Prof. D. P.Patil, Department of Mathematics, Indian Institute of Science, Bangalore August-December 2003
MA-219 Linear Algebra

1. Algebraic Structures
August 11, 2003 ; Submit solutions before 11:00AM ; August 18, 2003.

1.1. (Relations) LetX andY be sets. Arelation R betweenX andY is a subseR C X x Y, i.e. an
elementR € P(X x Y). For the expression (%, y) € R” we shall write “xRy” and say that X isrelatedto y
with respecttoR” ,x € X,y € Y. Inthecas¢ = X wesaythalR C X x X isa relation onX .

a). The mapP(X x Y) — P(¥)* defined byR > (x — {y € Y | xRy}) is bijective. Write down the inverse
of this map. (Remark : With this bijection, one can identify every relatidhC X x Y betweenX andY as a map fronk
into PB(Y).)

ArelationR € P(X x X)on X is called anequivalence relation if isatisfies:

(1) (Reflexivity) : xRx forallx € X.
(2) (Symmetry) :xRyimpliesyRx, wherex,y e X.
(3) (Transitivity): xRy andyRz impliesxRz, wherex, y,z € X.

Let &(X) C PB(X x X) denote the set of all equivalence relationsXn

b). The restriction of the map: : P(X x X) — P(P(X)), R — {{y € X | xRy} | x € X} is injective on the
subseté&(X).

A partition 3 of the setX is a subsef3 C (X) of non-empty disjoint subsets &f such that their union is
X. Therefore3 € P(P(X)) . Let 3(X) € P(P(X)) denote the set of all partitions .

c). In the situation ob): « maps &(X) bijectively onto 3(X), i.e. to each equivalence relatidhon X, o
associates a unique partiti@(R) of X and conversely.

The partition 3(R) corresponding to the equivalence relatiBron X is usually denoted byX/R and is called
the quotient set of X with respect to the equivalence relatio® . The elements
[x]:=[x]lr:={y € X | xRy} € X/R are calledtheequivalence classes of with respect toR.

1.2. Let G be a (multiplicatively written) monoid. An elemente G is calledinvertible if there exists
x’ € G suchthat’x = ¢ = xx’. In this case thenversex’ is uniquely determined hy and is denoted by .
Let G* denote the set of all invertible elements®f

Q) e € G*.

(2) If x,y € G*, thenxy e G* and(xy) ™! = y~1x~L.

(3) G* is a group under the induced binary operatiorGof

(4) GisagroupifandonlyiiG = G*.

— The groupG* is called thegroup of invertible elements af orthe unit group of;. For example, in a
field K with respect to multiplication the unit group46* = K — {0}. For the monoid X*, o) of the set of all maps of a set
X into itself, the unit group i$X*)* = &(X) the set of all permutations of (proof!).

1.3. Let G C Z be a subset of integers which contains atleast one positive integer and atleast one negative integer.
Suppose thaG is closed under the usual additionihi.e. a + b € G whenevew, b € G . Prove that(G, +)
is a group. (Hint: Use T1.3.)

1.4. a). Fora,b € R, let f,;, : R — R be defined byf, ,(x) := ax + b, x € R. ThenG = {f,, | a,b €
R, a # 0} with the composition as a binary operation is not a commutative gr@upis is the well-knownaffine
group ofR and is denoted by XR); Its elements are called theffine linear maps.)

b). Let G be a finite group with the identity elementSuppose thatfG| = n and(ay, ..., a,) € G". Then there
existr, s with 0<r < s<nsuchthata,,1---a; =e. (Hint: Then+1 productsa; - --a,, s =0, ..., n, cannot be
pairwise distinct.)

1.5. Let X be a set.

a). The power sef3(X) of a setX with the union as addition and the intersections as multiplication is never a
field. —which elements if3(X) are 0 and 1. (This is infact almost never a ring!)

b). Show thatB3(X) with the symmetric difference\ as addition and the intersectiom as multiplication is a
commutative ring withy as the zero element 0 adlas the unit element 1. This ring is called tket-ring of
X. If |X| = 1, then this ring is a field with two elements ; in the other case the set-rikgi®hot a field. (Hint:
For verification of the ring-axioms use indicator functions and their rules, See T1.1.)

On the other side one can see (simple) test-exercises ; their solutions need not be submitted.
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Test-Exercises

T1.1. (Indicator functions) LeiX be a set. For a subsdt e B(X), let A’ be the complement of in X and let
es X > {0,1},e4(x) =1ifx € Aande,(x) = 0if x € A, denote the indicator function of. For A, B € P(X), prove
that: eAng = €a€p, €aup = €sxtep—eqep, €A\B =eA(l—eB).Inparticular,eA/ =1—ey4 andeAAB = e teg—2eqey .

T1.2. Let f: X — Y beamap and left, : B(X) — PE), f*:PE) — P(X) be the maps induced by, A — f(A),
A C X, respectivelyB — f~Y(B),BCY.

a). The following are equivalent: (i¥ is injective. (i) f, is injective. (i) f* is surjective.

b). The following are equivalent: (if is surjective. (ii) f. is surjective.  (iii) /* is injective.

c). If f bijective, then so ar¢, and f*; moreover, they are inverses of each other.

T1.3. a). (Well-ordering principle) Provéhat theprinciple of mathematical induction is equivalent to the following
statement 1f X isa non-empty subset of N, then X has a smallest element, i.e. there exists an element xo € X such that
xo <x forall x € X.

b). (Division algorithm) Leta andb be integers witlb # 0. Then there exist unique integersandr such that
a=qgb+r, with0<r < |b|.

T1.4. a). Leta,neNwith a,n>2. If a"—1is prime, thera = 2 andrn prime. In particulara”—1 is a Mersenne’s prime
number. Remark : The problem of primality o — 1 is thus reduced to that of the primality of 2 1.)1)

b). Leta,n € N* witha > 2. If a" + 1 is prime, ther: is even and: is a power of 2.2)

c). Fora,m,n e N* with a > 2 andd := gcd(m, n), gcd@a™ — 1,a" — 1) = a? — 1. (Hint: Itis easy to reduce to the case
d=1.Then@" —1)/a—1) =a" 1 +.-..+a+1and@" —1)/(@@—1) =a" 1+ .- +a+ 1 are relatively prime.)

T15. a). Letn, k € N*berelatively prime. Thendivides(") andk divides('~Y). (Forn, k € N, (!) := 22 =1 'l‘c,(” —k+1

is the coefficient of* in (14 X)" and is called thek -th binomial coefficientHint: The formula:k(}) = n(zj) N

b). Let p be a prime number. Fork € Nwith r < k < p, the intege(”,") is divisible by p. In particular, the numbe(f)
if divisible by p for 0 < k < p.

T1.6. a). Leta, b € N*. Then gcda, b) - Icm(a, b) = ab.

b). Let a1, ..., a, € N* be positive natural numbers,> 1, anda :=aj - - - a, be their product. The following statements
are equivalent:

(i) az,...,a, are pairwise relatively prime, i.e. ged,q;) = 1forall1<i,j <n,i # j.

(i) If a natural numberc divides each of the number, ..., a,, thena divides the number .

(i) lecm (ay,...,a,) =a.

(iv) gcd(a/as,...,aja,)=1.

(v) There existintegers;y, ..., s, such that:EL = Z—l +- 4 2—" .

c). Letas,...,a, € N*. Then there exist mtegérzsl, ..., U, € 7Z such that gcths, ...,a,) = uiay + --- + u,a,.
Inparticularas, ..., a, are relatively prime if and only if there existintegers . . ., u, € Z suchthat 1= uja1+- - -+ u,a,.

(Hint: Use gcday, ..., a,-1,a,) = gcdgcd(an, ..., a,-1), a,) .)
d). Find integersuz, up, uz such thatu; - 88+ us - 152+ u3-209=1.

) (Mersenne’s numbers) TmambersM, := 2? — 1, wherep prime, are called Mrsenne’s numbers. ltwas
asserted bMERSENNE in 1644 thatM, ;= 27 — 1 is prime forp = 2,3,5,7, 13,17, 19, 31, 67, 127, 257 and composite

for the other 44 values gf less than 257. The first mistake in Mersenne’s statement was found aboutFli886r(stated

in 1732 thatM41 andMy7 are prime, but this was a mistake), wHenrvUSIN andSEELHOLF discovered that/g; is prime.
Subsequently four further mistakes were found and it need no longer be taken seriously. Inut8&found a method

for testing whethen,, is prime and used it to provi1,7 is prime. This remained the largest known prime until 1951. In
spite of many Mersenne primes that have been verified, no one has ever proved that there are infinitely many of them! In
1953RAPHAEL M. RoBINSON had used the Swac computer to find a number of considerably larger primes and found that
Mo2g1is a prime number of 687 digits. In 1963 the postage-meter stamp was used by the University of lllinois to honour the
discovery of the primé@/11213 In 1978 two 18-year olds from Harward, CalifornidAura NickeL andCURT NOLL —

used 440 hours of computer time to find the 6533-digit prime numefo1. The biggest Mersenne number which is prime

(till today!) is the Mersenne number corresponding to the prime 756839.

2y (Fermat’s numbersNumbers of the forn¥,, := 22" +1, m € N, are calledFermat’s numbers. For
m=0,1,2,3,4these numbers at® = 3, F; =5, F» = 17, F3 = 257, F, = 65537 and are prime numbers. The Fermat's
numbers are of great interest in many ways ; it was prove@hyss that: if F, isa prime p, then a regular polygon of p
sidescan beinscribed in a circle by Euclidean methods. Sincer,,,1 = 2+ Fy - - - F,,, any two distinct Fermat's numbers are
relatively prime.FERMAT conjectured that all were prim&uLER, however, in 1732 found that 642 5% +24 =5.2" + 1
divides 3 - 228 + 232 and 8 . 228 — 1 and hence also divide their differenc® 2 1 = Fs. In fact F5 = (641) - (6700417.

In 1880LANDRY proved thatFg = 22 + 1= (274177 - (67280421310721 More recently writers have proved thaf

is composite for 7< n < 16,n = 18,19, 23, 36, 38, 39, 55, 63, 73 and many other larger valuesmaf MOREHEAD and
WESTERN provedF7 and Fg are composite without determining a factor. No factor is knowrfgrand F14, but in all the
other cases proved to be composite a factor is known. No PFins been found beyonid;, so that Fermat's conjecture
has not proved a very happy one. Itis perhaps more probable that the number of frifesite (This is what is suggested
by considerations of probability.)
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