MA-219 Linear Algebra

3. Generating systems, Linear independence, Bases

August 25, 2003 ; Submit solutions before 11:00AM ; September 1, 2003.
Let K denote a field.
3.1. a). Let K be a field of characteristic $\neq 2$, i.e. $1+1 \neq 0 K$ and let $a \in K$. Compute the solution set of the following system of linear equations over K.

$$
\begin{array}{rlrl}
a x_{1}+x_{2}+x_{3} & =1 & x_{1}+x_{2}-x_{3} & =1 \\
x_{1}+a x_{2}+x_{3} & =1 & 2 x_{1}+3 x_{2}+a x_{3} & =3 \\
x_{1}+x_{2}+a x_{3} & =1 ; & x_{1}+a x_{2}+3 x_{3} & =2 ;
\end{array}
$$

For which a these systems have exactly one solution?
b). The set of m-tuples $\left(b_{1}, \ldots, b_{m}\right) \in K^{m}$ for which a linear system of equations $\sum_{j=1}^{n} a_{i j} x_{j}=b_{i}$, $i=1, \ldots, m$, over a field K has a solution is a K-subspace of K^{m}.
c). Let K be a subfield of the field L and let $\sum_{j=1}^{n} a_{i j} x_{j}=b_{i}, i=1, \ldots, m$ be a system of linear equations over K. If this system has a solution $\left(x_{1}, \ldots, x_{n}\right) \in L^{n}$, then it also has a solution in K^{n}.
3.2. a). Let $x_{1}, \ldots, x_{n} \in V$ be linearly independent (over K) in a K-vector space V and let $x:=\sum_{i=1}^{n} a_{i} x_{i} \in V$ with $a_{i} \in K$. Show that $x_{1}-x, \ldots, x_{n}-x$ are linearly independent over K if and only if $a_{1}+\cdots+a_{n} \neq 1$.
b). Let x_{1}, \ldots, x_{n} be a basis of the K-vector space V and let $a_{i j} \in K, 1 \leq i \leq j \leq n$. Show that

$$
y_{1}=a_{11} x_{1}, y_{2}=a_{12} x_{1}+a_{22} x_{2}, \ldots, y_{n}=a_{1 n} x_{1}+a_{2 n} x_{2}+\cdots+a_{n n} x_{n}
$$

is a basis of V if and only if $a_{11} \cdots a_{n n} \neq 0$ ist.
c). The family $\{\ln p \mid p$ prime number $\}$ of real numbers is linearly independent over \mathbb{Q}.
3.3. Let K be an infinite field and let $K[t]$ resp. $K[t]_{m}, m \in \mathbb{N}$ be the K-vector space of all polynomial functions on K. resp. of all polynomial functions of $\operatorname{deg}<m$.
a). For every $n \in \mathbb{N}$, let $f_{n}: K \rightarrow K$ be a polynomial function of degree $\leq n$ on K. Show that $f_{n}, n \in \mathbb{N}$, is a basis of the K-vector space $K[t]$ if and only if $\operatorname{deg} f_{n}=n$ for all $n \in \mathbb{N}$. (Hint: It is enough to prove that : for every $m \in \mathbb{N}, f_{0}, \ldots, f_{m-1}$ is a K-basis of the subspace $K[t]_{m}$ if and only if $\operatorname{deg} f_{n}=n$ for $n=0, \ldots, m-1$.)
b). Let $a_{n}, n \in \mathbb{N}^{*}$ be a sequence of elements in K. Show that : for every $m \in \mathbb{N}$, the polynomial functions $1, t-a_{1}, \ldots,\left(t-a_{1}\right) \cdots\left(t-a_{m-1}\right)$ form a K-basis of $K[t]_{m}$. Deduce that: the polynomial functions $\left(t-a_{1}\right) \cdots\left(t-a_{n}\right), n \in \mathbb{N}$ form a K-basis of $K[t]$.
3.4. a). Let $f: I \rightarrow K$ be a K-valued function with $f(I)$ infinite image. Then the sequence $f^{n}, n \in \mathbb{N}$ of powers of f is linearly independent (over K) in the K-vector space K^{I}.
b). The sequences $\left(1, \lambda, \lambda^{2}, \ldots, \lambda^{n}, \ldots\right) \in K^{\mathbb{N}}, \lambda \in K$, are linearly independent over K.
3.5. a). The vector space of all sequences $K^{\mathbb{N}}$ has no countable generating system over K. (Hint : Consider the cases K countable and uncountable seperately to show that $K^{\mathbb{N}}$ is never countable and use exercises T3.2-c), d) and 3.5-b))
b). Let I be an infinite set. Then the K-vector space K^{I} of K-valued functions on I has no countable generating system over K.
c). The K-subspace of $K^{\mathbb{N}}$ generated by the characteristic functions $e_{A}, A \subseteq \mathbb{N}$ has no countable generating system. (Hint: If \mathcal{K} is a totally ordered subset of $\mathfrak{P}(\mathbb{N}) \backslash\{\emptyset\}$, then the family $e_{A}, A \in \mathcal{K}$ is linearly independent. Now, use the fact that there are uncountable totally ordered subsets in the ordered set $\mathfrak{P}(\mathbb{N}), \subseteq)$.)

[^0]
Test-Exercises

T3.1. Let x_{1}, \ldots, x_{n}, x be elements of a vector space over a field K. Then
a). The family $x_{1}, \ldots, x_{n}, x_{1}+\cdots+x_{n}$ is linearly dependent over K, but every n of these vectors are linearly independent over K.
b). Show that x_{1}, \ldots, x_{n}, x are linearly independent over K if and only if x_{1}, \ldots, x_{n} are linearly independent and $x \notin K x_{1}+\cdots+K x_{n}$.
c). Show that x_{1}, \ldots, x_{n} is a generating system of V if and only if x_{1}, \ldots, x_{n}, x is a generating system of V and $x \in K x_{1}+\cdots+K x_{n}$.

T3.2. Let V be a vector space over a field K.
a). Suppose that V has a finite (resp. a countable) generating system. Then every generating system of V has a finite (resp. a countable) generating system.
b). Suppose that V has a countable infinite basis. Then every basis of V is countable infinite.
c). Suppose that there is an uncountable linearly independent system in V. Then no generating system of V is countable.
d). Suppose that K is counable and V has a countable generating system. Then V is countable. In particular, every \mathbb{Q}-basis of \mathbb{R} is uncountable.
e). Let $v_{i}, i \in I$, be a generating system for V. Then every maximal linearly independent subsystem of v_{i}, $i \in I$, is a basis of V.

T3.3. Let K be a field.
a). Which of the following systems of functions are linearly independent over \mathbb{R} in the \mathbb{R}-vector space $\mathbb{R}^{\mathbb{R}}$ of all functions.

1) $1, \sin t, \cos t$.
2) $\sin t, \cos t, \sin (\alpha+t) \quad(\alpha \in \mathbb{R}$ fixed $)$.
3) $t,|t|, \operatorname{Sign} t$.
4) $e^{t}, \sin t, \cos t$.
b). Let $f_{i}, i \in I$, and $g_{j}, j \in J$, be linearly independent K-valued functions on the sets X resp. Y. Then the functions $f_{i} \otimes g_{j}:(x, y) \longmapsto f_{i}(x) g_{j}(y),(i, j) \in I \times J$, are linearly independent in $K^{X \times Y}$.

T3.4. Let $\lambda_{1}, \ldots, \lambda_{n}$ be pairwise distinct elements in a field K. Then the elements

$$
x_{1}:=\left(1, \lambda_{1}, \lambda_{1}^{2}, \ldots, \lambda_{1}^{n-1}\right), \ldots, x_{n}:=\left(1, \lambda_{n}, \lambda_{n}^{2}, \ldots, \lambda_{n}^{n-1}\right) \in K^{n}
$$

are linearly independent over K.(Hint: Induction on n. Assume the result for $n-1$ and $a_{1} x_{1}+\cdots+a_{n} x_{n}=0$. Then we have the equations: $a_{1} \lambda_{n} x_{1}^{\prime}+\cdots+a_{n} \lambda_{n} x_{n}^{\prime}=0 \quad$ and $\quad a_{1} \lambda_{1} x_{1}^{\prime}+\cdots+a_{n} \lambda_{n} x_{n}^{\prime}=0$, and so $a_{1}\left(\lambda_{n}-\lambda_{1}\right) x_{1}^{\prime}+\cdots+a_{n-1}\left(\lambda_{n}-\lambda_{n-1}\right) x_{n-1}^{\prime}=0$, where $x_{i}^{\prime}:=\left(1, \lambda_{i}, \ldots, \lambda_{i}^{n-2}\right), i=1, \ldots, n$. $)$

T3.5. a). Let $I \subseteq \mathbb{R}$ be an interval which contain more than one point. Then none of the \mathbb{K}-vector space $\mathrm{C}_{\mathbb{K}}^{\alpha}(I), \alpha \in \mathbb{N} \cup\{\infty, \omega\}$, has a countable generating system.
b). The \mathbb{K}-vector space of all convergent power series $\sum_{n=0}^{\infty} a_{n} x^{n}$ with coefficients a_{n} from \mathbb{K} has no countable generating system over \mathbb{K}.

T3.6. Let $K \subseteq L$ be a field extension and let $b_{i}, i \in I$, be a K-basis of L. If V is a L-vector space with L-basis $y_{j}, j \in J$, then $b_{i} y_{j},(i, j) \in I \times J$, is a K-basis of V.

[^0]: On the other side one can see (simple) test-exercises ; their solutions need not be submitted.

