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Let K denote a field and letE be an affine space overK .

5.1. Let P, Q, R, S be points in theK-affine space.

a). The 4-tuple(P, Q, R, S) of points inE is called a( n o n - d e g e n e r a t e ) q u a d r i l a t e r a l
if no three of the pointsP, Q, R, S are collinear. For an arbitrary quadrilateral(P, Q, R, S), the
following assertions are equivalent:

(1) The linesPQ andSR are parallel and the linesPS andQR are parallel.

(2)
−→
PQ = −→

SR. (3)
−→
PS = −→

QR. (Hint : Use T5.1-h))
If any of these three equivalent assertions is true, then the quadrilateral(P, Q, R, S) is called a
p a r a l l e l o g r a m . If 2= 1K + 1K �= 0 in K, i.e. CharK �= 2, then the above three assertions are
further equivalent to
(4) The diagonalsPR andQS bisect each other, i.e., (the unique) point of intersection is the
midpoint of both(P, Q) and(R, S).

b). Suppose that 2= 1K + 1K �= 0 in K, i.e. CharK �= 2. Let (P, Q, R, S) be an arbitrary
quadrilateral inE. Then the midpointsM1, M2, M3, M4 of the line-segments(P, Q) , (Q, R) ,
(R, S) , (S, P ) form a paralleogram and the diagonalsM1M3 andM2M4 intersect in the center of
mass1

4P + 1
4Q + 1

4R + 1
4S of the pointsP, Q, R, S with equal weights 1. (The center

of mass1
2L + 1

2N of the pointsL, N with equal weights 1 is called them i d p o i n t of theline-segment
(L, N) ⊆ E .)

5.2. Let (P, Q) and(R, S) be the line-segments on parallel lines in aK-affine space withP �= Q.

Show that there exists a unique scalarλ ∈ K such that
−→
RS = λ

−→
PQ . This scalarλ is called the

r a t i o of theline-segment(R, S) to the line-segment(P, Q) and is denoted by(R, S) : (P, Q)

or (R,S)

(P,Q)
.

a). Draw the graph of the functionλ : [P, Q) := {t−→
PQ + P | t ∈ [0, 1)} → K , R �→ (P,R)

(R,Q)
.

b). LetS be the center of mass of the two distinct pointsP andQ with weightsa andb, respectively.
Suppose thata + b �= 0 anda �= 0. Then (P,S)

(S,Q)
= b

a
, i.e.,S divide the line-segment(P, Q) in the

ratio which is inversely proportional to the weights.
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5.2 MA-219 Linear Algebra / August-December 2003 5. Affine spaces and affine subspaces

c). ( T h e o r e m s o f T h a l e s1) ) Let (O, P, Q) and(O, P ′, Q′) be non-degenerate triangles
such that the pointsO, P, P ′ resp. O, Q, Q′ are collinear. Show that

(1) if the linesPQ andP ′Q′ are parallel, then (O,P ′)
(O,P )

= (O,Q′)
(O,Q)

= (P ′,Q′)
(P,Q)

and (P,P ′)
(O,P )

= (Q,Q′)
(O,Q)

.

(2) (converse of (1)): If either (O,P ′)
(O,P )

= (O,Q′)
(O,Q)

or (P,P ′)
(O,P )

= (Q,Q′)
(O,Q)

, then the linesPQ andP ′Q′

are parallel.

5.3. Let (P0 , . . . , Pn) be a non-degeneraten-simplex,n ≥ 2, in the real affine spaceE. Suppose
that every pointPi is given with a positive weightai , i = 0, . . . , n. Let Si denote the center of
mass of thei-th face (the(n − 1)- simplex obtained from then-simplex(P0 , . . . , Pn) by removing
the pointPi) of the simplex(P0 , . . . , Pn) .

a). The line-segmentsSiPi , i = 0, . . . , n, intersect in the center of massS of the pointsP0, . . . , Pn

with the weightsa0, . . . , an.

b). For i = 0, . . . , n, the ratio (Si ,S)

(S,Pi )
= ai/bi , wherebi is the sum of the weightsaj , j �= i.

(Remark : If all the weights are equal, then this ratio is 1/n and in this case the pointS is called the
b a r y c e n t e r of theP0, . . . , Pn.)

5.4. Let F1 = U1 + P1 andF2 = U2 + P2 be two affine subspaces of aK-affine spaceE.

a). Show thatF1 ∩ F2 �= ∅ if and only if
−−→
P1P2 ∈ U1 + U2.

b). The affine hull ofF1 ∪F2 is called thejo i n - space ofF1 andF2 and is denoted byF1 ∨F2.

Show that F1 ∨ F2 = (U1 + U2 + K · −−→
P1P2) + P1 .

c). ( D i m e n s i o n F o r m u l a ) IfF1 andF2 are finite dimensional and ifF1 ∩ F2 �= ∅ , then
Dim(F1 ∨ F2) + Dim(F1 ∩ F2) = Dim F1 + Dim F2 .

(How does one modify this formula in the caseF1 ∩ F2 = ∅?)

d). If K has more than two elements and ifF1 ∩ F2 �= ∅, thenF1 ∨ F2 is the union of all line-
segmentsP1P2 with P1 �= P2 andP1 ∈ F1 , P2 ∈ F2 . (Remark : But in the caseF1 ∩ F2 = ∅ an
analogous assertion is not true in general. )

On the next pages one can see (simple) test-exercises ; their solutions need not be submitted.

1) Thales : Greek geometry appears to have started in an essential way with the work ofThales of
Miletus in the first half of the sixth century B. C. . This versatile genius, declared to be one of the “seven
wise men” of antiquity, was a worthy founder of systematic geometry and is the first known individual with
whom the use of deductive methods in geometry is associated. Thales sojourned for a times in Egypt and
brought back geometry with him to Greece, where he began to apply to the subject the deductive procedures
of Greek philosophy. He is credited with a number of very elementary geometrical results, the value of
which is not to be measured by their content but rather by the belief that he supported them with a certain
amount of logical reasoning instead of intuition and experiment. For the first time a student of geometry
was committed to a form of deductive resoning, partial and incomplete though it may have been. Moreover,
the fact that the first deductive thinking was done in the field of geometry, instead of algebra for instance,
inaugurated a tradation in mathematics which was maintained until very recent times!
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Test-Exercises

Let K be a field and letV be aK-vector space and letE be an affine space overV . UsuallyV andE have
nothing in common. A lettered arrowx connecting two pointsP andQ in E simply recordspictorially 2)

that the vectorx of V sends the pointP to the pointQ.

T5.1. Let x, y ∈ V and letP, Q, R, S ∈ E . Then

a). Q = −→
PQ + Q .

b). For x ∈ V , let τx : E → E denote thet r a n s l a t i o n P �→ x + P of E . Let T(E) be the set of all
translations ofE. Then the mapV → T(E) defined byx �→ τx is bijective.

c). x + P = Q if and only if P = −x + Q . In particular,−−→
PQ = −→

QP .

d). If x + P = P then x = 0 .

e).
−−−−−−→
P(x + P) = x ,

−−−−−−→
P(x + Q) = x + −→

PQ and
−−−−−−→
(x + P)Q = −→

PQ − x

f).
−→
PQ + −→

QR = −→
PR and

−→
PQ + R = −→

PR + Q = (
−→
PQ + −→

PR) + P .

g).
−−−−−−−−−−→
(x + P)(x + Q) = −→

PQ and
−−−−−−−−−−→
(x + P)(y + Q) = −−−−−−→

(x + P)Q + y = (
−→
PQ − x + y .

h).
−→
PQ = −→

SR if and only if
−→
PS = −→

QR .

T5.2. (A f f i n e s u b s p a c e s ) AsubsetF of E is called a (K-) a f f i n e s u b s p a c e ofE if either F = ∅
or F = U + P := {x + P | x ∈ U} , whereP ∈ E and U is aK-subspace ofV .

a). In the representationF = U +P of a non-empty affine subspaceF ⊆ E, the pointP can be chosen any
point ofF andU is precisely the set of vectorsx ∈ V with x + F = τx(F ) = F , i.e., the isotropy group of
F . In particular,U is uniquely determined byF .

b). Let F1 = U1 + P1 andF2 = U2 + P2 be non-empty affine subspaces ofE, whereP1 , P2 are points in

E andU1, U2 are subspaces ofV . ThenF1 = F2 if and only if U1 = U2 and
−−→
P1P2 ∈ U1 (= U2).

c). Every non-empty affine subspaceF = U + P of E is itself an affine space over theK-vector space
V(F ) = U . The operation ofV onE induces (by restriction) to an operation ofU onF . In particular, every
non-empty affine subspace has thed i m e n s i o n . Thedimension of empty affine subspace is defined to be
−1. If E is finite dimensional, then the difference DimE − Dim F is called thec o d i m e n s i o n ofF in
E and is denoted by CodimEF = Codim(F, E). The empty affine subspace has codimension 1+ DimE.
Further, DimF + Codim(F, E) = Dim E . Affine subspaces of the codimension 1 are called( a f f i n e )
h y p e r p l a n e s .

d). Let V be aK-vector space and consider it as an affine space over itself. Then theaffine subspaces ofV
are (other than empty set) cosets of the formU + y = {x + y | x ∈ U} , whereU is a subspace ofV andy is
pointV . The subspaces of the vector spaceV are precisely the affine subspaces ofV which pass through 0.

2) It is very important that appropriate pictures be drawn while studying geometry. Pictures indicate what,
probably, the correct theorem is and how one might attempt to prove it. Of course, the actual proof must
stand on its own logical legs and be independent of figures. In geometry, in fact, in all of mathematics one
should be aware of the danger of figures and then liv dangerously. Draw a lot of pictures!
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The solution space of the linear system of equations

a11x1 + · · · + a1nxn = b1
· · · · · · · · · · · · · · ·
am1x1 + · · · + amnxn = bm

is an affine subspace inKn which is parallel to the solution spaceL0 of the corresponding homogeneous
system of equations. Conversely, every affine subspace inKn is the solution space of a system of linear
equations overK in n unknowns.

e). LetE be an affine space over theK-vector spaceV , whereK is a field with more than two elements. Then
F ⊆ E is an affine subspace ofE if and only if for every pair of two distinct points ofF , the line-segment

joining them is also contained inF . (Hint : Let F �= ∅ andP ∈ F . it is enough to show that{−→
PQ | Q ∈ F }

is aK-subspace ofV . – Remark : If K has only two elements, then the affine subspaces ofE are precisely
those distinguished subsetsF of E such that for any three distinct pointsP, Q, R, the affine planePQR

generated by the pointsP, Q, R (which contain the only pointP + Q + R other thanP, Q, R ) is contained
in F .)

f). The intersection of an arbitrary familyFi , i ∈ I , of affine subspaces ofE is again an affine subspace. If

this intersection is non-empty andFi = Ui + P , then
⋂

i∈I Fi =
(⋂

i∈I Ui

)
+ P .

T5.3. (A f f i n e g e n e r a t i n g s y s t e m s , a f f i n e l y i n d e p e n d e n t a n d a f f i n e h u l l s ) For every
family Pi , i ∈ I , of points inE, there exists (see T5.2-f)) a smallest affine subspaceF of E containing all
the pointsPi , i ∈ I and is called thea f f i n e h u l l o f t h e p o i n t sPi , i ∈ I or the a f f i n e s u b s p a c e
g e n e r a t e d b y t h e p o i n t sPi , i ∈ I . In this case the familyPi , i ∈ I , is called an( a f f i n e )

g e n e r a t i n g s y s t e m o fF . In fact F =
(∑

i∈I, i �=i′ K · −−→
Pi′Pi

)
+ Pi′ , where i ′ ∈ I . In particular,

1 + DimK F ≤ |I |
Let Pi , i ∈ I be a famliy of points inE.

a). The affine subspaceF generated by the familyPi , i ∈ I is equal toE if and only if V = ∑
i∈I, i �=i′ K ·−−→Pi′Pi ,

i ′ ∈ I ; equivalently the vectors
−−→
Pi′Pi i ∈ I , i �= i ′ is a generating system for the vector spaceV . In this

case we say that the family of pointsPi , i ∈ I , is an a f f i n e g e n e r a t i n g s y s t e m o fE .

b). The vectors
−−→
Pi′Pi i ∈ I , i �= i ′ are linearly independent overK if and only if for every proper subset

J � I , the affine subspaceF generated by the pointsPj , j ∈ I , is a proper subset ofE, i.e. F � E . In
this case we say that the family of pointsPi , i ∈ I , is a f f i n e l y i n d e p e n d e n t overK.

c). An affinely independent generating system of pointsPi, i ∈ I of an affine spaceE is called ana f f i n e
b a s i s o f E . A family of pointsPi, i ∈ I in E is an affine basis ofE if and only if I �= ∅ and for

somei ′ ∈ I ( and hence for everyi ′ ∈ I ), the vectors
−−→
Pi′Pi i ∈ I , i �= i ′ is a basis of the vector spaceV ;

equivalentlyPi′ ; −−→
Pi′Pi , i ∈ I , i �= i ′ , is an affine coordiante system ofE.

d). Let m ∈ N. Thenm points inE generate the affine subspace of dimension≤ m − 1 and exactly of
dimensionm − 1 if and only if they are affinely independent. Two distinct pointsP andQ generate the
(affine) line called thel i n e j o i n i n g these points and is denoted byPQ. Similarly the (affine) plane
generated by three affinely independent pointsP, Q, R is denoted byPQR.

e). Let Pi , i ∈ I , be a famliy of points in an affine spaceE. Show that the following are equivalent :
(i) Pi , i ∈ I , is an affine basis ofE.
(ii) Pi , i ∈ I , is a maximal affine linearly independent subset inE.
(iii) Pi , i ∈ I , is a minimal affine generating system ofE.

f). Let E be a finite dimensional affine space. Then every affine generating system ofE contains an affine
basis and every affine linearly independent system inE can be extended to an affine basis ofE.

g). Let E be an affine space and letPi , i ∈ I , be a family of points inE. Then the affine subspace ofE

generated byPi, i ∈ I , is equal to the intersection of all affine hyperplanes inE, which contain these points.
In particular, every affine subspaceF of E is equal to the intersection of all hyperplanes inE which contain
F . (Hint : Remember that empty union is the whole spaceE. )

h). ( S i m p l e x e s ) Forn ∈ N, an affinely independent(n + 1)-tuple(P0, . . . , Pn) of points is called ann-
s i m p l e x inE with v er t i c e s P0, . . . , Pn .
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1) An affine basis of ann-dimensional affine spaceE is ann-smplex,n ∈ N in E; everyn+ 1 points which
are not contained in any proper affine subspace ofE form an affine basis ofE. The natural numbern is also
called thed i m e n s i o n ofsuch a simplex. One dimensional simplex is called a( l i n e ) s e g m e n t , two
dimensional simplex is called at r i a n g l e andthree dimensional simplex is called a t e t ra h e d r o n .
2) A r-dimensional affine subspace contain (non-degenerate)n-simplex if and only if 0≤ n ≤ r.
3) Every simplex obtained from a given simplex by removing a vertex is called as i d e or f a c e ofthis
given simplex.
4) In Kn+1 the n-simplex (e0, . . . , en) with the verticese0, . . . , en, wheree0 = (1, 0, . . . , 0) , . . . , en =
(0, . . . , 0, 1) are the elements of the standard basis ofKn+1, is called thes t a n d a r d -n- s i m p l e x overK.

T5.4. (Ba rycen t r i c coco rd ina tes ) LetPi, i ∈ I , be an affine basis of the affine spaceE and leti ′ ∈ I

be a fixed index. Then every pointP ∈ E has an coordinate tupleai, i ∈ I, i �= i ′, with respect the affine

coordinate systemPi′ ; −−→
Pi′Pi , i �= i ′, which is determined uniquely by the equation

−−→
Pi′P = ∑

i∈I, i �=i′ ai

−−→
Pi′Pi .

These coordinates depend on the choice of the pointPi′ in the given affine basisPi, i ∈ I ; this unsymmetry
is overcome by A. M ¨ob ius byintroducing the barycentric coordinates. There by modifying the coordinate
tupleai, i ∈ I � {i ′}, of P ∈ E by introducing ai′ := 1− ∑

i∈I, i �=i′ ai and hence extending to theI–tuple
(ai) ∈ K(I) with

∑
i∈I ai = 1. ThisI–tuple is called theb a r y c e n t r i c c o o r d i n a t e s o fP with

respect to the affine basisPi, i ∈ I . In the case|I | = 3 this is also calledt r i a n g l e c o o r d i n a t e s , in
the case|I | = 4, t e t r a h e d r o n c o o r d i n a t e s .

a). The barycentric coordinates are independent of the choice of the point Pi′ as origin. (Proof For, if
(bi)i∈I is theI–tuple forP , that is obtained analogously by choosing the pointPi′′ as the origin. Then

−−→
Pi′P = −−−→

Pi′Pi′′ + −−→
Pi′′P =

(∑
i∈I

bi

) −−−→
Pi′Pi′′ +

∑
i∈I

bi

−−→
Pi′′Pi =

∑
i∈I

bi(
−−−→
Pi′Pi′′ + −−→

Pi′′Pi) =
∑
i∈I

bi

−−→
Pi′Pi ,

and hencebi = ai for i �= i ′ and since
∑

i ai = ∑
i bi = 1, it follows thatbi′ = ai′ . • )

If ai, i ∈ I , are the barycentric coordinates ofP with respect to the affine basisPi, i ∈ I , then we write
P = ∑

i∈I aiPi .

b). The map(ai) �→ ∑
i∈I aiPi is a bijective map from the affine hyperplane{(ai) :

∑
i ai = 1} ⊆ K(I)

ontoE. The vectorsei of the standard basis ofK(I) are mapped onto the pointsPi of the affine basis.

c). For anI–tuple(ai) ∈ K(I) with
∑

i ai = 1 and anarbitrary I–tupleQi, i ∈ I , of points inE, the point∑
i∈I

aiQi :=
∑
i∈I

ai

−−→
PQi + P

is independent on the choice of the pointP ∈ E and hence well-defined. Thea f f i n e s u b s p a c e o f
E g e n e r a t e d b y t h e f a m i l yQi, i ∈ I , is then simply the set of all points

∑
i aiQi, (ai) ∈

K(I),
∑

i ai = 1.

T5.5. Let Pi , i ∈ I , be a family of points in theK-affine spaceE.

a). Let (aij ) ∈ K(I) , j ∈ J , and(bj ) ∈ K(J) be tuples with
∑

i∈I aij = 1 , j ∈ J ;
∑

j∈J bj = 1 . Then∑
j∈J bj (

∑
i∈I aijPi) = ∑

i∈I (
∑

j∈J bj aij )Pi .

b). For anI -tuple (ai) ∈ K(I) with a := ∑
ai �= 0, the pointS :=

∑
i∈I

ai

a
Pi is called thec e n t e r o f

m a s s of thePi , i ∈ I , with the weightsai , i ∈ I . This point belong to the affine hull of thePi , i ∈ I , and
in the caseK = R, ai ≥ 0 for all i ∈ I it also belong to the convex hull.

c). The center of mass of thePi is the same point if the weights are multiplied by the same factort �= 0.

d). If Pi , i ∈ I , is an affine basis andP ∈ E is a point with the barycentric coordinatesai , i ∈ I , thenP is
the center of mass of thePi , i ∈ I , with the weightsai , i ∈ I .

e). Let Ij , j ∈ J , be a decomposition ofI with bj := ∑
i∈Ij

ai �= 0 for all j ∈ J and letSj be the center of
mass of thePi , i ∈ Ij , with weightsai , i ∈ Ij . Then the center of massS of thePi , i ∈ I , with weightsai ,
i ∈ I , is equal to the center of mass of theSj , j ∈ J , with weightsbj , j ∈ J .

T5.6. ( P a r a l l e l i t y ) Two affinelines g1 = U1 + P1 , g2 = U2 + P2 in affine plane are disjoint if and
only if g1 �= g2 , butU1 = U2. In this case we say thatg1 andg2 are p a r a l l e l . Ingeneral we define the
concept of parallelity of affine subspaces as follows: Two affine subspacesF1 = U1+P1 andF2 = U2+P2
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with pointsP1 , P2 ∈ E and subspacesU1 , U2 ⊆ V are calledp a r a l l e l if either U1 ⊆ U2 or U2 ⊆ U1
and in this case we writeF1‖F2. The empty affine subspace is parallel to every affine subspace ofE. Two
disjoint affine subspaces which are not parallel are called s k e w .

a). Let F1 andF2 be two affine subspaces inE. If F1 ⊆ F2 then F1 andF2 are parallel. IfF1‖F2 and
F1 ∩ F2 �= ∅, then eitherF1 ⊆ F2 or F2 ⊆ F1.

b). If U ⊆ V is a subspace, then the affine subspacesU + P, P ∈ E, are calledU - p a r a l l e l ( a f f i n e )
s u b s p a c e s . Theyform (by T5.2-b)) a partition ofE. If F = U + P is an affine subspace ofE, then by a
p a r a l l e l toF in E, we mean anU - parallel affine subspace.

c). Let m ∈ N. On the set of allm-dimensional affine subspaces ofE the parallelity is an equivalence
relation. (Remark : The equivalence classes of this equivalence relation are called them-dimensional
d i r e c t i o n s inE. If m = 1, then in general the directions are not used and in the caseK = R, then the
concept of the directions is very restricted: We say that two non-degenerate line-segments(P, Q) , (R, S)

in E define the same direction if the linesPQ andRS are parallel and the ratio(R, S) : (P, Q) is positive. )

d). Two hyperplanes in ann-dimensional affine space,n ≥ 2, are either parallel or intersect in an affine
subspace of codimension 2.

e). Let F be a finite dimensional affine subspace in an affine spaceE and letP ∈ E be a point. Then there
exists a unique affine subspace of dimension DimKF passing throughP and which is parallel toF .

f). Let E be a finite dimensionalK-affine space and letF1 , F2 be two disjoint non-empty affine subspaces
in E. There there exist disjoint parallel affine hyperplanesH1 , H2 in E such thatF1 ⊆ H1 , F2 ⊆ H2 .

T5.7. ( C o n v e x s u b s e t s , C o n v e x h u l l ) In thecase of real affine space we have another important
concept of the convexity. For two pointsP andQ of a real affine spaceE, let [P, Q] := {a P +b Q | a, b ∈
R+, a + b = 1} = {

t
−→
PQ + P | t ∈ [0 , 1]

} = {
t
−→
QP + Q | t ∈ [0 , 1]

}
be the set of points inE which lie

in betweenP andQ.

The set of these points is called thel i n e - s e g m e n tjoining P andQ, or shortly thel i n e - s e g m e n t
from P to Q (or fromQ to P ). With this we define

A subset of a real affine spaceE is called c o n v e x if it contain the line-segment joining any two of its
points.

Clearly affine subspaces are convex. Further arbitrary intersection of convex subsets is again convex.
Therefore for an arbitrary family of pointsPi , i ∈ I , in E there exists a smallest convex subset ofE, which
contain all these points. This convex is called thec o n v e x h u l l of the family Pi , i ∈ I .

a). Let Pi , i ∈ I , be a family of points in a real affine spaceE. The convex hull of the familyPi , i ∈ I ,
contain precisely the points of the form

∑
i∈I aiPi with (ai) ∈ R

(I )
+ ,

∑
i∈I ai = 1 . (Proof The given

set of points is convex, sincea
(∑

i∈I aiPi

)
+ b

(∑
i∈I biPi

)
= ∑

i∈I (a ai + b bi) Pi if
∑

ai = ∑
bi = 1

anda + b = 1, see T5.5-a), and contain all thePi , i ∈ I . Conversely, we have to show that all the points of
the given form are contained in the convex hullH . For this we may assume thatI is non-empty and finite,
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sayI = {0, . . . , n} . We now use the induction onn. The casen = 0 is trivial. For the proof ofn + 1 from
n, let P = a0P0 + · · · + anPn + an+1Pn+1 with ai ≥ 0,

∑n+1
i=0 ai = 1 . If an+1 = 1, thenP = Pn+1 ∈ H .

Therefore assume thatan+1 �= 1 . Then by induction hypothesisP ′ := a0
1−an+1

P0 + · · · + an

1−an+1
Pn in H

and henceP = (1 − an+1)P
′ + an+1Pn+1 .

)

b). For ann-simplex(P0 , . . . , Pn), the convex hull is the set of all pointsa0P0 + · · · + anPn with aj ≥ 0,
a0 + · · · + an = 1 . If this simplex is non-degenerate, then this set is also called then- s i m p l e x w i t h
v e r t i c e s P0 , . . . , Pn . The convex hull of finitely many points in a real affine spaceE is also called a
p o l y t o p e inE.

c). The convex hull of the standardn-simplex(e0, . . . , en) in Kn+1 is the set

�n =
{

(a0, . . . , an) ∈ Kn+1 :
n∑

i=0

ai = 1, 0 ≤ ai for i = 0, . . . , n

}
.

d). ( T h e o r e m o f C a r a t h é o d o r y ) LetE be ann-dimensional real affine space and letPi , i ∈ I , be
a famliy of points inE. Then the convex hull of thePi , i ∈ I , is equal to the union of the convex hulls of
all (eventually also non-degenerate)n-simplexes(Pi0, . . . , Pin ) , i0, . . . , in ∈ I . (Hint : Start with the case
n = 2.)

T5.8. ( P a p p u s ’3) l i t t l e t h e o r e m ) LetE be anK-affine space and letg, g′ be two distinct parallel
lines inE and letP, Q, R (respectivelyP ′, Q′, R′) be points ong (respectivelyg′) (see the figure below).

3) Pappus : The last of the Greek geometers, lived toward the end of the third centuryA. D., 500 years after
Appollonius and vainly strove with enthusiasm to rekindle fresh life into linguishing Greek geometry, but it
proved to be the requiem of Greek geometry, for after Pappus Greek mathematics ceased to be a living study
and we find merely its memory perpetuated by minor writers and commentators.Euclid

4),Archimedes
5)

andAppollonius
6) mark the apogee of ancient Greek geometry and it is hardly an exaggeration to say

that almost every significant subsequent geometrical development, right upto and including present times,
finds its origin in some work of those three great scholars. It is therefore incumbent upon us to say at least
word or two about these scholars and mathematical legacy left to them.
4)

Euclid : Very little is known about the life of Euclid except that he was the first professor of mathematics
at the famed University of Alexandria and the father of the illustrious and long-lived Alexandrian School
of Mathematics. Even dates and birthplace are not known but it seems probable that he received his
mathematical training in the Platonic school at Athens.
5)

Archimedes : One of the very greatest mathematicians of all time and certainly the greatest of antiquity,
was Archimedes, a native of the Greek city of Syracuse on the island of Sicily. He was born about 287 B. C.
and died during the Roman pillage of Syracuse in 212 B.C.. There is a report that he spent time in Egypt,
in all likelihood at the University of Alexandria, for he numbered among his friendsConon, Dositheus

andEratosthenes; the first two were successors of Euclid and the last was a librarian at the university.
Many of Archimedes’s mathematical discoveries were communicated in letters to these men.
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If PQ′ ‖ QP ′ andQR′ ‖ RQ′ thenPR′ ‖ RP ′.

T5.9. Let (P, Q, P ′, Q′) be a quadrilateral in the affine spaceE. Suppose that the linesPP ′, QQ′ intersect
in the pointR and the linesPQ′, QP ′ intersect in the pointS (see the figure below). .

Show thatR �= S and the linesPQ, P ′Q′ are parallel if and only if the lineRS and the linePQ intersect at
the midpoint of(P, Q). Moreover in this case the linesRS, P ′Q′ also intersect at the midpoint of(P ′, Q′).

T5.10. The following constructions are given by J.S t e i n e r and can becarried out by the straight-edge
alone, i.e. any two given points are allowed to join by a line.

a). Let P, M, Q be three distinct points on a line such that the pointM is the midpoint of the line-segment
(P, Q). For an arbitrary pointR outside the linePQ, construct a line parallel to the linePQ passing through
the pointR. (Hint : Use T5.3.)

b). Let � and�′ , � �= �′ be two given parallel lines and letP, Q ∈ � . Then construct the middle point of
the line-segment(P, Q). (Hint : Use T5.3.)

c). Given (in the plane of construction) a paralleogram , a line� and a pointP . Construct a line parallel to
the line � passing throughP .

d). Given two pointsP, Q and a line� parallel to the linePQ , � �= PQ .

1) Construct the pointsR1 and R2 on the linePQ such that (P :R1)

(P :Q)
= 2 and (P :R2)

(P :Q)
= 3 .

2) Construct the pointR on the linePQ such that (P :R)

(P :Q)
= 1

3 .

T5.11. (Theorem of Pappus )Suppose that dim(E) ≥ 2. Letg andg′ be two distinct lines intersecting
at the pointS. Let P, Q, R (respectivelyP ′, Q′, R′) be distinct points ong (respectively ong′) different
from S.

If PQ′ ‖ QP ′ andQR′||RQ′ thenPR′||RP ′ (see the figure above).

T5.12. (T h e o r e m o f D e s a r g u e s7)) Let P, Q, R; P ′, Q′, R′ be six distinct points in an affine space
E with the following properties :

i). (P, Q, R) and(P ′, Q′, R′) are non-degenerate triangles.

6)
Appollonius : The third mathematical gaint of Greek antiquity who was born about 262 B.C. in Perga

in southern Asia Minor. As a young man went to Alexandria and studied under the successors ofEuclid

and died sometime around 200 B. C.
7) Girard Desargues (1591-1661) was a french mathematician.
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ii). The linesPP ′, QQ′ andRR′ are distinct.

iii). PQ||P ′Q′ andPR ‖ P ′R′ (see the figure below).

ThenQR ‖ Q′R′ if and only if the linesPP ′, QQ′, RR′ are parallel or intersect at a pointS.

T5.13. ( T h e o r e m o f M e n e l a u s8)) Let (A, B, C) be a triangle in an affine spaceE and letP, Q, R

be distinct points lying on the sidesBC, AC, AB respectively. Show thatP, Q, R are collinear if and only
if

(P, B)

(P, C)
· (Q, C)

(Q, A)
· (R, A)

(R, B)
= 1 .

(Hint : Draw a parallel line to the lineBC passing throughA (see the figure below).

Use the exercise 5.2-c). )

T5.14. ( T h e o r e m o f C e v a9) ) Let (A, B, C) be a triangle in an affine spaceE and letP, Q, R be
distinct points lying on the sidesBC, AC, AB respectively. Show that the linesAP, BQ, CR are parallel
or intersect at a point if and only if

(P, B)

(P, C)
· (Q, C)

(Q, A)
· (R, A)

(R, B)
= −1 .

(Hint : Suppose the lines intersect at a pointO.

Apply the theorem of Menelaus to the triangle (A, B, P ) and the lineCR (respectively (A, P, C) and the
line BQ (see the figure above).)

8) Menelaus of Alexandria was a Greek astronomer who live in the first century A. D.
9) Giovanni Ceva (1647-1736) was an italian geometer. Theorems of Menelaus and Ceva, in their
modern dress, are powerful theorems and they deal elegantly with many problems involving collinearity of
poiints and currency of lines.
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