MA-219 Linear Algebra

4. Dimension of vector spaces

August 29, 2003 ; Submit solutions before 11:00AM ; September 8, 2003.
Let K denote a field.
4.1. Let V be a K-vector space of dimension $n \in \mathbb{N}$.
a). If H_{1}, \ldots, H_{r} are hyperplanes in V, then $\operatorname{Dim}_{K}\left(H_{1} \cap \cdots \cap H_{r}\right) \geq n-r$.
b). If $U \subseteq V$ is a subspace of codimension r, then there exist r hyperplanes H_{1}, \ldots, H_{r} in V such that $U=H_{1} \cap \cdots \cap H_{r}$.
c). Let V be a \mathbb{C}-vector space of dimension $n \in \mathbb{N}^{*}$ and let H be a real hyperplane in V (i.e. a real subspace of dimension $2 n-1$). Then $H \cap \mathrm{i} H$ is a complex hyperplane in V, where $\mathrm{i} H:=\{\mathrm{i} x \mid x \in H\}$. (i.e. a complex subspace of dimension $n-1$).
4.2. Let $x_{1}=\left(a_{11}, \ldots, a_{1 n}\right), \ldots, x_{n}=\left(a_{n 1}, \ldots, a_{n n}\right)$ be elements of \mathbb{K}^{n} with

$$
\left|a_{i i}\right|>\sum_{j=1, j \neq i}^{n}\left|a_{j i}\right| .
$$

Show that x_{1}, \ldots, x_{n} is a basis of \mathbb{K}^{n}. (Hint: It is enough to show the linear independence of x_{1}, \ldots, x_{n}. For this, suppose that $b_{1} x_{1}+\cdots+b_{n} x_{n}=0$ with $\left|b_{i}\right| \leq 1$ for all i and $b_{i_{0}}=1$ for some i_{0} a contradiction.)
4.3. Let $x_{1}, \ldots, x_{n} \in \mathbb{Z}^{n}$ be arbitrary vectors with integer components. For every $\lambda \in \mathbb{Q} \backslash \mathbb{Z}$, the vectors $x_{1}+\lambda e_{1}, \ldots, x_{n}+\lambda e_{n}$ form a basis of \mathbb{Q}^{n}.
(Hint: Suppose that $a_{1}\left(x_{1}+\lambda e_{1}\right)+\cdots+a_{n}\left(x_{n}+\lambda e_{n}\right)=0$ with $a_{i} \in \mathbb{Z}, \operatorname{gcd}\left(a_{1}, \ldots, a_{n}\right)=1$ a contradiction.
4.4. Let K be a field with at least n elements ($n \in \mathbb{N}^{*}$) and let V be a finite dimensional K-vector space. Let U_{1}, \ldots, U_{n} be subspaces of V od equal dimension r and let $u_{1 i}, \ldots, u_{i r}$ be a basis of U_{i} for $i=1, \ldots, r$. Show that there exists $\operatorname{Dim}_{K} V-r$ vectors in V such that which simultaneously extend the given bases of U_{i} to a basis of V. (Hint: Use exercise 2.2.)
4.5. Let v_{1}, \ldots, v_{n} be a basis of the n-dimensional K-vector space $V, n \geq 1$, and let H be a hyperplane in V. Show that there exist an index $i_{0}, 1 \leq i_{0} \leq n$, and elements $a_{i} \in K, i \neq i_{0}$ such that $v_{i}-a_{i} v_{i_{0}}, i \neq i_{0}$ is a basis of H.
4.6. Let $\omega \in \mathbb{R}_{+}^{\times}$. For $a \in \mathbb{R}$ and $\varphi \in \mathbb{R}$, let $f_{a, \varphi}: \mathbb{R} \rightarrow \mathbb{R}$ be defined by $t \mapsto a \sin (\omega t+\varphi)$. Let $W:=\left\{f_{a, \varphi} \mid a, \varphi \in \mathbb{R}\right\}$.
a). Find a \mathbb{R}-basis of the \mathbb{R}-subspace W of the \mathbb{R}-vector space $\mathbb{R}^{\mathbb{R}}$. What is the dimension $\operatorname{Dim}_{\mathbb{R}} W$?
(Remark: Elements of W are called harmonic oscillations with the circular frequency)
b). Show that non-zero $f \in W$ has a unique representation

$$
f(t)=a \sin (\omega t+\varphi), \quad a>0,0 \leq \varphi<2 \pi .
$$

(Remark: This unique a is called the amplitude and φ is called the phase angle of f. The zero function has the amplitude 0 and an arbitrary phase angle.)
c). If $f, g \in W$, then compute the amplitude and the phase angle of the functions $f \pm g$.

On the other side one can see (simple) test-exercises ; their solutions need not be submitted.

Test-Exercises

T4.1. Let K be a field. For which $(a, b) \in K^{2}$, the vectors $(a, b),(b, a)$ form a basis of K^{2} ?
T4.2. Let K be a finite field with q elements.
a). The multiples $m \cdot 1_{K}, m \in \mathbb{Z}$ of 1_{K} form a subfield K^{\prime} of K.
b). There exists a smallest positive nautral number p with $p \cdot 1_{K}=0$. This is a prime number and is called the characteristic of K. The field $K^{\prime} \subseteq K$ contains exactly p distinct elements $0,1_{K}, \ldots,(p-1) 1_{K}$.
c). $q=p^{n}$, where $n:=\operatorname{Dim}_{K^{\prime}} K . \quad$ (Remark: The number of elements in a finite field is therefore a power of a prime number. Conversely, for every power q of a prime number there exists a field (which is essentially unique) with q elements. We shall prove this assertion later.)
d). If V is a K-vector space of dimension $n \in \mathbb{N}$, then V has exactly q^{n} elements.

T4.3. Let $x_{i}, i \in I$, be a family of vectors in a K-vector space V and let U be the subspace of V generated by $x_{i}, i \in I$. Then U is finite dimensional if and only if there exists a natural number $n \in \mathbb{N}$ such that every $n+1$ vectors from $x_{i}, i \in I$ are linearly dependent. Moreover, if this condition is fullfilled then the dimension $\operatorname{Dim}_{K} U$ is the minimum of $n \in \mathbb{N}$ which satisfy the above condition.
T4.4. Let V be a finite dimensional K-vector space and let U be a subspace of V. Suppose that the basis u_{1}, \ldots, u_{m} of U is extended to a basis $u_{1}, \ldots, u_{m}, u_{m+1}, \ldots, u_{n}$ of V. Then

$$
x=a_{1} u_{1}+\cdots+a_{m} u_{m}+b_{m+1} u_{m+1}+\cdots+b_{n} u_{n} \in V
$$

is an element of U if and only if the coordinates $b_{m+1}=u_{m+1}^{*}(x), \ldots, b_{n}=u_{n}^{*}(x)$ of x with respect to the basis u_{1}, \ldots, u_{n} of V are zero. (Remark: This is the most easiest method to determine elements of a subspace.)
T4.5. Let $n \in \mathbb{N}^{*}$ and let a_{0}, \ldots, a_{n} be real numbers with $a_{0}<a_{1}<\cdots<a_{n}$.
a). Let U be the \mathbb{R}-vector space of continuous piecewise linear ${ }^{1}$) real valued functions os the closed interval [a_{0}, a_{n}] in \mathbb{R} with partition points $a_{1}, \ldots a_{n-1}$. Show that the functions $\left|t-a_{0}\right|, \ldots,\left|t-a_{n}\right|$ is a \mathbb{R}-basis of U. In particular, $\operatorname{Dim}_{K} U=n+1$.
b). Let V be the \mathbb{R}-vector space of the continuous piecewise linear functions $\mathbb{R} \rightarrow \mathbb{R}$ with partition points a_{0}, \ldots, a_{n}. Show that the functions $\left(a_{0}-t\right)_{+},\left|t-a_{0}\right|, \ldots,\left|t-a_{n}\right|,\left(t-a_{n}\right)_{+}$is a basis of V, where $f_{+}:=\operatorname{Max}(f, 0)$ denote the positive part of a real valued function f. In particular, $\operatorname{Dim}_{K} V=n+3$.
c). Let W be the \mathbb{R}-vector space of the continuous piecewise linear functions $\left[a_{0}, a_{n}\right] \rightarrow \mathbb{R}$ with partitions points a_{1}, \ldots, a_{n-1}, and which vanish at both the end points a_{0} and a_{n}. Show that there exist functions $f_{1}, \ldots, f_{n-1} \in W$ and the functions $g_{1}, \ldots, g_{n-1} \in W$ which form bases of W such that the graphs of f_{i} and g_{i} are:
d). Let $k, m \in \mathbb{N}$ with $k<m$. The set of k-times continuously differentiable \mathbb{R}-valued functions on the closed interval $\left[a_{0}, a_{n}\right]$, which are polynomial functions of degree $\leq m$ on every subinterval $\left[a_{i}, a_{i+1}\right]$, is a \mathbb{R}-vector space of dimension $(m-k) n+k+1$ with basis

$$
\begin{gathered}
1,\left(t-a_{0}\right), \ldots,\left(t-a_{0}\right)^{m} \\
\left(\left(t-a_{1}\right)_{+}\right)^{k+1}, \ldots,\left(\left(t-a_{1}\right)_{+}\right)^{m}, \ldots,\left(\left(t-a_{n-1}\right)_{+}\right)^{k+1}, \ldots,\left(\left(t-a_{n-1}\right)_{+}\right)^{m} .
\end{gathered}
$$

(Remark: The elements of this vector space are called spline functions of type (m, k) on $\left[a_{0}, a_{n}\right]$ with partition points a_{1}, \ldots, a_{n-1}.)
${ }^{1}$) Let $n \in \mathbb{N}^{*}$ and let a_{0}, \ldots, a_{n} be real numbers with $a_{0}<a_{1}<\cdots<a_{n}$. A continuous real valued function $f:\left[a_{0}, a_{n}\right] \rightarrow \mathbb{R}$ is called piecewise linear with partition points a_{0}, \ldots, a_{n} if $f \mid\left[a_{i}, a_{i+1}\right] \rightarrow \mathbb{R}$ is linear (see below) for every $i=1, \ldots, n-1$.
A real valued function $f:[a, b] \rightarrow \mathbb{R}$ defined on the closed interval $[a, b] \subseteq \mathbb{R}$ is called line ar if there exist $\lambda, \mu \in \mathbb{R}$ such that $f(t)=\lambda t \mu$ for every $t \in[a, b]$.

