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1.1. ( R e l a t i o n s ) LetX andY be sets. Ar e l a t i o n R betweenX andY is a subsetR ⊆ X × Y , i.e. an
elementR ∈ P(X × Y ). For the expression “(x, y) ∈ R” we shall write “xRy” and say that “x is related to y

with respect to R”, x ∈ X, y ∈ Y . In the caseY = X we say thatR ⊆ X × X is a r e l a t i o n o n X .

a). The mapP(X × Y ) → P(Y )X defined byR �→ (
x �→ {y ∈ Y | xRy}) is bijective. Write down the inverse

of this map. (Remark : With this bijection, one can identify every relationR ⊆ X × Y betweenX andY as a map fromX
into P(Y ).)

A relationR ∈ P(X × X) onX is called ane q u i v a l e n c e r e l a t i o n if itsatisfies :

(1) ( R e f l e x i v i t y ) : xRx for all x ∈ X.
(2) ( S y m m e t r y ) : xRy impliesyRx, wherex, y ∈ X.
(3) (T r a n s i t i v i t y ) : xRy andyRz impliesxRz, wherex, y, z ∈ X.

Let E(X) ⊆ P(X × X) denote the set of all equivalence relations onX.

b). The restriction of the mapα : P(X × X) → P
(
P(X)

)
, R �→ {{y ∈ X | xRy} | x ∈ X

}
is injective on the

subsetE(X).

A p a r t i t i o n Z of the setX is a subsetZ ⊆ P(X) of non-empty disjoint subsets ofX such that their union is
X. ThereforeZ ∈ P

(
P(X)

)
. Let Z(X) ⊆ P

(
P(X)

)
denote the set of all partitions ofX.

c). In the situation ofb) : α maps E(X) bijectively onto Z(X) , i.e. to each equivalence relationR on X, α

associates a unique partitionα(R) of X and conversely.

The partitionZ(R) corresponding to the equivalence relationR on X is usually denoted byX/R and is called
the q u o t i e n t s e t o f X w i t h r e s p e c t t o t h e e q u i v a l e n c e r e l a t i o nR . The elements
[x] := [x]R := {y ∈ X | xRy} ∈ X/R are called thee q u i v a l e n c e c l a s s e s o fx w i t h r e s p e c t t o R .

1.2. Let G be a (multiplicatively written) monoid. An elementx ∈ G is called i n v e r t i b l e if there exists
x ′ ∈ G such thatx ′x = e = xx ′. In this case thei n v e r s ex ′ is uniquely determined byx and is denoted byx−1.
Let G× denote the set of all invertible elements ofG.

(1) e ∈ G×.
(2) If x, y ∈ G×, thenxy ∈ G× and(xy)−1 = y−1x−1.
(3) G× is a group under the induced binary operation ofG.
(4) G is a group if and only ifG = G×.

– The groupG× is called theg r o u p o f i n v e r t i b l e e l e m e n t s ofG or the u n i t g r o u p ofG. For example, in a
field K with respect to multiplication the unit group isK× = K − {0}. For the monoid(XX, ◦) of the set of all maps of a set
X into itself, the unit group is(XX)× = S(X) the set of all permutations ofX (proof!).

1.3. Let G ⊆ Z be a subset of integers which contains atleast one positive integer and atleast one negative integer.
Suppose thatG is closed under the usual addition inZ i.e. a + b ∈ G whenevera, b ∈ G . Prove that(G, +)

is a group. (Hint : Use T1.3.)

1.4. a). For a, b ∈ R, let fa,b : R → R be defined byfa,b(x) := ax + b, x ∈ R. ThenG := {fa,b | a, b ∈
R, a �= 0} with the composition as a binary operation is not a commutative group.(This is the well-knowna f f i n e
g r o u p ofR and is denoted by A1(R); Its elements are called thea f f i n e l i n e a r m a p s .)

b). Let G be a finite group with the identity elemente. Suppose that|G| = n and(a1, . . . , an) ∈ Gn. Then there
existr, s with 0≤ r < s ≤ n such thatar+1 · · · as = e . (Hint : Then+1 productsa1 · · · as , s = 0, . . . , n, cannot be
pairwise distinct.)

1.5. Let X be a set.

a). The power setP(X) of a setX with the union as addition and the intersections as multiplication is never a
field. – which elements inP(X) are 0 and 1. (This is infact almost never a ring!)

b). Show thatP(X) with the symmetric difference	 as addition and the intersection∩ as multiplication is a
commutative ring with∅ as the zero element 0 andX as the unit element 1. This ring is called thes e t - r i n g of
X. If |X| = 1, then this ring is a field with two elements ; in the other case the set-ring ofX is not a field. (Hint :
For verification of the ring-axioms use indicator functions and their rules, See T1.1.)

On the other side one can see (simple) test-exercises ; their solutions need not be submitted.
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Test-Exercises

T1.1. ( I n d i c a t o r f u n c t i o n s ) LetX be a set. For a subsetA ∈ P(X), let A′ be the complement ofA in X and let
eA : X → {0, 1}, eA(x) = 1 if x ∈ A andeA(x) = 0 if x �∈ A, denote the indicator function ofA. ForA, B ∈ P(X), prove
that : eA∩B = eAeB , eA∪B = eA+eB−eAeB , eA\B = eA(1−eB) . In particular,eA′ = 1−eA andeA 	 B = eA+eB−2eAeA .

T1.2. Let f : X → Y be a map and letf∗ : P(X) → P(Y ) , f ∗ : P(Y ) → P(X) be the maps induced byf , A �→ f (A) ,
A ⊆ X, respectivelyB �→ f −1(B) , B ⊆ Y .
a). The following are equivalent : (i)f is injective. (ii)f∗ is injective. (iii) f ∗ is surjective.
b). The following are equivalent : (i)f is surjective. (ii)f∗ is surjective. (iii)f ∗ is injective.
c). If f bijective, then so aref∗ andf ∗ ; moreover, they are inverses of each other.

T1.3. a). (We l l - o rde r i ng p r i nc i p l e ) Provethat theprinciple of mathematical induction is equivalent to the following
statement :If X is a non-empty subset of N , then X has a smallest element, i.e. there exists an element x0 ∈ X such that
x0 ≤ x for all x ∈ X.
b). ( D i v i s i o n a l g o r i t h m ) Leta andb be integers withb �= 0. Then there exist unique integersq andr such that
a = qb + r , with 0 ≤ r ≤ |b| .

T1.4. a). Let a, n∈ N with a, n≥2. If an−1 is prime, thena = 2 andn prime. In particular,an−1 is a Mersenne’s prime
number. (Remark : The problem of primality ofan − 1 is thus reduced to that of the primality of 2p − 1.)1)
b). Let a, n ∈ N

∗ with a ≥ 2. If an + 1 is prime, thena is even andn is a power of 2.2)
c). Fora, m, n ∈ N

∗ with a ≥ 2 andd := gcd(m, n), gcd(am − 1 , an − 1) = ad − 1. (Hint : It is easy to reduce to the case
d = 1. Then(am − 1)/(a − 1) = am−1 + · · · + a + 1 and(an − 1)/(a − 1) = an−1 + · · · + a + 1 are relatively prime. )

T1.5. a). Letn, k ∈ N
∗ be relatively prime. Thenndivides

(
n

k

)
andk divides

(
n−1
k−1

)
. (Forn, k ∈ N,

(
n

k

)
:= n(n − 1) · · · (n − k + 1)

k!
is the coefficient ofXk in (1+X)n and is called thek - t h b i n o m i a l c o e f f i c i e n t .Hint : The formula :k

(
n

k

) = n
(
n−1
k−1

)
!)

b). Let p be a prime number. Forr, k ∈ N with r < k < p, the integer
(
p+r

k

)
is divisible byp. In particular, the number

(
p

k

)

if divisible by p for 0 < k < p.

T1.6. a). Let a, b ∈ N
∗. Then gcd(a, b) · lcm(a, b) = ab.

b). Let a1, . . . , an ∈ N
∗ be positive natural numbers,n ≥ 1 , anda := a1 · · · an be their product. The following statements

are equivalent:
(i) a1, . . . , an are pairwise relatively prime, i.e. gcd(ai, aj ) = 1 for all 1 ≤ i, j ≤ n, i �= j .
(ii) If a natural numberc divides each of the numbera1, . . . , an , then a divides the numberc .
(iii) lcm (a1, . . . , an) = a .
(iv) gcd(a/a1, . . . , a/an) = 1 .

(v) There exist integerss1, . . . , sn such that1
a

= s1
a1

+ · · · + sn

an
.

c). Let a1, . . . , an ∈ N
∗. Then there exist integersu1, . . . , un ∈ Z such that gcd(a1, . . . , an) = u1a1 + · · · + unan.

In particular,a1, . . . , an are relatively prime if and only if there exist integersu1, . . . , un ∈ Z such that 1= u1a1+· · ·+unan.
(Hint : Use gcd(a1, . . . , an−1, an) = gcd(gcd(a1, . . . , an−1), an) .)
d). Find integersu1, u2, u3 such thatu1 · 88+ u2 · 152+ u3 · 209= 1 .

1) ( M e r s e n n e ’s n u m b e r s ) ThenumbersMp := 2p −1, wherep prime, are called Me r s e n n e ’s n u m b e r s . It was
asserted byMersenne in 1644 thatMp := 2p − 1 is prime forp = 2, 3, 5, 7, 13, 17, 19, 31, 67, 127, 257 and composite
for the other 44 values ofp less than 257. The first mistake in Mersenne’s statement was found about 1886 (Euler stated
in 1732 thatM41 andM47 are prime, but this was a mistake), whenPervusin andSeelholf discovered thatM61 is prime.
Subsequently four further mistakes were found and it need no longer be taken seriously. In 1876Lucas found a method
for testing whetherMp is prime and used it to proveM127 is prime. This remained the largest known prime until 1951. In
spite of many Mersenne primes that have been verified, no one has ever proved that there are infinitely many of them! In
1953Raphael M. Robinson had used the Swac computer to find a number of considerably larger primes and found that
M2281 is a prime number of 687 digits. In 1963 the postage-meter stamp was used by the University of Illinois to honour the
discovery of the primeM11213. In 1978 two 18-year olds from Harward, California –Laura Nickel andCurt Noll –
used 440 hours of computer time to find the 6533-digit prime numberM21701. The biggest Mersenne number which is prime
(till today!) is the Mersenne number corresponding to the primep = 756839.
2) ( F e r m a t ’s n u m b e r s )Numbers of the formFm := 22m + 1, m ∈ N, are calledF e r m a t ’s n u m b e r s . For
m = 0, 1, 2, 3, 4 these numbers areF0 = 3, F1 = 5, F2 = 17, F3 = 257, F4 = 65537 and are prime numbers. The Fermat’s
numbers are of great interest in many ways ; it was proved byGauss that : if Fn is a prime p, then a regular polygon of p

sides can be inscribed in a circle by Euclidean methods. SinceFm+1 = 2+F0 · · · Fm, any two distinct Fermat’s numbers are
relatively prime.Fermat conjectured that all were prime.Euler, however, in 1732 found that 641= 54 + 24 = 5 · 27 + 1
divides 54 · 228 + 232 and 54 · 228 − 1 and hence also divide their difference 232 + 1 = F5. In factF5 = (641) · (6700417).
In 1880Landry proved thatF6 = 226 + 1 = (274177) · (67280421310721). More recently writers have proved thatFn

is composite for 7≤ n ≤ 16, n = 18, 19, 23, 36, 38, 39, 55, 63, 73 and many other larger values ofn. Morehead and
Western provedF7 andF8 are composite without determining a factor. No factor is known forF13 andF14, but in all the
other cases proved to be composite a factor is known. No PrimeFn has been found beyondF4, so that Fermat’s conjecture
has not proved a very happy one. It is perhaps more probable that the number of primesFn is finite (This is what is suggested
by considerations of probability.)
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