MA-219 Linear Algebra 2. Vector spaces – Subspaces August 18, 2003 ; Submit solutions before 11:00AM ; August 25, 2003.

Let \mathbb{K} denote either the field \mathbb{R} of real numbers or the field \mathbb{C} of complex numbers.

2.1. a). Let V be a vector space over a field and let X be any set with a bijection $f : X \to V$. Then X has a K-vector space structure with $f^{-1}(0)$ as a zero element and for $a \in K$, $x, y \in X$, $x + y := f^{-1}(f(x) + f(y))$ and $ax := f^{-1}(af(x))$.

b). Let *X* be any set. Then the set-ring $(\mathfrak{P}(X), \Delta, \cap)$ of *X* (see exercise 1.5) has a natural structure of a vector space over the field \mathbb{Z}_2 . (**Hint**: The map $\mathfrak{P}(X) \to \mathbb{Z}_2^X$ defined by $A \mapsto e_A$ is a bijective, where e_A denote the indicator function of *A*. See exercise T1.1.)

2.2. Let *V* be a vector space over a field *K* with a field with $|K| \ge n$ and let V_1, \ldots, V_n be *K*-subspaces of *V*. If $V_i \ne V$ for every $1 \le i \le n$ then show that $V_1 \cup V_2 \cup \cdots \cup V_n \ne V$. Show by an example that the condition $|K| \ge n$ is necessary. (**Hint**: By induction on *n*, assume that $V_1 \cup V_2 \cup \cdots \cup V_{n-1} \ne V$. Choose $x \in V_n$ with $x \notin V_1 \cup \cdots \cup V_{n-1}$ and $y \in V$ with $y \notin V_n$. Now consider the set $\{ax + y \mid a \in K\}$ which has atleast *n* distinct elements.)

2.3. Let *K* be a field and let *I* be an index set.

a). The set of all functions $f: I \to K$ with finite image i.e. f(I) is a finite subset of K, is a K-subspace of the vector space K^{I} .

b). The set of all functions $f: I \to K$ with countable image i.e. f(I) is a countable subset of K, is a *K*-subspace of the vector space K^{I} .

c). The set $B_{\mathbb{K}}(I)$ bounded functions $f: I \to \mathbb{K}$ is a \mathbb{K} -subspace of \mathbb{K}^{I} .

d). The set W_g (resp. W_u) of all even (resp. odd) functions ¹) $\mathbb{R} \to \mathbb{K}$ is a \mathbb{K} -subspaces of $\mathbb{K}^{\mathbb{R}}$. Further, show that $W_g \cap W_u = 0$ and $W_g + W_u = \mathbb{K}^{\mathbb{R}}$.

e). The set of all functions $f: \mathbb{C} \to \mathbb{C}$ with $\lim_{z \to \infty} f(z) = 0$ is a \mathbb{C} -subspace of the vector space $\mathbb{C}^{\mathbb{C}}$ of all \mathbb{C} -valued functions on \mathbb{C} .

2.4. For subspaces U, U', W, W' of a vector space V over a field K, show that :

- **a).** The subset $V \setminus (U \setminus W)$ is a subspace of V if and only if U = V or $U \subseteq W$.
- **b).** $U + (U' \cap W) \subseteq (U + U') \cap (U + W)$.
- **c).** $U \cap (U' + W) \supseteq (U \cap U') + (U \cap W)$.
- **d).** (Modular law) $U + (U' \cap W) = U' \cap (U + W)$.

e). Suppose that $U \cap W = U' \cap W'$. Then $U = (U + (W \cap U')) \cap (U + (W \cap W'))$.

2.5. Let *K* be a field and let K[X] be the set of polynomials with coefficients in *K*. Let Φ denote the (evaluation) map $\Phi: K[X] \to K^K$ defined by $F(X) \mapsto (a \mapsto F(a))$. Show that

a). Φ is injective if and only if K is not finite. (Hint: Use T2.3-b)-(3))

b). Φ is surjective if and only if K is finite. (Hint: Remember *Polynomial interpolation*! See T2.5)

On the other side one can see (simple) test-exercises; their solutions need not be submitted.

¹) A function $f : \mathbb{R} \to \mathbb{K}$ is called even if f(-x) = f(x) for all $x \in \mathbb{R}$ and is called odd if f(-x) = -f(x) for all $x \in \mathbb{R}$.

Test-Exercises

T2.1. Let *V* be a vector space over a field *K*.

a). (General Distributive law) For arbitrary finite families a_i , $i \in I$, in K and x_j , $j \in J$, in V, show that

$$\left(\sum_{i\in I}a_i\right)\left(\sum_{j\in J}x_j\right)=\sum_{(i,j)\in I\times J}a_ix_j.$$

b). (Sign Rules) For arbitrary elements $a, b \in K$ and arbitrary vectors $x, y \in V$. Prove that :

(1) $0 \cdot x = a \cdot 0 = 0$. (2) a(-x) = (-a)x = -(ax). (3) (-a)(-x) = ax.

(4) a(x - y) = ax - ay and (a - b)x = ax - bx.

c). (Cancellation Rule) Let $a \in K$ and let $x \in V$. If ax = 0 then a = 0 or x = 0.

T2.2. Recall the concepts *convergent sequence*, *null- sequence*, *Cauchy sequence*, *bounded sequence* and *limit point of a sequence*. 2)

a). Let $(\mathbb{R}^{\mathbb{N}})_{conv}$ (respectively, $(\mathbb{R}^{\mathbb{N}})_{null}$, $(\mathbb{R}^{\mathbb{N}})_{Cauchy}$, $(\mathbb{R}^{\mathbb{N}})_{bdd}$, $(\mathbb{R}^{\mathbb{N}})_{lpt}$, $(\mathbb{R}^{\mathbb{N}})_{const}$) denote the set of all convergent (respectively, null-sequences, Cauchy sequences, bounded sequences, sequences with exactly one limit point). Which of these are subspaces of the \mathbb{R} -vector space $\mathbb{R}^{\mathbb{N}}$ of all sequences of real numbers?

b). Verify the inclusions and equalities in the following diagram :

c). Let $I \subseteq \mathbb{R}$ be an interval and let a_0, \ldots, a_{n-1} be complex valued continuous functions on *I*. The set of all functions $y \in C^n_{\mathbb{C}}(I)$ satisfying the (homogeneous linear) differential equation

$$y^{(n)} + a_{n-1}y^{(n-1)} + \dots + a_1\dot{y} + a_0y = 0$$

is a \mathbb{C} -subspace of $C^n_{\mathbb{C}}(I)$.

T2.3. a). (Division algorithm for polynomials) Let F and G be polynomials over a coomutative ring A. Suppose that $G \neq 0$ and the leading coefficient of G is a unit in A. Then there exist unique polynomials Q and R over A such that

$$F = QG + R$$
 and $\deg R < \deg G$.

$$x_n \to x$$
 or $x_n \xrightarrow{n \to \infty} x$

and say that $(x_n) \operatorname{converges} to x$. The sequence (x_n) converges to x if and only if the sequence $(x_n - x)$ converges to 0. A convergent sequence with limit 0 is called a null-sequence. A sequence that is not convergent is called divergent.

A sequence $(x_n) = (x_n)_{n \in \mathbb{N}}$ of elements of \mathbb{K} is called bounded sequence if there exists an element S in \mathbb{R} such that $|x_n| \leq S$ for all $n \in \mathbb{N}$.

A sequence $(x_n) = (x_n)_{n \in \mathbb{N}}$ of elements of \mathbb{K} is called a Cauchy sequence if for every $\varepsilon \in \mathbb{R}$, $\varepsilon > 0$, there exists a natural number $n_0 \in \mathbb{N}$ $|x_m - x_n| \le \varepsilon$ for all natural numbers $m, n \ge n_0$.

An element $x \in \mathbb{K}$ is called a limit point of the sequence $(x_n) = (x_n)_{n \in \mathbb{N}}$ of elements of \mathbb{K} if it is a limit point of the set $\{x_n \mid n \in \mathbb{N}\}$, i.e. every (however small) neighbourbood of x contain infinitely many terms of the sequence.

²) A sequence $(x_n) = (x_n)_{n \in \mathbb{N}}$ of elements of \mathbb{K} is called c on v ergent (in \mathbb{K}) if there exists an element $x \in \mathbb{K}$ which satisfy the following property: For every positive (however small) real number $\varepsilon \in \mathbb{R}$ there exists a natural number $n_0 \in \mathbb{N}$ such that $|x_n - x| \le \varepsilon$ for all natural numbers $n \ge n_0$. This element x is uniquely determined by the sequence (x_n) and is called the limit of the sequence (x_n) ; usually denoted by $\lim_{n \to \infty} x_n$. If x is the limit of (x_n) , then this is also shortly written as

In particular, if $a \in A$, then F = F(a) + Q(X - a), where Q is a polynomial over A. We say that $a \in A$ is a zero of F if F(a) = 0. Therefore $a \in A$ is a zero of F if and only if X - a divide F (in A[X]).

b). Let A be an integral domain and let $F \in A[X]$, $F \neq 0$ be a polynomial of degree d in indeterminate X over A. Then

- (1) F has at most d zeros in A.
- (2) F is uniquely determined by its values on m + 1 distinct elements of A, where $m \ge d$.
- (3) How many zeros the polynomial $X^2 + X$ has in the ring \mathbb{Z}_4 ?

(4) The polynomial $X^3 + X^2 + X + 1$ in $\mathbb{Z}_4[X]$ is amultiple of X + 1 and X + 3, but not of (X + 1)(X + 3).

T2.4. (Horner's scheme) Let *K* be a field and let $F = a_0 + a_1X + \cdots + a_nX^n \in K[X]$. To compute the value of *F* at a point *a* one can apply the well-known Horner's scheme. For this define a sequence of polynomials recursively as follows:

$$F_{0} := a_{n}$$

$$F_{1} := XF_{0} + a_{n-1} = a_{n}X + a_{n-1}$$

$$F_{2} := XF_{1} + a_{n-2} = a_{n}X^{2} + a_{n-1}X + \dots + a_{n-2}$$

$$\dots$$

$$F_{n} := Xf_{n-1} + a_{0} = a_{n}X^{n} + a_{n-1}X^{n-1} + \dots + a_{1}X + a_{0} = F.$$

These polynomials are called the R uffini's polynomials corresponding to F. The values $F_0(a), \ldots, F_n(a)$ can be easily computed one after the another by using the division algorithm by X - a. Then $F = Q \cdot (X - a) + F(a)$ where $Q = F_0(a)X^{n-1} + F_1(a)X^{n-2} + \cdots + F_{n-1}(a)$, $F(a) = F_n(a)$. With this process also one can easily compute all coefficients b_{ν} in the *Taylor's expansion*:

$$F = b_0 + b_1(X - a) + \dots + b_n(X - a)^n$$
, $b_0 = F(a)$,

for this one has to repeat the above process for the polynomial Q instead of F and hence $b_1 = Q(a)$, and so on. For example, the polynomial $F = 2X^3 + 2X^2 - X + 1$ and a = -2 we have the following scheme :

Therefore $F = 2(X+2)^3 - 10(X+2)^2 + 15(X+2) - 5$.

T2.5. (Polynomial interpolation) Let A be an integral domain and let $m \in \mathbb{N}$. The existence of a polynomial $f \in A[X]$ of degree $\leq m$ which has given m + 1 values (in A) at distinct m + 1 places is called an interpolation problem. We shall only consider the case when A = K is a field.³)

a). (Lagrange's interpolation formula) Let $a_0, \ldots, a_m \in K$ be distinct and let $b_0, \ldots, b_m \in K$ be given. Then

$$f := \sum_{i=0}^{m} \frac{b_i}{c_i} \prod_{j \in \{0, \dots, m\} \setminus \{i\}} (X - a_j), \ c_i := \prod_{j \in \{0, \dots, m\} \setminus \{i\}} (a_i - a_j)$$

is the unique polynomial (by T2.3-b)-(2)) of degree $\leq m$ such that $f(a_i) = b_i$ for all i = 0, ..., m.

b). (Newton's interpolation) Let $f_0 := 1$, $f_1 := X - a_0$, $f_2 := (X - a_0)(X - a_1), \ldots, f_m := (X - a_0) \cdots (X - a_{m-1})$. Then, since $f_j(a_j) \neq 0$, we can recursively find the coefficients $\alpha_0, \ldots, \alpha_m \in K$ such that

$$\left(\sum_{j=0}^r \alpha_j f_j\right)(a_r) = b_r , \ 0 \le r \le m \,.$$

The polynomials $\sum_{i=0}^{r} \alpha_j f_j$ have degree $\leq r$ and values b_i at the points a_i for all i = 0, ..., m.

³) Let *A* be an integral domain, $a_0, \ldots, a_m \in A$ be distinct and let $b_0, \ldots, b_m \in A$ be given. Then we can construct (by using the Newton's interpolation) an interpolation polynomial over the quotient field *K* of *A* by the above recursion process. This polynomial has coefficients in *A* if and only if $\alpha_0, \ldots, \alpha_m \in A$ (proof!).

T2.6. (Rational functions in one variable over a field) Let K be a field. The quotient of two polynomials over K are called the rational functions in one variable X over K. Therefore a rational function in one variable X over K is of the form F/G with $F, G \in K[X]$. The set of rational function in one variable X over K is denoted by K(X).

a). Sum and product of rational functions are again rational functions and so K(X) is a vector space over K and K[X] is a K-subspace of K(X). Further, K(X) this is a field, this field ⁴) is called the rational function field in one variable X over K.

b). Every rational function F/G in one indeterminate X over K can also be represented as F/G = Q + R/G, where Q and R are polynomials over K with deg $R < \deg G$.

c). (Partial fraction decomposition) Let F and G be polynomials over K with deg $F < \deg G$ and $F = (X - \alpha_1)^{n_1} \cdots (X - \alpha_r)^{n_r}$, $\alpha_i \neq \alpha_j$ for $i \neq j$, $n_i \in \mathbb{N}^*$. Then there exists a unique representation

 $\frac{F}{G} = \frac{\alpha_{11}}{(X - \alpha_1)} + \frac{\alpha_{12}}{(X - \alpha_1)^2} + \dots + \frac{\alpha_{1n_1}}{(X - \alpha_1)^{n_1}} + \dots + \frac{\alpha_{r_1}}{(X - \alpha_r)} + \frac{\alpha_{r_2}}{(X - \alpha_r)^2} + \dots + \frac{\alpha_{rn_r}}{(X - \alpha_r)^{n_r}}.$ with $\alpha_{ik} \in K, i = 1, \dots, r; k = 1, \dots, n_i.$

2.4

⁴) In fact the *quotient field* of the integral domain K[X].