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Let K denote either the fieldR of real numbers or the fieldC of complex numbers.

2.1. a). Let V be a vector space over a field and letX be any set with a bijectionf : X → V .
ThenX has aK-vector space structure withf −1(0) as a zero element and fora ∈ K, x, y ∈ X,
x + y := f −1

(
f (x) + f (y)

)
and ax := f −1

(
af (x)

)
.

b). LetX be any set. Then the set-ring(P(X), �, ∩) of X (see exercise 1.5) has a natural structure
of a vector space over the fieldZ2. (Hint : The mapP(X) → Z

X
2 defined byA �→ eA is a bijective,

whereeA denote the indicator function ofA. See exercise T1.1.)

2.2. Let V be a vector space over a fieldK with a field with |K| ≥ n and letV1, . . . , Vn be
K-subspaces ofV . If Vi �= V for every 1≤ i ≤ n then show thatV1 ∪ V2 ∪ · · · ∪ Vn �= V . Show
by an example that the condition|K| ≥ n is necessary. (Hint : By induction onn, assume that
V1 ∪ V2 ∪ · · · ∪ Vn−1 �= V . Choosex ∈ Vn with x �∈ V1 ∪ · · · ∪ Vn−1 andy ∈ V with y �∈ Vn. Now consider
the set{ax + y | a ∈ K} which has atleastn distinct elements.)

2.3. Let K be a field and letI be an index set.

a). The set of all functionsf : I → K with finite image i.e. f (I) is a finite subset ofK, is a
K-subspace of the vector spaceKI .

b). The set of all functionsf : I →K with countable image i.e.f (I) is a countable subset ofK,
is aK-subspace of the vector spaceKI .

c). The set BK(I ) bounded functionsf :I → K is aK-subspace ofKI .

d). The setWg (resp.Wu) of all even (resp. odd) functions1) R → K is aK-subspaces ofKR.
Further, show thatWg ∩ Wu = 0 andWg + Wu = K

R .

e). The set of all functionsf :C→C with lim
z→∞ f (z) = 0 is aC-subspace of the vector spaceC

C

of all C-valued functions onC .

2.4. For subspacesU, U ′, W, W ′ of a vector spaceV over a fieldK, show that :

a). The subsetV \ (U \ W) is a subspace ofV if and only if U = V or U ⊆ W .

b). U + (U ′ ∩ W) ⊆ (U + U ′) ∩ (U + W) .

c). U ∩ (U ′ + W) ⊇ (U ∩ U ′) + (U ∩ W) .

d). ( M o d u l a r l a w ) U + (U ′ ∩ W) = U ′ ∩ (U + W) .

e). Suppose thatU ∩ W = U ′ ∩ W ′ . Then U = (
U + (W ∩ U ′)

) ∩ (
U + (W ∩ W ′)

)
.

2.5. Let K be a field and letK[X] be the set of polynomials with coefficients inK. Let � denote
the (evaluation) map� : K[X] → KK defined byF(X) �→ (a �→ F(a)). Show that

a). � is injective if and only ifK is not finite. (Hint : Use T2.3-b)-(3) )

b). � is surjective if and only ifK is finite. (Hint : RememberPolynomial interpolation! See T2.5)

On the other side one can see (simple) test-exercises ; their solutions need not be submitted.

1) A function f : R → K is called e v e n if f (−x) = f (x) for all x ∈ R and is called o d d if
f (−x) = −f (x) for all x ∈ R .
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Test-Exercises

T2.1. Let V be a vector space over a fieldK.

a). ( G e n e r a l D i s t r i b u t i v e l a w ) Forarbitrary finite familiesai , i ∈ I , in K andxj , j ∈ J , in V ,
show that (∑

i∈I

ai

)(∑
j∈J

xj

)
=

∑
(i,j)∈I×J

aixj .

b). ( S i g n R u l e s ) For arbitrary elementsa, b ∈ K and arbitrary vectorsx, y ∈ V . Prove that :

(1) 0 · x = a · 0 = 0 . (2) a(−x) = (−a)x = −(ax) . (3) (−a)(−x) = ax .

(4) a(x − y) = ax − ay and (a − b)x = ax − bx .

c). ( C a n c e l l a t i o n R u l e ) Leta ∈ K and letx ∈ V . If ax = 0 thena = 0 orx = 0.

T2.2. Recall the conceptsconvergent sequence, null- sequence, Cauchy sequence, bounded sequenceand
limit point of a sequence. 2)

a). Let (RN)conv (respectively,(RN)null , (RN)Cauchy, (RN)bdd , (RN)lpt , (RN)const) denote the set of all
convergent (respectively, null-sequences, Cauchy sequences, bounded sequences, sequences with exactly
one limit point). Which of these are subspaces of theR-vector spaceRN of all sequences of real numbers?

b). Verify the inclusions and equalities in the following diagram :

R
N ⊇ (RN)bdd⋃| ⋃|

(RN)lpt ⊇ (RN)lpt ∩ (RN)bdd = (RN)Cauchy = (RN)conv ⊇ (RN)const⋃|
(RN)null

c). Let I ⊆ R be an interval and leta0, . . . , an−1 be complex valued continuous functions onI . The set of
all functionsy ∈ Cn

C
(I ) satisfying the (homogeneous linear) differential equation

y(n) + an−1y
(n−1) + · · · + a1ẏ + a0y = 0

is aC-subspace of Cn
C
(I ) .

T2.3. a). ( D i v i s i o n a l g o r i t h m f o r p o l y n o m i a l s ) LetF and G be polynomials over a
coomutative ringA . Suppose thatG �= 0 and the leading coefficient ofG is a unit inA. Then there exist
unique polynomialsQ andR overA such that

F = QG + R and degR < degG .

2) A sequence(xn) = (xn)n∈N of elements ofK is called c o n v e r g e n t (inK) if there exists an element
x ∈ K which satisfy the following property : For every positive (however small) real numberε ∈ R there
exists a natural numbern0 ∈ N such that|xn − x| ≤ ε for all natural numbersn ≥ n0. This elementx is
uniquely determined by the sequence(xn) and is called thel i m i t of the sequence(xn) ; usually denoted
by lim xn = lim

n→∞
xn . If x is the limit of (xn), then this is also shortly written as

xn → x or xn −−−−−−−−n → ∞−−−−−−−−−� x

and say that(xn) c o n v e r g e s t ox . The sequence(xn) converges tox if and only if the sequence(xn − x)

converges to 0. A convergent sequence with limit 0 is called an u l l - s e q u e n c e . Asequence that is not
convergent is called d i v e rg e n t .

A sequence(xn) = (xn)n∈N of elements ofK is calledb o u n d e d s e q u e n c e ifthere exists an elementS

in R such that|xn| ≤ S for all n ∈ N.

A sequence(xn) = (xn)n∈N of elements ofK is called aC a u c h y s e q u e n c e if for everyε ∈ R, ε > 0,
there exists a natural numbern0 ∈ N |xm − xn| ≤ ε for all natural numbersm, n ≥ n0.

An elementx ∈ K is called al i m i t p o i n t of thesequence(xn) = (xn)n∈N of elements ofK if it is a limit
point of the set{xn | n ∈ N}, i.e. every (however small) neighbourbood ofx contain infinitely many terms
of the sequence.
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In particular, ifa ∈ A, thenF = F(a) + Q(X − a), whereQ is a polynomial overA. We say thata ∈ A is
a z e r o ofF if F(a) = 0. Thereforea ∈ A is a zero ofF if and only if X − a divideF (in A[X]).

b). Let A be an integral domain and letF ∈ A[X], F �= 0 be a polynomial of degreed in indeterminateX
overA. Then

(1) F has atmostd zeros inA.
(2) F is uniquely determined by its values onm + 1 distinct elements ofA, wherem ≥ d .
(3) How many zeros the polynomialX2 + X has in the ringZ4?
(4) The polynomialX3 +X2 +X+1 in Z4[X] is amultiple ofX+1 andX+3, but not of(X+1)(X+3).

T2.4. ( H o r n e r ’s s c h e m e ) LetK be a field and letF = a0 + a1X + · · · + anX
n ∈ K[X] . To compute

the value ofF at a pointa one can apply the well-knownH o r n e r ’s s c h e m e . Forthis define a sequence
of polynomials recursively as follows :

F0 := an

F1 := XF0 + an−1 = anX + an−1

F2 := XF1 + an−2 = anX
2 + an−1X + · · · + an−2

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
Fn := Xfn−1 + a0 = anX

n + an−1X
n−1 + · · · + a1X + a0 = F .

These polynomials are called theR u f f i n i ’ s p o l y n o m i a l s corresponding toF . The values
F0(a), . . . , Fn(a) can be easily computed one after the another by using the division algorithm byX − a.
Then F = Q · (X − a) + F(a) where Q = F0(a)Xn−1 + F1(a)Xn−2 + · · · + Fn−1(a) , F (a) = Fn(a) .

With this process also one can easily compute all coefficientsbν in theTaylor’s expansion:

F = b0 + b1(X − a) + · · · + bn(X − a)n , b0 = F(a) ,

for this one has to repeat the above process for the polynomialQ instead ofF and henceb1 = Q(a), and so
on. For example, the polynomialF = 2X3 + 2X2 − X + 1 anda = −2 we have the following scheme :

2 2 −1 1
−2 2 −2 3 −5(= b0)

−2 2 −6 15(= b1)

−2 2 −10(= b2)

−2 2(= b3) .

ThereforeF = 2(X + 2)3 − 10(X + 2)2 + 15(X + 2) − 5 .

T2.5. ( P o l y n o m i a l i n t e r p o l a t i o n ) LetA be an integral domain and letm ∈ N. The existence of a
polynomialf ∈ A[X] of degree≤ m which has givenm + 1 values (inA) at distinctm + 1 places is called
an i n t e r p o l a t i o n p r o b l e m . Weshall only consider the case whenA = K is a field.3)

a). ( L a g r a n g e ’s i n t e r p o l a t i o n f o r m u l a ) Leta0, . . . , am ∈ K be distinct and letb0, . . . , bm ∈ K

be given. Then

f :=
m∑

i=0

bi

ci

∏
j∈{0,...,m}\{i}

(X − aj ) , ci :=
∏

j∈{0,...,m}\{i}
(ai − aj )

is the unique polynomial (by T2.3-b)-(2)) of degree≤ m such thatf (ai) = bi for all i = 0, . . . , m.

b). ( N e w t o n ’s i n t e r p o l a t i o n ) Letf0 := 1, f1 := X − a0, f2 := (X − a0)(X − a1), . . . , fm :=
(X − a0) · · · (X − am−1). Then, sincefj (aj ) �= 0, we can recursively find the coefficientsα0, . . . , αm ∈ K

such that 


r∑
j=0

αjfj


 (ar ) = br , 0 ≤ r ≤ m .

The polynomials
∑r

j=0 αjfj have degree≤ r and valuesbi at the pointsai for all i = 0, . . . , m.

3) Let A be an integral domain,a0, . . . , am ∈ A be distinct and letb0, . . . , bm ∈ A be given. Then we can
construct (by using the Newton’s interpolation) an interpolation polynomial over the quotient fieldK of A

by the above recursion process. This polynomial has coefficients inA if and only ifα0, . . . , αm ∈ A (proof!).
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T2.6. ( R a t i o n a l f u n c t i o n s i n o n e v a r i a b l e o v e r a f i e l d ) LetK be a field. The quotient
of two polynomials overK are called ther a t i o n a l f u n c t i o n s i n o n e v a r i a b l eX o v e r K .
Therefore a rational function in one variableX overK is of the formF/G with F, G ∈ K[X]. The set of
rational function in one variableX overK is denoted byK(X) .

a). Sum and product of rational functions are again rational functions and soK(X) is a vector space over
K andK[X] is a K-subspace ofK(X). Further,K(X) this is a field, this field4) is called ther a t i o n a l
f u n c t i o n f i e l d i n o n e v a r i a b l eX o v e r K .

b). Every rational functionF/G in one indeterminateX overK can also be represented asF/G = Q+R/G ,
whereQ andR are polynomials overK with degR < degG .

c). ( P a r t i a l f r a c t i o n d e c o m p o s i t i o n ) LetF andG be polynomials overK with degF < degG

andF = (X − α1)
n1 · · · (X − αr)

nr , αi �= αj for i �= j, ni ∈ N
∗. Then there exists a unique representation

F

G
= α11

(X − α1)
+ α12

(X − α1)2 + · · · + α1n1

(X − α1)
n1

+ · · · · · · + αr1

(X − αr)
+ αr2

(X − αr)2 + · · · + αrnr

(X − αr)nr
.

with αik ∈ K, i = 1, . . . , r ; k = 1, . . . , ni .

4) In fact thequotient fieldof the integral domainK[X].
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