MA-219 Linear Algebra

4. Dimension of vector spaces

August 29, 2003 ; Submit solutions before 11:00AM ; September 8, 2003.

Let K denote a field.

4.1. Let *V* be a *K*-vector space of dimension $n \in \mathbb{N}$.

a). If H_1, \ldots, H_r are hyperplanes in V, then $\text{Dim}_K(H_1 \cap \cdots \cap H_r) \ge n - r$.

b). If $U \subseteq V$ is a subspace of codimension *r*, then there exist *r* hyperplanes H_1, \ldots, H_r in *V* such that $U = H_1 \cap \cdots \cap H_r$.

c). Let V be a \mathbb{C} -vector space of dimension $n \in \mathbb{N}^*$ and let H be a real hyperplane in V (i.e. a real subspace of dimension 2n - 1). Then $H \cap iH$ is a complex hyperplane in V, where $iH := \{ix \mid x \in H\}$. (i.e. a complex subspace of dimension n - 1).

4.2. Let $x_1 = (a_{11}, \ldots, a_{1n}), \ldots, x_n = (a_{n1}, \ldots, a_{nn})$ be elements of \mathbb{K}^n with

$$|a_{ii}| > \sum_{j=1, j \neq i}^{n} |a_{ji}|$$

Show that x_1, \ldots, x_n is a basis of \mathbb{K}^n . (Hint: It is enough to show the linear independence of x_1, \ldots, x_n . For this, suppose that $b_1x_1 + \cdots + b_nx_n = 0$ with $|b_i| \le 1$ for all i and $b_{i_0} = 1$ for some i_0 a contradiction.)

4.3. Let $x_1, \ldots, x_n \in \mathbb{Z}^n$ be arbitrary vectors with integer components. For every $\lambda \in \mathbb{Q} \setminus \mathbb{Z}$, the vectors $x_1 + \lambda e_1, \ldots, x_n + \lambda e_n$ form a basis of \mathbb{Q}^n . (Hint: Suppose that $a_1(x_1 + \lambda e_1) + \cdots + a_n(x_n + \lambda e_n) = 0$ with $a_i \in \mathbb{Z}$, $gcd(a_1, \ldots, a_n) = 1$ a contradiction.)

4.4. Let *K* be a field with at least *n* elements $(n \in \mathbb{N}^*)$ and let *V* be a finite dimensional *K*-vector space. Let U_1, \ldots, U_n be subspaces of *V* od equal dimension *r* and let u_{1i}, \ldots, u_{ir} be a basis of U_i for $i = 1, \ldots, r$. Show that there exists $\text{Dim}_K V - r$ vectors in *V* such that which simultaneously extend the given bases of U_i to a basis of *V*. (Hint: Use exercise 2.2.)

4.5. Let v_1, \ldots, v_n be a basis of the *n*-dimensional *K*-vector space *V*, $n \ge 1$, and let *H* be a hyperplane in *V*. Show that there exist an index $i_0, 1 \le i_0 \le n$, and elements $a_i \in K$, $i \ne i_0$ such that $v_i - a_i v_{i_0}$, $i \ne i_0$ is a basis of *H*.

4.6. Let $\omega \in \mathbb{R}_+^{\times}$. For $a \in \mathbb{R}$ and $\varphi \in \mathbb{R}$, let $f_{a,\varphi} : \mathbb{R} \to \mathbb{R}$ be defined by $t \mapsto a \sin(\omega t + \varphi)$. Let $W := \{f_{a,\varphi} \mid a, \varphi \in \mathbb{R}\}.$

a). Find a \mathbb{R} -basis of the \mathbb{R} -subspace W of the \mathbb{R} -vector space $\mathbb{R}^{\mathbb{R}}$. What is the dimension $\text{Dim}_{\mathbb{R}}W$? (**Remark**: Elements of W are called harmonic oscillations with the circular frequency)

b). Show that non-zero $f \in W$ has a unique representation

$$f(t) = a\sin(\omega t + \varphi), \qquad a > 0, \ 0 \le \varphi < 2\pi.$$

(**Remark:** This unique *a* is called the amplitude and φ is called the phase angle of *f*. The zero function has the amplitude 0 and an arbitrary phase angle.)

c). If $f, g \in W$, then compute the amplitude and the phase angle of the functions $f \pm g$.

On the other side one can see (simple) test-exercises; their solutions need not be submitted.

4. Dimension of vector spaces

Test-Exercises

T4.1. Let K be a field. For which $(a, b) \in K^2$, the vectors (a, b), (b, a) form a basis of K^2 ?

T4.2. Let *K* be a finite field with *q* elements.

a). The multiples $m \cdot 1_K$, $m \in \mathbb{Z}$ of 1_K form a subfield K' of K.

b). There exists a smallest positive nautral number p with $p \cdot 1_K = 0$. This is a prime number and is called the characteristic of K. The field $K' \subseteq K$ contains exactly p distinct elements $0, 1_K, \ldots, (p-1)1_K$. **c).** $q = p^n$, where $n := \text{Dim}_{K'}K$. (**Remark**: *The number of elements in a finite field is therefore a power of a prime number.* Conversely, for every power q of a prime number there exists a field (which is essentially unique) with q elements. We shall prove this assertion later.)

d). If V is a K-vector space of dimension $n \in \mathbb{N}$, then V has exactly q^n elements.

T4.3. Let $x_i, i \in I$, be a family of vectors in a *K*-vector space *V* and let *U* be the subspace of *V* generated by $x_i, i \in I$. Then *U* is finite dimensional if and only if there exists a natural number $n \in \mathbb{N}$ such that every n + 1 vectors from $x_i, i \in I$ are linearly dependent. Moreover, if this condition is fullfilled then the dimension $\text{Dim}_K U$ is the minimum of $n \in \mathbb{N}$ which satisfy the above condition.

T4.4. Let V be a finite dimensional K-vector space and let U be a subspace of V. Suppose that the basis u_1, \ldots, u_m of U is extended to a basis $u_1, \ldots, u_m, u_{m+1}, \ldots, u_n$ of V. Then

$$x = a_1u_1 + \dots + a_mu_m + b_{m+1}u_{m+1} + \dots + b_nu_n \in V$$

is an element of U if and only if the coordinates $b_{m+1} = u_{m+1}^*(x), \ldots, b_n = u_n^*(x)$ of x with respect to the basis u_1, \ldots, u_n of V are zero. (**Remark**: This is the most easiest method to determine elements of a subspace.)

T4.5. Let $n \in \mathbb{N}^*$ and let a_0, \ldots, a_n be real numbers with $a_0 < a_1 < \cdots < a_n$.

a). Let *U* be the \mathbb{R} -vector space of continuous piecewise linear ¹) real valued functions os the closed interval $[a_0, a_n]$ in \mathbb{R} with partition points a_1, \ldots, a_{n-1} . Show that the functions $|t - a_0|, \ldots, |t - a_n|$ is a \mathbb{R} -basis of *U*. In particular, $\text{Dim}_K U = n + 1$.

b). Let *V* be the \mathbb{R} -vector space of the continuous piecewise linear functions $\mathbb{R} \to \mathbb{R}$ with partition points a_0, \ldots, a_n . Show that the functions $(a_0 - t)_+$, $|t - a_0|, \ldots, |t - a_n|$, $(t - a_n)_+$ is a basis of *V*, where $f_+ := \text{Max}(f, 0)$ denote the positive part of a real valued function *f*. In particular, $\text{Dim}_K V = n + 3$.

c). Let *W* be the \mathbb{R} -vector space of the continuous piecewise linear functions $[a_0, a_n] \to \mathbb{R}$ with partitions points a_1, \ldots, a_{n-1} , and which vanish at both the end points a_0 and a_n . Show that there exist functions $f_1, \ldots, f_{n-1} \in W$ and the functions $g_1, \ldots, g_{n-1} \in W$ which form bases of *W* such that the graphs of f_i and g_i are:

d). Let $k, m \in \mathbb{N}$ with k < m. The set of k-times continuously differentiable \mathbb{R} -valued functions on the closed interval $[a_0, a_n]$, which are polynomial functions of degree $\leq m$ on every subinterval $[a_i, a_{i+1}]$, is a \mathbb{R} -vector space of dimension (m - k)n + k + 1 with basis

$$1, (t - a_0), \dots, (t - a_0)^m, ((t - a_1)_+)^{k+1}, \dots, ((t - a_1)_+)^m, \dots, ((t - a_{n-1})_+)^{k+1}, \dots, ((t - a_{n-1})_+)^m$$

(**Remark**: The elements of this vector space are called spline functions of type (m, k) on $[a_0, a_n]$ with partition points a_1, \ldots, a_{n-1} .)

¹) Let $n \in \mathbb{N}^*$ and let a_0, \ldots, a_n be real numbers with $a_0 < a_1 < \cdots < a_n$. A continuous real valued function $f : [a_0, a_n] \to \mathbb{R}$ is called piecewise linear with partition points a_0, \ldots, a_n if $f|[a_i, a_{i+1}] \to \mathbb{R}$ is linear (see below) for every $i = 1, \ldots, n-1$.

A real valued function $f : [a, b] \to \mathbb{R}$ defined on the closed interval $[a, b] \subseteq \mathbb{R}$ is called $\lim a r$ if there exist $\lambda, \mu \in \mathbb{R}$ such that $f(t) = \lambda t \mu$ for every $t \in [a, b]$.