MA-219 Linear Algebra

6. Linear Maps

September 12, 2003 ; Submit solutions before 11:00AM ; September 22, 2003.
Let K be a field.
6.1. Let V and W be finite dimensional K-vector spaces. Show that
a). There is an injective K-homomorphism from V into W if and only if $\operatorname{Dim}_{K} V \leq \operatorname{Dim}_{K} W$. Deduce that a homogeneous linear system of m equations in n unknowns over K with $n>m$ has a non-trivial solution.
b). There is a surjective K-homomorphism from V onto W if and only if $\operatorname{Dim}_{K} V \geq \operatorname{Dim}_{K} W$. Deduce that a linear system $\sum_{j=1}^{n} a_{i j} x_{j}=b_{i}, i=1, \ldots, m$ of m equations in n unknowns over K with $n<m$ has no solution for some $\left(b_{1}, \ldots, b_{m}\right) \in K^{m}$.
c). A homogeneous linear system $\sum_{j=1}^{n} a_{i j} x_{j}=0, i=1, \ldots, n$ of n equations in n unknowns over K has a non-trivial solution if and only if at least one of the corresponding inhomogeneous system of linear equations $\sum_{j=1}^{n} a_{i j} x_{j}=b_{i}, i=1, \ldots, n$ has no solution.
6.2. a). Let V be a K-vector space with $\operatorname{Dim}_{K} V \geq 2$ (i.e. V contain at least two linearly independent vectors). Then every additive map $f: V \rightarrow V$ with $f(K x) \subseteq K x$ for all $x \in V$ is a homothecy of V, i.e. a multiplication ϑ_{a} by a scalar $a \in K$.
b). Let V be a finite dimensional K-vector space and let U, W be subspaces of V of equal dimension. Then there exists a K-automorphism f of V such that $f(U)=W$.
c). Let $f_{1}: V \rightarrow V_{1}$ and $f_{2}: V \rightarrow V_{2}$ be homomorphisms of K-vector spaces. The K-linear map $f: V \rightarrow V_{1} \times V_{2}$ defined by $f(x)=\left(f_{1}(x), f_{2}(x)\right)$ is an isomorphism if and only if f_{1} surjective and $f_{2} \mid \operatorname{Ker} f_{1}: \operatorname{Ker} f_{1} \rightarrow V_{2}$ is bijective.
6.3. Let V be a finite dimensional K-vector space and let $f: V \rightarrow V$ be an endomorphism of V. Show that the following statements are equivalent:
(i) f is not an automorphism of V.
(ii) There exists a K-endomorphism $g \neq 0$ of V such that $g \circ f=0$.
(ii') There exists an K-endomorphism $g^{\prime} \neq \mathrm{id}_{V}$ of V such that $g^{\prime} \circ f=f$.
(iii) There exists an K-endomorphism $h \neq 0$ of V such that $f \circ h=0$.
(iii') There exists an K-endomorphism $h^{\prime} \neq \mathrm{id}_{V}$ of V such that $f \circ h^{\prime}=f$.
6.4. a). Let V be a K-vector space of countable infinite dimension. Then V and the direct sum $V \oplus V$ are isomorphic. (Remark: This is true for arbitrary infinite dimensional vector spaces V.)
b). Give an example of an endomorphism of a vector space (necessarily infinite dimensional) which is injective, but not surjective (resp. surjective, but not injective).
c). Let V be a K-vector space with basis $x_{i}, i \in I$ and let $f: V \rightarrow K$ be a linear form $\neq 0$ on V with $f\left(x_{i}\right)=a_{i} \in K, i \in I$. Find a basis of $\operatorname{Ker} f$.
6.5. Let f_{1}, \ldots, f_{n} be linearly independent K-valued functions on the set D. Further, let t_{1}, \ldots, t_{n} be pairwise distinct points in D and let V be the subspace of K^{D} (n-dimensional) generated by f_{1}, \ldots, f_{n}. Show that for every choice of $b_{1}, \ldots, b_{n} \in K$ the interpolation problem

$$
f\left(t_{1}\right)=b_{1}, \ldots, f\left(t_{n}\right)=b_{n}
$$

has a solution $f \in V$ if and only if the trivial problem

$$
f\left(t_{1}\right)=\cdots=f\left(t_{n}\right)=0
$$

has only trivial (the zero function) solution in V.

On the other side one can see (simple) test-exercises; their solutions need not be submitted.

Test-Exercises

T6.1. Let $V:=\mathbb{K}[t]$ be the \mathbb{K}-vector space of \mathbb{K}-valued polynomial functions on \mathbb{K}. Which of the following maps $f: V \rightarrow V$ are \mathbb{K}-linear? Find the bases for $\operatorname{Ker} f$ and im f for those f which are \mathbb{K}-linear.
a). $f(x):=x^{(n)}=$ (the n-th derivative of $x, n \in \mathbb{N}$.)
b). $f(x):=x(0)+\ddot{x}$.
c). $f(x):=\left(t \mapsto \int_{0}^{t} \tau \dot{x}(\tau) d \tau\right)$.
d). $f(x):=P(D) x$, where $P(t) \in \mathbb{K}[t]$ is a monic polynomial ${ }^{1}$) and D is the differential operator $x \mapsto \dot{x}$.

T6.2. Let $h: D \rightarrow D^{\prime}$ be an arbitrary map. For every field K, the map $h^{*}: K^{D^{\prime}} \rightarrow K^{D}$ defined by $g \mapsto g \circ h$ is K-linear. Describe the functions in Ker h^{*} and in $\operatorname{im} h^{*}$. Show that h^{*} is injective (resp. surjective) if and only if h is surjective (resp. injective).

T6.3. a). A map $f: V \rightarrow W$ of \mathbb{Q}-vector spaces V and W is \mathbb{Q}-linear if and only if it is additive.
b). For every K-vector space V, the map $f \mapsto f(1)$ is a K-isomorphism of $\operatorname{Hom}_{K}(K, V)$ onto V.
c). Let K^{\prime} be a subfield of the field K, V be a K^{\prime}-vector space and W be a K-vector space, then W is a K^{\prime}-vector space in a natural way. With this $\operatorname{Hom}_{K^{\prime}}(V, W)$ is a K-subspace of W^{V}.

T6.4. a). Let f and g be endomorphisms of the finite dimensional vector space V. If $g \circ f$ is an automorphism of V, then both g and f are also automorphisms of V.
b). Let $f: V \rightarrow W$ be a homomorphism of finite dimensional K-vector spaces.
(1) Show that f injective if and only if there exists a homomorphism $g: W \rightarrow V$ such that $g \circ f=\mathrm{id}_{V}$.
(2) Show that f surjective if and only if there exists a homomorphism $h: W \rightarrow V$ such that $f \circ h=\mathrm{id}_{W}$.

T6.5. (Pointer representation) Let $\omega \in \mathbb{R}_{+}^{\times}$and V be the \mathbb{R}-vector space of the functions $a \sin (\omega t+\varphi), a, \varphi \in \mathbb{R}$, with basis $\sin \omega t, \cos \omega t$, (see exercise 4.6). Then the map

$$
\gamma: a \sin (\omega t+\varphi) \longmapsto a e^{\mathrm{i} \varphi}, a \geq 0
$$

is a \mathbb{R}-vector space isomorphism of V onto \mathbb{C}. (Remark: This isomorphism is called the pointer representation of the simple harmonic motion with the circular frequency ω. The differentiation in V correspond to the multiplication by $\mathrm{i} \omega$ to the pointer representation, i.e. $\gamma(\dot{x})=\mathrm{i} \omega \gamma(x)$ for $x \in V$. In the representation $a e^{\mathrm{i} \varphi}$ of $a \sin (\omega t+\varphi), a \geq 0, a=\left|a e^{\mathrm{i} \varphi}\right|$ is called the (maximal) amplitude and $e^{\mathrm{i} \varphi}$ is called the phase factor.)

T6.6. Let $I \subseteq \mathbb{R}$ be an interval with more than one point and $a \in I$.
a). For $n \in \mathbb{N}^{*}$, Let $T_{a, n}: \mathrm{C}_{\mathbb{K}}^{n-1}(I) \rightarrow \mathbb{K}[t]_{n}$ be the map which maps every function $f \in \mathbb{C}_{\mathbb{K}}^{n-1}(I)$ to its Taylor polynomial of degree $<n$ of f at a, i.e.

$$
f \mapsto T_{a, n}(f)=\sum_{k=0}^{n-1} \frac{f^{(k)}(a)}{k!}(t-a)^{k}
$$

Show that $T_{a, n}$ is \mathbb{K}-linear. Describe the kernel and image of $T_{a, n}$.

[^0]b). Let $T_{a}: \mathrm{C}_{\mathbb{K}}^{\infty}(I) \rightarrow \mathbb{K} \llbracket t-a \rrbracket$ be the map which maps every function $f \in \mathrm{C}_{\mathbb{K}}^{\infty}(I)$ to its Taylor's series of f at a, i.e.
$$
T_{a}(f)=\sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!}(t-a)^{k}
$$

Show that T_{a} is a \mathbb{K}-linear map of $\mathbb{C}_{\mathbb{K}}^{\infty}(I)$ in the space $\mathbb{K} \llbracket t-a \rrbracket$ of all power series in $(t-a)$ with coefficients in \mathbb{K}. The kernel of T_{a} is the space of all functions which are plate ${ }^{2}$) at a. Further, show that T_{a} is surjective.
(Remark This is precisely the following classical theorem of real analysis which is proved in 1895 by the French mathematician Borel, Émile Félix Édouard-Justin (1871-1956) in his thesis.
Theorem (B orel) For every sequence $a_{n}, n \in \mathbb{N}$, of real or complex numbers there exists an infinitely many times differentiable function f on \mathbb{R} with values in \mathbb{R} resp. \mathbb{C} such that for all $n \in \mathbb{N}$ gilt: $f^{(n)}(0)=a_{n}$.
A differentiable function on interval $I \subseteq \mathbb{R}$ can be given by using its derivative f; if f is continuous, then the function $\left(a \in I\right.$ be a fixed point) $\overline{\int_{a}^{x}} f(t) d t$, upto an additive constant, is the required function. This can be generalised, for instance to give a construction of hat-functions which are further useful for many constructions in analysis. A function $h: \mathbb{R} \rightarrow \mathbb{R}$ is called a hat-function if it satisfies properties stated in the following theorem:

Theorem Let $a, a^{\prime}, b^{\prime}, b \in \mathbb{R}$ with $a<a^{\prime}<b^{\prime}<b$. Then there exists an infinitely many times differentiable function $h: \mathbb{R} \rightarrow \mathbb{R}$ such that $h(t)=0$ for $t \notin[a, b], h(t)=1$ for $t \in\left[a^{\prime}, b^{\prime}\right]$ and $0<h(t)<1$ otherwise.
${ }^{2}$) (Plate Functions) Let $f: D \rightarrow \mathbb{C}$ be an analytic ${ }^{3}$) function on an interval $D \subseteq \mathbb{R}$ or a domain $D \subseteq \mathbb{C}$. If the derivatives $f^{(n)}(a)$ of f at a point $a \in D$ are zero, then by the Taylor's formula $\left.{ }^{4}\right)$ the function f vanishes in a neighbourhood of a and hence by the identity theorem ${ }^{5}$) f is identically 0 on the whole D. The analogous result does not hold for functions defined on an interval $I \subseteq \mathbb{R}$, which are infinitely many times differentiable. An infinitely many times differentiable function $f: I \rightarrow \mathbb{C}$ is called plate at point $a \in I$, if $f^{(n)}(a)=0$ for all $n \in \mathbb{N}$. There are functions which are plate at a point, but are not indentically zero in any neighbourhood of this point. Such a function cannot be analytic; for example, the function $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by

$$
f(x):=\left\{\begin{array}{cc}
e^{-1 / x}, & \text { if } x>0 \\
0, & \text { if } x \leq 0
\end{array}\right.
$$

This function is infinitely many times differentiable and it is plate at 0 . It is enough to show that $f \mid \mathbb{R}_{+}$is plate at 0 . For $x>0$, we have (can be seen easily by induction on n) $f^{(n)}(x)=h_{n}(1 / x) \exp (-1 / x)$ with a monic polynomial function h_{n} of degree $2 n$. Since $\lim _{x \rightarrow 0+} h(1 / x) \exp (-1 / x)=0$ for every polynomial function h, the assertion follows.

${ }^{3)}$ (Analytic functions) Let either D be an interval in \mathbb{R} with more than one point or an open subset in in \mathbb{C}. A function $f: D \rightarrow \mathbb{K}$ is called analytic at a point $a \in D$, if there exists a neighbourhood U of a and a convergent power series $\sum a_{k}(x-a)^{k}$ such that $f(x)=\sum_{k=0}^{\infty} a_{k}(x-a)^{k}$ for all $x \in U \cap D$. A function $f: D \rightarrow \mathbb{K}$ is called analytic in D, if f is analytic at every point of D.
4) Let $f=\sum_{n=0}^{\infty} a_{n}(x-a)^{n}$ be the power series expansion of the analytic function $f: D \rightarrow \mathbb{C}$ at a point $a \in D$. Then for every $m \in \mathbb{N} f^{(m)}=\sum_{n=m}^{\infty} \frac{n!}{(n-m)!} a_{n}(x-a)^{n-m}$ is the power series expansion of the m-th derivative of f at the point $a \in D$. All these power series have the same radius of convergence. In particular, $a_{m}=\frac{f^{(m)}(a)}{m!}$ for all $m \in \mathbb{N}$ (this is also known as the Taylor-formula for analytic functions.).
${ }^{5)}$ (Identity theorem for analytic functions) Let D be either an interval in \mathbb{R} or a domain in \mathbb{C}. Two analytic functions on D are equal on the whole D if and only if they are equal on a seubset of D, which has at least one limit point in D.

Proof The graph of the derivative $f:=h^{\prime}$ of the required function is the following:

Further, we must have $\int_{a}^{a^{\prime}} f(t) d t=-\int_{b^{\prime}}^{b} f(t) d t=1$. Let $g: \mathbb{R} \rightarrow \mathbb{R}$ be the function defined by $g(t)=0$ for $t \leq 0$ and $g(t)=e^{-1 / t}$ for $t>0$. Then g is infinitely many times differentiable function. Now, let $f(t):=\left(g(t-a) g\left(a^{\prime}-t\right) / c\right)-\left(g\left(t-b^{\prime}\right) g(b-t) / d\right)$, where $c:=\int_{a}^{a^{\prime}} g(t-a) g\left(a^{\prime}-t\right) d t$ and $d:=\int_{b^{\prime}}^{b} g\left(t-b^{\prime}\right) g(b-t) d t$. Then f is the required function and the function $h(x):=\int_{a}^{x} f(t) d t$ has the properties stated in the assertion.

Now using hat-functions, we can give a proof of the Borel's theorem :
Proof of Borel's theorem: Let $h: \mathbb{R} \rightarrow \mathbb{R}$ be an infinitely many times differentiable hat- function with $h(t)=1$ for $|t| \leq 1$ and $h(t)=0$ for all $|t| \geq 2$, further, let $h_{n}(t):=t^{n} h(t), n \in \mathbb{N}$. Then $\left|h_{n}^{(v)}(t)\right| \leq M_{n}$ for all $t \in \mathbb{R}$ and all $v \in \mathbb{N}$ with $0 \leq v \leq n$. Put $b_{n}:=\left|a_{n}\right| M_{n}+1$ and $f_{n}(t):=a_{n} h_{n}\left(b_{n} t\right) / n!b_{n}^{n}$. Then the function $f(t):=\sum_{n=0}^{\infty} f_{n}(t)$ is a required function. Since $\left|f_{n}^{(\nu)}(t)\right| \leq 1 / n!$ for all $n>v$ and all $t \in \mathbb{R}$, the series $\sum_{n=0}^{\infty} f_{n}^{(\nu)}(t)$ of ν-th derivatives is uniformly convergent ${ }^{6}$) for every $v \in \mathbb{N}$. Therefore by ${ }^{7}$) $f^{(\nu)}(t)=\sum_{n=0}^{\infty} f_{n}^{(\nu)}(t)$ and in particular, $f^{(\nu)}(0)=\sum_{n=0}^{\infty} f_{n}^{(\nu)}(0)=a_{v}$ for all $v \in \mathbb{N}$.
${ }^{6}$) Uniform convergence Let D be an arbitrary set and let $\left(f_{n}\right)$ be a sequence of functions $f_{n}: D \rightarrow \mathbb{K}$ on D with values in \mathbb{K}.
(1) The sequence $\left(f_{n}\right)$ is called (pointwise) convergent (on D), if there exists a function $f: D \rightarrow \mathbb{K}$ with $\lim f_{n}(x)=f(x)$ for all $x \in D$, i.e. if for every $x \in D$ and for every $\varepsilon>0$ there exists (dependent on x and $\varepsilon) n_{0} \in \mathbb{N}$ such that $\left|f_{n}(x)-f(x)\right| \leq \varepsilon$ for all $n \geq n_{0}$.
(2) The sequence $\left(f_{n}\right)$ is called uniformly convergent (on D), if there exists a function $f: D \rightarrow \mathbb{K}$ such that for every $\varepsilon>0$ there exists (depending only on ε and not on x) $n_{0} \in \mathbb{N}$ such that $\left|f_{n}(x)-f(x)\right| \leq \varepsilon$ for all $n \geq n_{0}$.
Uniform convergence of the function sequence (f_{n}) implies its point-wise convergence. The function f with $f(x)=\lim f_{n}(x)$ is called the limit function or the limit of the sequence $\left(f_{n}\right)$ and is denoted by $f=\lim _{n \rightarrow \infty} f_{n}=\lim f_{n}$.
For a sequence $\left(f_{n}\right)$ of functions $f_{n}: D \rightarrow \mathbb{K}$, the sequence of partial sums $\sum_{n=0}^{k} f_{n}, k \in \mathbb{N}$, is called the series of the $f_{n}, n \in \mathbb{N}$. Its limit function (if it exists) it is denoted by $\sum_{n=0}^{\infty} f_{n}$. If the convergence of partial sums is uniform on D, then we say that the series converges uniformly on D.
${ }^{7}$) Theorem Let D be a domain in \mathbb{C} or an interval in \mathbb{R} and let $f_{n}: D \rightarrow \mathbb{C}, n \in \mathbb{N}$, be a sequence of differentiable functions. Further, let $x_{0} \in D$ be a fixed point. Suppose that:
(1) The sequence $f_{n}\left(x_{0}\right), n \in \mathbb{N}$, is convergent.
(2) The sequence $f_{n}^{\prime}, n \in \mathbb{N}$, of derivatives is locally uniformly convergent ${ }^{8}$) on D.

Then the sequence $f_{n}, n \in \mathbb{N}$, is locally uniformly convergent on D to a differentiable limit function $f: D \rightarrow \mathbb{C}$, and $f^{\prime}=\lim _{n \rightarrow \infty} f_{n}^{\prime}$.
${ }^{\text {8) }}$ A sequence $f_{n}: D \rightarrow \mathbb{K}, n \in \mathbb{N}$, of functions on $D \subseteq \mathbb{C}$ is called locally uniform convergent, if for every point $a \in D$ there exists a neighbourhood U of a such that the sequence $f_{n} \mid U \cap D, n \in \mathbb{N}$, is uniformly convergent on $U \cap D$.

[^0]: ${ }^{1}$) A polynomial $P(t)=\sum_{i=0}^{n} a_{i} t^{i} \in K[t]$ of degree n over a field K is called a monic polynomial if the leading co-efficient $a_{n}=1$.

