MA-219 Linear Algebra

2. Vector spaces - Subspaces

August 18, 2003 ; Submit solutions before 11:00AM ; August 25, 2003.

Let \mathbb{K} denote either the field \mathbb{R} of real numbers or the field \mathbb{C} of complex numbers.
2.1. a). Let V be a vector space over a field and let X be any set with a bijection $f: X \rightarrow V$. Then X has a K-vector space structure with $f^{-1}(0)$ as a zero element and for $a \in K, x, y \in X$, $x+y:=f^{-1}(f(x)+f(y))$ and $a x:=f^{-1}(a f(x))$.
b). Let X be any set. Then the set-ring $(\mathfrak{P}(X), \Delta, \cap)$ of X (see exercise 1.5) has a natural structure of a vector space over the field \mathbb{Z}_{2}. (Hint: The map $\mathfrak{P}(X) \rightarrow \mathbb{Z}_{2}^{X}$ defined by $A \mapsto e_{A}$ is a bijective, where e_{A} denote the indicator function of A. See exercise T1.1.)
2.2. Let V be a vector space over a field K with a field with $|K| \geq n$ and let V_{1}, \ldots, V_{n} be K-subspaces of V. If $V_{i} \neq V$ for every $1 \leq i \leq n$ then show that $V_{1} \cup V_{2} \cup \cdots \cup V_{n} \neq V$. Show by an example that the condition $|K| \geq n$ is necessary. (Hint: By induction on n, assume that $V_{1} \cup V_{2} \cup \cdots \cup V_{n-1} \neq V$. Choose $x \in V_{n}$ with $x \notin V_{1} \cup \cdots \cup V_{n-1}$ and $y \in V$ with $y \notin V_{n}$. Now consider the set $\{a x+y \mid a \in K\}$ which has atleast n distinct elements.)
2.3. Let K be a field and let I be an index set.
a). The set of all functions $f: I \rightarrow K$ with finite image i.e. $f(I)$ is a finite subset of K, is a K-subspace of the vector space K^{I}.
b). The set of all functions $f: I \rightarrow K$ with countable image i.e. $f(I)$ is a countable subset of K, is a K-subspace of the vector space K^{I}.
c). The set $\mathrm{B}_{\mathbb{K}}(I)$ bounded functions $f: I \rightarrow \mathbb{K}$ is a \mathbb{K}-subspace of \mathbb{K}^{I}.
d). The set W_{g} (resp. W_{u}) of all even (resp. odd) functions ${ }^{1}$) $\mathbb{R} \rightarrow \mathbb{K}$ is a \mathbb{K}-subspaces of $\mathbb{K}^{\mathbb{R}}$. Further, show that $W_{g} \cap W_{u}=0$ and $W_{g}+W_{u}=\mathbb{K}^{\mathbb{R}}$.
e). The set of all functions $f: \mathbb{C} \rightarrow \mathbb{C}$ with $\lim _{z \rightarrow \infty} f(z)=0$ is a \mathbb{C}-subspace of the vector space $\mathbb{C}^{\mathbb{C}}$ of all \mathbb{C}-valued functions on \mathbb{C}.
2.4. For subspaces $U, U^{\prime}, W, W^{\prime}$ of a vector space V over a field K, show that:
a). The subset $V \backslash(U \backslash W)$ is a subspace of V if and only if $U=V$ or $U \subseteq W$.
b). $U+\left(U^{\prime} \cap W\right) \subseteq\left(U+U^{\prime}\right) \cap(U+W)$.
c). $U \cap\left(U^{\prime}+W\right) \supseteq\left(U \cap U^{\prime}\right)+(U \cap W)$.
d). (Modular law) $U+\left(U^{\prime} \cap W\right)=U^{\prime} \cap(U+W)$.
e). Suppose that $U \cap W=U^{\prime} \cap W^{\prime}$. Then $U=\left(U+\left(W \cap U^{\prime}\right)\right) \cap\left(U+\left(W \cap W^{\prime}\right)\right)$.
2.5. Let K be a field and let $K[X]$ be the set of polynomials with coefficients in K. Let Φ denote the (evaluation) map $\Phi: K[X] \rightarrow K^{K}$ defined by $F(X) \mapsto(a \mapsto F(a))$. Show that
a). Φ is injective if and only if K is not finite. (Hint: Use T2.3-b)-(3))
b). Φ is surjective if and only if K is finite. (Hint: Remember Polynomial interpolation! See T2.5)

[^0][^1]
Test-Exercises

T2.1. Let V be a vector space over a field K.
a). (General Distributive law) For arbitrary finite families $a_{i}, i \in I$, in K and $x_{j}, j \in J$, in V, show that

$$
\left(\sum_{i \in I} a_{i}\right)\left(\sum_{j \in J} x_{j}\right)=\sum_{(i, j) \in I \times J} a_{i} x_{j}
$$

b). (Sign Rules) For arbitrary elements $a, b \in K$ and arbitrary vectors $x, y \in V$. Prove that:
(1) $0 \cdot x=a \cdot 0=0$.
(2) $a(-x)=(-a) x=-(a x)$.
(3) $(-a)(-x)=a x$.
(4) $a(x-y)=a x-a y$ and $(a-b) x=a x-b x$.
c). (Cancellation Rule) Let $a \in K$ and let $x \in V$. If $a x=0$ then $a=0$ or $x=0$.

T2.2. Recall the concepts convergent sequence, null-sequence, Cauchy sequence, bounded sequence and limit point of a sequence. ${ }^{2}$)
a). Let $\left(\mathbb{R}^{\mathbb{N}}\right)_{\text {conv }}\left(\right.$ respectively, $\left.\left(\mathbb{R}^{\mathbb{N}}\right)_{\text {null }},\left(\mathbb{R}^{\mathbb{N}}\right)_{\text {Cauchy }},\left(\mathbb{R}^{\mathbb{N}}\right)_{\text {bdd }},\left(\mathbb{R}^{\mathbb{N}}\right)_{\text {lpt }},\left(\mathbb{R}^{\mathbb{N}}\right)_{\text {const }}\right)$ denote the set of all convergent (respectively, null-sequences, Cauchy sequences, bounded sequences, sequences with exactly one limit point). Which of these are subspaces of the \mathbb{R}-vector space $\mathbb{R}^{\mathbb{N}}$ of all sequences of real numbers?
b). Verify the inclusions and equalities in the following diagram :

c). Let $I \subseteq \mathbb{R}$ be an interval and let a_{0}, \ldots, a_{n-1} be complex valued continuous functions on I. The set of all functions $y \in \mathrm{C}_{\mathbb{C}}^{n}(I)$ satisfying the (homogeneous linear) differential equation

$$
y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{1} \dot{y}+a_{0} y=0
$$

is a \mathbb{C}-subspace of $\mathbb{C}_{\mathbb{C}}^{n}(I)$.
T2.3. a). (Division algorithm for polynomials) Let F and G be polynomials over a coomutative ring A. Suppose that $G \neq 0$ and the leading coefficient of G is a unit in A. Then there exist unique polynomials Q and R over A such that

$$
F=Q G+R \text { and } \operatorname{deg} R<\operatorname{deg} G .
$$

${ }^{2}$) A sequence $\left(x_{n}\right)=\left(x_{n}\right)_{n \in \mathbb{N}}$ of elements of \mathbb{K} is called convergent (in $\left.\mathbb{K}\right)$ if there exists an element $x \in \mathbb{K}$ which satisfy the following property : For every positive (however small) real number $\varepsilon \in \mathbb{R}$ there exists a natural number $n_{0} \in \mathbb{N}$ such that $\left|x_{n}-x\right| \leq \varepsilon$ for all natural numbers $n \geq n_{0}$. This element x is uniquely determined by the sequence $\left(x_{n}\right)$ and is called the limit of the sequence $\left(x_{n}\right)$; usually denoted by $\lim x_{n}=\lim _{n \rightarrow \infty} x_{n}$. If x is the limit of $\left(x_{n}\right)$, then this is also shortly written as

$$
x_{n} \rightarrow x \quad \text { or } \quad x_{n} \xrightarrow{n \rightarrow \infty} x
$$

and say that $\left(x_{n}\right)$ converges to x. The sequence $\left(x_{n}\right)$ converges to x if and only if the sequence $\left(x_{n}-x\right)$ converges to 0 . A convergent sequence with limit 0 is called a null-sequence. A sequence that is not convergent is called divergent.
A sequence $\left(x_{n}\right)=\left(x_{n}\right)_{n \in \mathbb{N}}$ of elements of \mathbb{K} is called bounded sequence if there exists an element S in \mathbb{R} such that $\left|x_{n}\right| \leq S$ for all $n \in \mathbb{N}$.
A sequence $\left(x_{n}\right)=\left(x_{n}\right)_{n \in \mathbb{N}}$ of elements of \mathbb{K} is called a Cauchy sequence if for every $\varepsilon \in \mathbb{R}, \varepsilon>0$, there exists a natural number $n_{0} \in \mathbb{N}\left|x_{m}-x_{n}\right| \leq \varepsilon$ for all natural numbers $m, n \geq n_{0}$.
An element $x \in \mathbb{K}$ is called a limit point of the sequence $\left(x_{n}\right)=\left(x_{n}\right)_{n \in \mathbb{N}}$ of elements of \mathbb{K} if it is a limit point of the set $\left\{x_{n} \mid n \in \mathbb{N}\right\}$, i.e. every (however small) neighbourbood of x contain infinitely many terms of the sequence.

In particular, if $a \in A$, then $F=F(a)+Q(X-a)$, where Q is a polynomial over A. We say that $a \in A$ is a zero of F if $F(a)=0$. Therefore $a \in A$ is a zero of F if and only if $X-a$ divide F (in $A[X]$).
b). Let A be an integral domain and let $F \in A[X], F \neq 0$ be a polynomial of degree d in indeterminate X over A. Then
(1) F has atmost d zeros in A.
(2) F is uniquely determined by its values on $m+1$ distinct elements of A, where $m \geq d$.
(3) How many zeros the polynomial $X^{2}+X$ has in the ring \mathbb{Z}_{4} ?
(4) The polynomial $X^{3}+X^{2}+X+1$ in $\mathbb{Z}_{4}[X]$ is amultiple of $X+1$ and $X+3$, but not of $(X+1)(X+3)$.

T2.4. (Horner's scheme) Let K be a field and let $F=a_{0}+a_{1} X+\cdots+a_{n} X^{n} \in K[X]$. To compute the value of F at a point a one can apply the well-known Horner's scheme. For this define a sequence of polynomials recursively as follows :

$$
\begin{aligned}
F_{0} & :=a_{n} \\
F_{1} & :=X F_{0}+a_{n-1}=a_{n} X+a_{n-1} \\
F_{2} & :=X F_{1}+a_{n-2}=a_{n} X^{2}+a_{n-1} X+\cdots+a_{n-2} \\
& \cdots a_{1} X+a_{0}=F . \\
F_{n} & :=X f_{n-1}+a_{0}=a_{n} X^{n}+a_{n-1} X^{n-1}+\cdots+a_{1} .
\end{aligned}
$$

These polynomials are called the Ruffini's polynomials corresponding to F. The values $F_{0}(a), \ldots, F_{n}(a)$ can be easily computed one after the another by using the division algorithm by $X-a$. Then $F=Q \cdot(X-a)+F(a)$ where $Q=F_{0}(a) X^{n-1}+F_{1}(a) X^{n-2}+\cdots+F_{n-1}(a), \quad F(a)=F_{n}(a)$. With this process also one can easily compute all coefficients b_{v} in the Taylor's expansion :

$$
F=b_{0}+b_{1}(X-a)+\cdots+b_{n}(X-a)^{n}, \quad b_{0}=F(a),
$$

for this one has to repeat the above process for the polynomial Q instead of F and hence $b_{1}=Q(a)$, and so on. For example, the polynomial $F=2 X^{3}+2 X^{2}-X+1$ and $a=-2$ we have the following scheme :

	2	2	-1	1
-2	2	-2	3	$-5\left(=b_{0}\right)$
-2	2	-6	$15\left(=b_{1}\right)$	
-2	2	$-10\left(=b_{2}\right)$		
-2	$2\left(=b_{3}\right)$			

Therefore $F=2(X+2)^{3}-10(X+2)^{2}+15(X+2)-5$.
T2.5. (Polynomial interpolation) Let A be an integral domain and let $m \in \mathbb{N}$. The existence of a polynomial $f \in A[X]$ of degree $\leq m$ which has given $m+1$ values (in A) at distinct $m+1$ places is called an interpolation problem. We shall only consider the case when $A=K$ is a field. ${ }^{3}$)
a). (Lagrange's interpolation formula) Let $a_{0}, \ldots, a_{m} \in K$ be distinct and let $b_{0}, \ldots, b_{m} \in K$ be given. Then

$$
f:=\sum_{i=0}^{m} \frac{b_{i}}{c_{i}} \prod_{j \in\{0, \ldots, m\} \backslash\{i\}}\left(X-a_{j}\right), c_{i}:=\prod_{j \in\{0, \ldots, m\} \backslash\{i\}}\left(a_{i}-a_{j}\right)
$$

is the unique polynomial (by T2.3-b)-(2)) of degree $\leq m$ such that $f\left(a_{i}\right)=b_{i}$ for all $i=0, \ldots, m$.
b). (Newton's interpolation) Let $f_{0}:=1, f_{1}:=X-a_{0}, f_{2}:=\left(X-a_{0}\right)\left(X-a_{1}\right), \ldots, f_{m}:=$ $\left(X-a_{0}\right) \cdots\left(X-a_{m-1}\right)$. Then, since $f_{j}\left(a_{j}\right) \neq 0$, we can recursively find the coefficients $\alpha_{0}, \ldots, \alpha_{m} \in K$ such that

$$
\left(\sum_{j=0}^{r} \alpha_{j} f_{j}\right)\left(a_{r}\right)=b_{r}, 0 \leq r \leq m
$$

The polynomials $\sum_{j=0}^{r} \alpha_{j} f_{j}$ have degree $\leq r$ and values b_{i} at the points a_{i} for all $i=0, \ldots, m$.

[^2]T2.6. (Rational functions in one variable over a field) Let K be a field. The quotient of two polynomials over K are called the rational functions in one variable X over K. Therefore a rational function in one variable X over K is of the form F / G with $F, G \in K[X]$. The set of rational function in one variable X over K is denoted by $K(X)$.
a). Sum and product of rational functions are again rational functions and so $K(X)$ is a vector space over K and $K[X]$ is a K-subspace of $K(X)$. Further, $K(X)$ this is a field, this field ${ }^{4}$) is called the rational function field in one variable X over K.
b). Every rational function F / G in one indeterminate X over K can also be represented as $F / G=Q+R / G$, where Q and R are polynomials over K with $\operatorname{deg} R<\operatorname{deg} G$.
c). (Partial fraction decomposition) Let F and G be polynomials over K with $\operatorname{deg} F<\operatorname{deg} G$ and $F=\left(X-\alpha_{1}\right)^{n_{1}} \cdots\left(X-\alpha_{r}\right)^{n_{r}}, \alpha_{i} \neq \alpha_{j}$ for $i \neq j, n_{i} \in \mathbb{N}^{*}$. Then there exists a unique representation
$\frac{F}{G}=\frac{\alpha_{11}}{\left(X-\alpha_{1}\right)}+\frac{\alpha_{12}}{\left(X-\alpha_{1}\right)^{2}}+\cdots+\frac{\alpha_{1 n_{1}}}{\left(X-\alpha_{1}\right)^{n_{1}}}+\cdots \cdots+\frac{\alpha_{r 1}}{\left(X-\alpha_{r}\right)}+\frac{\alpha_{r 2}}{\left(X-\alpha_{r}\right)^{2}}+\cdots+\frac{\alpha_{r n_{r}}}{\left(X-\alpha_{r}\right)^{n_{r}}}$.
with $\alpha_{i k} \in K, i=1, \ldots, r ; k=1, \ldots, n_{i}$.

[^3]
[^0]: On the other side one can see (simple) test-exercises ; their solutions need not be submitted.

[^1]: ${ }^{1}$) A function $f: \mathbb{R} \rightarrow \mathbb{K}$ is called even if $f(-x)=f(x)$ for all $x \in \mathbb{R}$ and is called odd if $f(-x)=-f(x)$ for all $x \in \mathbb{R}$.

[^2]: ${ }^{3}$) Let A be an integral domain, $a_{0}, \ldots, a_{m} \in A$ be distinct and let $b_{0}, \ldots, b_{m} \in A$ be given. Then we can construct (by using the Newton's interpolation) an interpolation polynomial over the quotient field K of A by the above recursion process. This polynomial has coefficients in A if and only if $\alpha_{0}, \ldots, \alpha_{m} \in A$ (proof!).

[^3]: ${ }^{4}$) In fact the quotient field of the integral domain $K[X]$.

