MA-219 Linear Algebra

3. Generating systems, Linear independence, Bases

August 25, 2003 ; Submit solutions before 11:00AM ; September 1, 2003.

Let *K* denote a field.

3.1. a). Let K be a field of characteristic $\neq 2$, i.e. $1 + 1 \neq 0$ K and let $a \in K$. Compute the solution set of the following system of linear equations over K.

 $\begin{array}{ll} ax_1 + & x_2 + & x_3 = 1 \\ x_1 + & ax_2 + & x_3 = 1 \\ x_1 + & x_2 + & ax_3 = 1 ; \end{array} \qquad \begin{array}{ll} x_1 + & x_2 - & x_3 = 1 \\ 2x_1 + & 3x_2 + & ax_3 = 3 \\ x_1 + & ax_2 + & 3x_3 = 2 ; \end{array}$

For which *a* these systems have exactly one solution?

b). The set of *m*-tuples $(b_1, \ldots, b_m) \in K^m$ for which a linear system of equations $\sum_{j=1}^n a_{ij} x_j = b_i$, $i = 1, \ldots, m$, over a field K has a solution is a K-subspace of K^m .

c). Let *K* be a subfield of the field *L* and let $\sum_{j=1}^{n} a_{ij}x_j = b_i$, i = 1, ..., m be a system of linear equations over *K*. If this system has a solution $(x_1, ..., x_n) \in L^n$, then it also has a solution in K^n .

3.2. a). Let $x_1, \ldots, x_n \in V$ be linearly independent (over *K*) in a *K*-vector space *V* and let $x := \sum_{i=1}^{n} a_i x_i \in V$ with $a_i \in K$. Show that $x_1 - x, \ldots, x_n - x$ are linearly independent over *K* if and only if $a_1 + \cdots + a_n \neq 1$.

b). Let x_1, \ldots, x_n be a basis of the *K*-vector space *V* and let $a_{ij} \in K$, $1 \le i \le j \le n$. Show that

$$y_1 = a_{11}x_1$$
, $y_2 = a_{12}x_1 + a_{22}x_2$, ..., $y_n = a_{1n}x_1 + a_{2n}x_2 + \dots + a_{nn}x_n$

is a basis of *V* if and only if $a_{11} \cdots a_{nn} \neq 0$ ist.

c). The family $\{\ln p \mid p \text{ prime number}\}$ of real numbers is linearly independent over \mathbb{Q} .

3.3. Let *K* be an infinite field and let K[t] resp. $K[t]_m$, $m \in \mathbb{N}$ be the *K*-vector space of all polynomial functions on *K*. resp. of all polynomial functions of deg < m.

a). For every $n \in \mathbb{N}$, let $f_n : K \to K$ be a polynomial function of degree $\leq n$ on K. Show that $f_n, n \in \mathbb{N}$, is a basis of the K-vector space K[t] if and only if deg $f_n = n$ for all $n \in \mathbb{N}$. (Hint: It is enough to prove that: for every $m \in \mathbb{N}$, f_0, \ldots, f_{m-1} is a K-basis of the subspace $K[t]_m$ if and only if deg $f_n = n$ for $n = 0, \ldots, m - 1$.)

b). Let $a_n, n \in \mathbb{N}^*$ be a sequence of elements in *K*. Show that: for every $m \in \mathbb{N}$, the polynomial functions $1, t - a_1, \ldots, (t - a_1) \cdots (t - a_{m-1})$ form a *K*-basis of $K[t]_m$. Deduce that: the polynomial functions $(t - a_1) \cdots (t - a_n), n \in \mathbb{N}$ form a *K*-basis of K[t].

3.4. a). Let $f: I \to K$ be a *K*-valued function with f(I) infinite image. Then the sequence f^n , $n \in \mathbb{N}$ of powers of f is linearly independent (over K) in the *K*-vector space K^I .

b). The sequences $(1, \lambda, \lambda^2, ..., \lambda^n, ...) \in K^{\mathbb{N}}, \lambda \in K$, are linearly independent over K.

3.5. a). The vector space of all sequences $K^{\mathbb{N}}$ has no countable generating system over K. (Hint: Consider the cases K countable and uncountable seperately to show that $K^{\mathbb{N}}$ is never countable and use exercises T3.2-c), d) and 3.5-b))

b). Let *I* be an infinite set. Then the *K*-vector space K^{I} of *K*-valued functions on *I* has no countable generating system over *K*.

c). The *K*-subspace of $K^{\mathbb{N}}$ generated by the characteristic functions e_A , $A \subseteq \mathbb{N}$ has no countable generating system. (**Hint**: If \mathcal{K} is a totally ordered subset of $\mathfrak{P}(\mathbb{N}) \setminus \{\emptyset\}$, then the family e_A , $A \in \mathcal{K}$ is *linearly independent*. Now, use the fact that there are uncountable totally ordered subsets in the ordered set $\mathfrak{P}(\mathbb{N}), \subseteq$).

On the other side one can see (simple) test-exercises ; their solutions need not be submitted.

Test-Exercises

T3.1. Let x_1, \ldots, x_n, x be elements of a vector space over a field K. Then

a). The family x_1, \ldots, x_n , $x_1 + \cdots + x_n$ is linearly dependent over K, but every n of these vectors are linearly independent over K.

b). Show that x_1, \ldots, x_n , x are linearly independent over K if and only if x_1, \ldots, x_n are linearly independent and $x \notin Kx_1 + \cdots + Kx_n$.

c). Show that x_1, \ldots, x_n is a generating system of V if and only if x_1, \ldots, x_n , x is a generating system of V and $x \in Kx_1 + \cdots + Kx_n$.

T3.2. Let *V* be a vector space over a field *K*.

a). Suppose that V has a finite (resp. a countable) generating system. Then every generating system of V has a finite (resp. a countable) generating system.

b). Suppose that V has a countable infinite basis. Then every basis of V is countable infinite.

c). Suppose that there is an uncountable linearly independent system in V. Then no generating system of V is countable.

d). Suppose that *K* is counable and *V* has a countable generating system. Then *V* is countable. In particular, every \mathbb{Q} -basis of \mathbb{R} is uncountable.

e). Let v_i , $i \in I$, be a generating system for V. Then every maximal linearly independent subsystem of v_i , $i \in I$, is a basis of V.

T3.3. Let *K* be a field.

a). Which of the following systems of functions are linearly independent over \mathbb{R} in the \mathbb{R} -vector space $\mathbb{R}^{\mathbb{R}}$ of all functions.

1) 1, $\sin t$, $\cos t$. 2) $\sin t$, $\cos t$, $\sin(\alpha + t)$ ($\alpha \in \mathbb{R}$ fixed).

3) t, |t|, Sign t. 4) $e^t, \sin t, \cos t$.

b). Let f_i , $i \in I$, and g_j , $j \in J$, be linearly independent *K*-valued functions on the sets *X* resp. *Y*. Then the functions $f_i \otimes g_j : (x, y) \mapsto f_i(x) g_j(y)$, $(i, j) \in I \times J$, are linearly independent in $K^{X \times Y}$.

T3.4. Let $\lambda_1, \ldots, \lambda_n$ be pairwise distinct elements in a field K. Then the elements

$$x_1 := (1, \lambda_1, \lambda_1^2, \dots, \lambda_1^{n-1}), \dots, x_n := (1, \lambda_n, \lambda_n^2, \dots, \lambda_n^{n-1}) \in K^n$$

are linearly independent over *K*.(**Hint**: Induction on *n*. Assume the result for n-1 and $a_1x_1+\cdots+a_nx_n=0$. Then we have the equations: $a_1\lambda_nx'_1+\cdots+a_n\lambda_nx'_n=0$ and $a_1\lambda_1x'_1+\cdots+a_n\lambda_nx'_n=0$, and so $a_1(\lambda_n-\lambda_1)x'_1+\cdots+a_{n-1}(\lambda_n-\lambda_{n-1})x'_{n-1}=0$, where $x'_i := (1, \lambda_i, \dots, \lambda_i^{n-2})$, $i = 1, \dots, n$.)

T3.5. a). Let $I \subseteq \mathbb{R}$ be an interval which contain more than one point. Then none of the K-vector space $C^{\alpha}_{\mathbb{K}}(I)$, $\alpha \in \mathbb{N} \cup \{\infty, \omega\}$, has a countable generating system.

b). The \mathbb{K} -vector space of all convergent power series $\sum_{n=0}^{\infty} a_n x^n$ with coefficients a_n from \mathbb{K} has no countable generating system over \mathbb{K} .

T3.6. Let $K \subseteq L$ be a field extension and let b_i , $i \in I$, be a K-basis of L. If V is a L-vector space with L-basis y_i , $j \in J$, then $b_i y_j$, $(i, j) \in I \times J$, is a K-basis of V.