.)

(b) Let I := {1,2, . . . ,n} and let X1, . . . ,Xn ∈P(Ω) and for each J ∈P(I) , let XJ := ∩ j∈JX j (and
X/0 := Ω ). Then prove that ∑

J∈P j(I)
|XJ|= ∑

x∈Ω

(
∑

J∈P j(I)
f (x,XJ)

)
. (Hint : Use the part (a).)

(c) If an element x ∈Ω belongs to exactly k of the subsets X1, . . . ,Xn , then prove that

∑
J∈Pr(I)

f (x,XJ)=

(
k
r

)
.

(Hint : Here we use the understanding that
(0

0

)
= 1. We may assume that x ∈ X1∩·· ·∩Xk and x 6∈ Xi for

all k < i≤ n . For every J ∈Pr({1, . . . ,n}) , f (x,XJ) = ∏ j∈J f (x,X j) = 1 if and only if J ⊆ {1, . . . ,k} , i.e.,
J ∈Pr({1, . . . ,k}) . This proves that LHS is equal to the cardinality |Pr({1, . . . ,k})|=

(k
r

)
.)

(d) For every x ∈ Ω , show that f (x,∩n
i=1(Ω \ Xi)) =

n

∑
j=0

(−1) j(
∑

J∈P j(I)
f (x,XJ)

)
. (Hint : For

i ∈ I := {1, . . . ,n} , put X ′i := Ω \Xi . Then by (a)-(1) , (2) LHS = ∏
n
i=1 f (x,X ′i ) = ∏

n
i=1(1− f (x,Xi)) =

1+∑
n
j=1(−1) j

∑J∈P j(I)(∏k∈J f (x,Xk)) = 1+∑
n
j=1(−1) j

∑J∈P j(I) f (x,XJ)) . – Remark : Suming over the
two sides of this formula as x varies over Ω and using the parts (a) and (b), we get the proof of the formula
given in T6.3.)

T6.5 Prove the following (marriage) theorem :

Marriage Theorem (P . H a l l, 1935)21 Let Yx , x ∈ X , be a finite family of finite sets. For every
subset N of X assume that the set YN := ∪x∈NYx has at least |N| elements, i. e., |YN | ≥ |N| for

21The human interpretation which gave the folklore name ( m a r r i a g e - t h e o r e m ) provides the solution for the
m a r r i a g e p r o b l e m which requires to match n girls with the set of n boys. For a complete match a (marriage)
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every N ∈P(X) . Then there exists an injective map f : X → YX with f (x) ∈ Yx for every x ∈ X .
(Proof : Proof by induction on n = |X | . The case of n = 1 is trivial. For the inductive step consider two
cases :
Case 1: |YN |> |N| for every subset N ⊆ X , N 6= /0 , N 6= X . In this case for a (fixed) x ∈ X , choose y ∈ Yx
and consider the finite set X ′ := X \{x} and finite family Y ′x′ := Yx \{y} , x′ ∈ X ′ of finite sets. Then clearly
for each N′ ⊆ X ′, Y ′N′ = ∪x′∈N′Y ′x′ and YN′∪{x} =Y ′N′ ∪{x} and hence the marriage condition |Y ′N′ |> |N′| still
holds for the family Y ′x′ := Yx \{y} , x′ ∈ X ′. Therefore by the inductive hypothesis, there is an injective map
f ′ : X ′→ Y ′X ′ with f ′(x′) ∈ Y ′x′ . Now, extend f ′ to the map f : X → YX by f (x) = y and f (x′) = f ′(x′) .

Case 2: There exists a subset /0 6= N ( X , with |YN | = |N| . In this case, by the inductive hypothesis,
there exists an injective (in fact bijective) map g : N → YN . The trick is to show that X ′′ := X \N and
Y ′′x′′ := Yx′′ \YN , x′′ ∈ X ′′ satisfy the marriage condition : Let N′′ ⊆ X ′′ and Ñ := N′′∪N. Then N∩N′′ = /0,
YÑ = YN′′ ∪YN = Y ′′N′′ ]YN and #N′′+ #N = # Ñ ≤ #(YÑ) = #(Y ′′N′′ ]YN) = #Y ′′N′′ + #YN = #Y ′′N′′ + #N by
assumptions and hence #N′′ ≤ #Y ′′N′′ . Therefore by the inductive hypothesis, there is an injective map
X ′′→ Y ′′X ′′ with f ′′(x′′) ∈ Y ′′x′′ . Now, define f : X → YX by f (x) = g(x) for x ∈ N and f (x′′) = f ′′(x′′) for
x′′ ∈ X ′′ . • )

(Remarks : This important theorem has many variations; these were discovered by G . F r o b e n i u s
(1849-1917) a German mathematician, D e n e s K ö n i g (1884-1944) a Hungarian mathematician, Robert
Dilworth (1914-1993) an American mathematician, G . B i r k h o f f (1884-1944) and J o h n v o n
N e u m a n n (1903-1957) an American and a Hungarian mathematicians. Below we give number of
applications of marriage theorem.)
(a) Let p= (X1, . . . ,Xr) and let q= (Y1, . . . ,Yr) be partitions of the set X into r pairwise disjoint
subsets each of them with n≥ 1 elements. Show that p and q has a common representative system,
i.e. there exist r distinct elements x1, . . . ,xr in X such that each xi belongs to exactly one of the
subset X1, . . . ,Xr and exactly one of the subset Y1, . . . ,Yr .
(Hint : Applying the Marriage-Theorem T6.5 to the family Ji := { j ∈ {1, . . . ,r} | Xi∩Yj 6= /0}, i ∈ {1, . . . ,r}
find a permutation σ ∈ Sr such that Xi ∩Yσ(i) 6= /0 for every 1 ≤ i ≤ r . – Remark : The assumption
that |Xi| = |Yi| = n for all i = 1, . . . ,r can be replaced by some what weaker condition : for every subset
J ⊆ {1, . . . ,r} , the subset XJ := ∪ j∈JX j contains at most |J| components Y1, . . . ,Yr of q .)

(b) Let A be the n× r integral matrix

A=


1 2 · · · r

r+1 r+2 · · · 2r
...

... . . . ...
(n−1)r+1 (n−1)r+2 · · · nr


and let B be another n× r integeral with entries 1,2, . . . ,nr (at arbitrary positions). Show that
there exists a permutation σ ∈Sr such that for every i = 1, . . . ,r , the i-th column of A and the
σ(i)-th column of B contain at least one element in common. (Hint : Use the part (a).)

(c) Let G be a finite group and let H be a subgroup of G . Let G = Hy1∪·· ·∪Hyr (respectively,
G = z1H ∪ ·· · ∪ zrH ) be a right-coset (respectively, left-coset) decomposition for G . Show that
there exist elements x1, . . . ,xr ∈ G such that G = Hx1∪ ·· ·∪Hxr = x1H ∪ ·· ·∪ xrH . (Hint : Use
the part (a).)
(d) Let X be a finite set with n elements. For i ∈N, let Pi(X) be the set of all subsets Y of X with
|Y | = i. Show that: If i ∈N with 0 ≤ i < n/2 (respectively, with n/2 < i ≤ n), then there exists
an injective map fi : Pi(X)→Pi+1(X) such that Y ⊆ fi(Y ) for all Y ∈Pi(X) (respectively, an

condition is necessary; the marriage condition can be formulated in several equivalent ways, for example, For each
r = 1, . . . ,n every set of r girls likes at least r boys. (or equivalently, For each r = 1, . . . ,n every set of r boys likes at
least r girls.) The marriage condition (also called H a l l - c o n d i t i o n) and the marriage theorem are due to the
English mathematician P h i l i p H a l l (1904-1982). Hall was the main impetus behind the British school of group
theory and the growth of group theory to be one of the major mathematical topics of the 20th Century was largely due
to him. See : [P. Hall, On representatives of subsets, J. London Math. Soc. Vol. 10 (1935) 26- 30.]
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injective map gi : Pi(X)→Pi−1(X) such that gi(Y )⊆Y for all Y ∈Pi(X)). (Hint : Let 0≤ i < n/2.
A pair (Y,Y ′) ∈Pi(X)×Pi+1(X) is called amicable if Y ⊆ Y ′. Let R be a subset of Pi(X) with |R|=: r.
Further, let R′ be the set of all those Y ′ ∈Pi+1(X) which are amicable to at least one Y ∈R. Put s := |R′|.
Then r(n− i)≤ s(i+1) and hence r ≤ s. Now use the Marriage-Theorem T6.5.)

T6.6 (S t i r l i n g n u m b e r s and B e l l ’ s n u m b e r s) Let n,r ∈N with 0≤ r ≤ n .
(a) ( S t i r l i n g n u m b e r s o f s e c o n d k i n d 22) Let S(n,r) := |Parr(X)| , where Parr(X) is
the set of all partitions p= (X1, . . . ,Xr) of X into r subsets. For all other pairs (n,r) ∈ Z2 , we put
S(n,r) = 0.

Show that

(1) For n≥ 1, S(n,2) = 2n−1−1.

(2) S(n,r) =
1
r!
|Mapssurj(X ,{1, . . . ,r})|= 1

r!

r

∑
k=0

(−1)k
(

r
k

)
(r− k)n =

r

∑
k=0

(−1)k(r− k)n−1

k! · (r− k−1)!
.

In particular, r! =
r

∑
i=0

(−1)k
(

r
k

)
(r− k)r .

(3)
n

∑
k=1

k! ·
(

r
k

)
·S(n,k) = rn .

(Hint : To prove (1) show that each fibre of the map P(X)\{ /0,X}→Par2(X) defined by Y 7→ (Y,X \Y )
has cardinality 2 and hence 2n−2 = |P(X)\{ /0,X}|= 2 · |Par2(X)| by Shepherd-rule 2.B.12. To prove (2)
show that each fibre of the map Mapssurj(X ,{1, . . . ,r})→Parr(X) defined by f 7→ ( f−1(1), . . . , f−1(r))
has cardinality r! and hence by the Shepherd-rule 2.B.12 and Exercise 6.4-(c), we have r! · |Parr(X)| =
|Mapssurj(X ,{1, . . . ,r})| . The last part follows from the equality π(r,r) = 1. For the proof of (3), compute
the cardinality of each fibre of the map

Maps(X ,{1, . . . ,r})→
n⊎

k=1

Pk ({1, . . . ,r})×Park(X)) , f 7→ ( f (X),p( f )) ,

where p( f ) := ( f−1(i))i∈ f (X) and then use (2). – Remarks : The Stirling numbers appear in many other
problems. Clearly S(n,r) = 0 for r > n , S(n,n) = 1, S(n,1) = 1; S(n,n−1) =

(n
2

)
; a less trivial result is

the formula for S(n,2) given in the part (1). For r > 2, there is no easy formula for S(n,r) . For small values
of n and r one can find S(n,r) by actually considering all partitions of a set with n elements. For higher
values this becomes impracticable and also unreliable. The important recurrence relation given below in c)
which allows us to compute a Stirling numbers by first computing the lower Stirling numbers. Consider the

polynomial F(T ) := T n−
n

∑
k=0

k! ·S(n,k) ·
(

T
k

)
, where

(
T
k

)
:=

T (T −1) · · ·(T − k+1)
k!

are the b i n o m i a l

p o l y n o m i a l s of degree k . Then, since F(T ) is a polynomial of degree ≤ n with integer coefficients
and by (3), the integers 0,1, . . . ,n are n+1 distinct zeroes of F , we conclude that F = 0 and therefore the

Stirling numbers of second kind are also defined by the polynomial equation T n =
n

∑
k=0

k! ·S(n,k) ·
(

T
k

)
. If

one takes this as the definition of the Stirlings numbers S(n,r) of second kind, then (1) and (3) are immediate
by putting T = 2 and T = r respectively. This also leads to the definition of the S t i r l i n g n u m b e r s
o f f i r s t k i n d : For r,n ∈N with 0 ≤ r ≤ n , let s(n,r) ∈ Z be defined by the polynomial equation :(

T
n

)
=

1
n!
·

n

∑
r=0

(−1)n−r · s(n,r) ·T r . Put s(n,r)=0 otherwise. For the existence of the numbers s(n,r) use

the fact that 1,T, . . . ,T n and
(T

0

)
,
(T

1

)
, . . . ,

(T
n

)
are two bases of the Q-vector space Q[T ]n of polynomials

with rational coefficients of degree ≤ n.)
(b) The Stirling numbers of second kind satisfy the recursion relations :

S(0,r) = δ0r , and S(n+1,r) = rS(n,r)+S(n,r−1) ,

22 J a m e s S t i r l i n g (1692-1770) was a Scottish mathematician whose most important work Methodus
Differentialis in 1730 is a treatise on infinite series, summation, interpolation and quadrature.
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where δi j denote the Kronecker’s delta. (Hint : From
( T

k+1

)
= T ·

(T
k

)
− k ·

(T
k

)
, we get T n+1 =

∑
n
k=0 k! ·S(n,k) ·T ·

(T
k

)
= ∑

n+1
k=0 k! · [k ·S(n,k)+S(n,k−1)] ·

(T
k

)
. — Remark : The Stirling numbers of

first kind satisfy the recursion relations : s(0,r) = δ0r , and s(n+1,r) = n · s(n,r)+ s(n,r−1) .)
(c) ( B e l l ’ s n u m b e r s 23) Let X be a finite set with n elements. The number of equivalence
relations on X is called the n- B e l l n u m b e r βn , i. e., |Eq(X)|= βn .
(i) The numbers βn satisfy the recursion relations β0 = 1 and βn+1 = ∑

n
k=0
(n

k

)
βk for all n ∈N .

(ii) Let m,n ∈N with m≤ n and let βm,n := ∑
m
i=0
(m

i

)
βn−i . Then β0,n = βn , β0,n+1 = βn,n and

βm+1,n+1 = βm,n +βm,n+1 for all m,n ∈N with m≤ n .
(iii) Using the above formulas we have the following table :

n 0 1 2 3 4 5 6 7 8 9 10
βn 1 1 2 5 15 52 203 877 4140 21147 115975 .

(iv) Prove that βn =
n

∑
r=0

S(n,r) for every n ∈N . (Hint : See T6.?-(?) and use T6.?-(?).))

(d) Prove that S(n+1,r) =
n

∑
k=1

(
n
k

)
S(k,r−1) =

n

∑
k=0

rn−kS(k,r−1) .

(Hint: For the first equality consider the map
k⊎

k=0

( ⊎
I∈Pk(X)

{I}×Parr−1(I)
)
−→Park(X

⊎
{y}) defined

by (I,(I1, . . . , Ir−1)) 7→ ((X \ I)]{y}, I1, . . . , Ir−1) . The second equality is proved by induction and using

recursion relations (see part (b)) : S(n+1,r) = r S(n,r)+S(n,r−1) =
n−1

∑
k=0

rn−k S(k,r−1)+S(n,r−1) =

n

∑
k=0

rn−k S(k,r−1) .)

23E r i c T e m p l e B e l l (1883-1960) was a Scottish mathematician and attended Bedford Modern School where
excellent mathematics teaching gave him his life-long interest in the subject. In particular, his interest in number theory
came from this time. Bell wrote several popular books on the history of mathematics. He also made contributions to
analytic number theory, Diophantine analysis and numerical functions. The American Mathematical Society awarded
him the Bôcher Prize in 1924 for his memoir, Arithmetical paraphrases which had appeared in the Transactions of the
American Mathematical Society in 1921. Although he wrote 250 research papers, including the one which received the
Bôcher Prize, Bell is best remembered for his books, and therefore as an historian of mathematics. Bell did not confine
his writing to mathematics and he also wrote sixteen science fiction novels under the name J o h n T a i n e.
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