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Let K be a field.

6.1. Let V andW be finite dimensionalK-vector spaces. Show that

a). There is an injectiveK-homomorphism fromV into W if and only if DimKV ≤ DimKW .
Deduce that a homogeneous linear system ofm equations inn unknowns overK with n > m has
a non-trivial solution.

b). There is a surjectiveK-homomorphism fromV ontoW if and only if DimKV ≥ DimKW .
Deduce that a linear system

∑n
j=1 aij xj = bi , i = 1, . . . , m of m equations inn unknowns over

K with n < m has no solution for some(b1, . . . , bm) ∈ Km.

c). A homogeneous linear system
∑n

j=1 aij xj = 0 , i = 1, . . . , n of n equations inn unknowns
overK has a non-trivial solution if and only if at least one of the corresponding inhomogeneous
system of linear equations

∑n
j=1 aij xj = bi , i = 1, . . . , n has no solution.

6.2. a). Let V be aK-vector space with DimK V ≥ 2 (i.e. V contain at least two linearly
independent vectors) . Then every additive mapf :V → V with f (Kx) ⊆ Kx for all x ∈ V is a
homothecy ofV , i.e. a multiplicationϑa by a scalara ∈ K.

b). Let V be a finite dimensionalK-vector space and letU, W be subspaces ofV of equal
dimension. Then there exists aK-automorphismf of V such thatf (U) = W .

c). Let f1 :V → V1 andf2 :V → V2 be homomorphisms ofK-vector spaces. TheK-linear map
f :V → V1 × V2 defined byf (x) = (

f1(x) , f2(x)
)

is an isomorphism if and only iff1 surjective
andf2|Kerf1 : Kerf1 → V2 is bijective.

6.3. Let V be a finite dimensionalK-vector space and letf :V → V be an endomorphism ofV .
Show that the following statements are equivalent:
(i) f is not an automorphism ofV .
(ii) There exists aK-endomorphismg �= 0 of V such thatg ◦ f = 0.
(ii ′) There exists anK-endomorphismg′ �= idV of V such thatg′ ◦ f = f .
(iii) There exists anK-endomorphismh �= 0 of V such thatf ◦ h = 0.
(iii ′) There exists anK-endomorphismh′ �= idV of V such thatf ◦ h′ = f .

6.4. a). Let V be aK-vector space of countable infinite dimension. ThenV and the direct sum
V ⊕ V are isomorphic. (Remark : This is true for arbitrary infinite dimensional vector spacesV .)

b). Give an example of an endomorphism of a vector space (necessarily infinite dimensional)
which is injective, but not surjective (resp. surjective, but not injective).

c). Let V be aK-vector space with basisxi , i ∈ I and letf : V → K be a linear form�= 0 onV

with f (xi) = ai ∈ K, i ∈ I . Find a basis of Kerf .

6.5. Letf1, . . . , fn be linearly independentK-valued functions on the setD. Further, lett1, . . . , tn
be pairwise distinct points inD and letV be the subspace ofKD (n-dimensional) generated by
f1, . . . , fn. Show that for every choice ofb1, . . . , bn ∈ K theinterpolation problem

f (t1) = b1, . . . , f (tn) = bn

has a solutionf ∈ V if and only if the trivial problem

f (t1) = · · · = f (tn) = 0 .

has only trivial (the zero function) solution inV .

On the other side one can see (simple) test-exercises ; their solutions need not be submitted.
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Test-Exercises

T6.1. LetV := K[t ] be theK-vector space ofK-valued polynomial functions onK. Which of the following
mapsf : V → V areK-linear ? Find the bases for Kerf and imf for thosef which areK-linear.

a). f (x) := x(n) = (then-th derivative ofx, n ∈ N.)

b). f (x) := x(0) + ẍ .

c). f (x) := (t 
→ ∫ t

0 τ ẋ(τ )dτ ).

d). f (x) := P(D)x , whereP(t) ∈ K[t ] is a monic polynomial1) andD is the differential operatorx 
→ ẋ.

T6.2. Leth :D → D′ be an arbitrary map. For every fieldK, the maph∗ :KD′ → KD defined byg 
→ g◦h

is K-linear. Describe the functions in Kerh∗ and in imh∗. Show thath∗ is injective (resp. surjective) if
and only ifh is surjective (resp. injective).

T6.3. a). A mapf :V → W of Q-vector spacesV andW is Q-linear if and only if it is additive.

b). For everyK–vector spaceV , the mapf 
→ f (1) is aK-isomorphism of HomK(K, V ) ontoV .

c). Let K ′ be a subfield of the fieldK, V be aK ′-vector space andW be aK-vector space, thenW is a
K ′-vector space in a natural way. With this HomK ′ (V , W) is aK-subspace ofWV .

T6.4. a). Let f and g be endomorphisms of the finite dimensional vector spaceV . If g ◦ f is an
automorphism ofV , then bothg andf are also automorphisms ofV .

b). Let f :V → W be a homomorphism of finite dimensionalK-vector spaces.

(1) Show thatf injective if and only if there exists a homomorphismg :W → V such thatg ◦ f = idV .

(2) Show thatf surjective if and only if there exists a homomorphismh :W → V such thatf ◦ h = idW .

T6.5. ( P o i n t e r r e p r e s e n t a t i o n ) Letω ∈ R×
+ and V be theR-vector space of the functions

a sin(ωt + ϕ) , a, ϕ ∈ R, with basis sinωt, cosωt , (see exercise 4.6). Then the map

γ :a sin(ωt + ϕ) 
−→ aeiϕ, a ≥ 0 ,

is aR-vector space isomorphism ofV ontoC. (Remark : This isomorphism is called thep o i n t e r
r e p r e s e n t a t i o n of thesimple harmonic motion with the circular frequencyω. The differentiation inV
correspond to the multiplication by iω to the pointer representation, i.e.γ (ẋ) = iωγ (x) for x ∈ V . In the
representationaeiϕ of a sin(ωt + ϕ) , a ≥ 0, a = |aeiϕ | is called the (m a x i m a l ) a m p l i t u d e andeiϕ is
called thep h a s e f a c t o r . )

T6.6. Let I ⊆ R be an interval with more than one point anda ∈ I .

a). For n ∈ N∗, Let Ta,n : Cn−1
K

(I ) → K[t ]n be the map which maps every functionf ∈ Cn−1
K

(I ) to its
T a y l o r p o l y n o m i a l of degree< n of f ata, i.e.

f 
→ Ta,n(f ) =
n−1∑
k=0

f (k)(a)

k!
(t − a)k .

Show thatTa,n is K-linear. Describe the kernel and image ofTa,n.

1) A polynomialP(t) = ∑n

i=0 ai t
i ∈ K[t ] of degreen over a fieldK is called am o n i c p o l y n o m i a l

if the leading co-efficientan = 1.
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b). Let Ta : C∞
K

(I ) → K[[ t − a]] be the map which maps every functionf ∈ C∞
K

(I ) to its T a y l o r ’s
s e r i e s off ata, i.e.

Ta(f ) =
∞∑

k=0

f (k)(a)

k!
(t − a)k .

Show thatTa is aK-linear map of C∞
K

(I ) in the spaceK[[ t −a]] of all power series in(t −a) with coefficients
in K. The kernel ofTa is the space of all functions which areplate 2) ata. Further, show thatTa is surjective.

(Remark This is precisely the following classical theorem of real analysis which is proved in 1895 by the
French mathematicianBorel, Émile Félix Édouard-Justin (1871-1956) in his thesis.

Theorem ( B o r e l ) For every sequence an, n ∈ N, of real or complex numbers there exists an infinitely
many times differentiable function f on R with values in R resp. C such that for all n ∈ N gilt: f (n)(0) = an .

A differentiable function on intervalI ⊆ R can be given by using its derivativef ; if f is continuous, then
the function (a ∈ I be a fixed point)

∫ x

a
f (t) dt , upto an additive constant, is the required function. This

can be generalised, for instance to give a construction ofhat-functions which are further useful for many
constructions in analysis. A functionh : R → R is called ah a t - f u n c t i o n if itsatisfies properties stated
in the following theorem :

Theorem Let a, a′, b′, b ∈ R with a <a′ <b′ <b. Then there exists an infinitely many times differentiable
function h :R → R such that h(t) = 0 for t �∈ [a , b] , h(t) = 1 for t ∈ [a′, b′] and 0<h(t)<1 otherwise.

2) ( P l a t e F u n c t i o n s ) Letf : D → C be ananalytic 3) function on an intervalD ⊆ R or a domain
D ⊆ C. If the derivativesf (n)(a) of f at a pointa ∈ D are zero, then by theTaylor’s formula 4) the function
f vanishes in a neighbourhood ofa and hence by theidentity theorem5) f is identically 0 on the wholeD.
The analogous result doesnot hold for functions defined on an intervalI ⊆ R, which are infinitely many
times differentiable. An infinitely many times differentiable functionf :I → C is calledp l a t e a t p o i n t
a ∈ I , if f (n)(a) = 0 for all n ∈ N. There are functions which are plate at a point, but are not indentically
zero in any neighbourhood of this point. Such a function cannot be analytic; for example, the function
f :R → R defined by

f (x) :=
{

e−1/x, if x > 0,
0, if x ≤ 0.

This function is infinitely many times differentiable and it is plate at 0. It is enough to show thatf |R+ is
plate at 0. Forx > 0, we have (can be seen easily by induction onn) f (n)(x) = hn(1/x) exp(−1/x) with a
monic polynomial functionhn of degree 2n. Since limx→0+ h(1/x) exp(−1/x) = 0 for every polynomial
functionh, the assertion follows.

3) (A n a l y t i c f u n c t i o n s ) LeteitherD be an interval inR with more than one point or an open subset
in inC. A functionf :D → K is calleda n a l y t i c a t a p o i n ta ∈ D, if there exists a neighbourhoodU
of a and a convergent power series

∑
ak(x − a)k such that f (x) = ∑∞

k=0 ak(x − a)k for all x ∈ U ∩ D. –
A functionf :D → K is calleda n a l y t i c i n D , if f is analytic at every point ofD.

4) Let f = ∑∞
n=0 an(x − a)n be the power series expansion of the analytic functionf : D → C at a point

a ∈ D. Then for everym ∈ N f (m) = ∑∞
n=m

n!
(n−m)! an(x−a)n−m is the power series expansion of them-th

derivative off at the pointa ∈ D. All these power series have the same radius of convergence. In particular,
am = f (m)(a)

m ! for all m ∈ N (this is also known as theT a y l o r - f o r m u l a f o r a n a l y t i c f u n c t i o n s .).

5) ( I d e n t i t y t h e o r e m f o r a n a l y t i c f u n c t i o n s ) LetD be either an interval inR or a domain in
C. Two analytic functions onD are equal on the wholeD if and only if they are equal on a seubset ofD,
which has at least one limit point inD.
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Proof The graph of the derivativef := h′ of the required function is the following:

Further, we must have
∫ a′

a
f (t) dt = − ∫ b

b′ f (t) dt = 1. Let g : R → R be the function defined by
g(t) = 0 for t ≤ 0 andg(t) = e−1/t for t > 0. Theng is infinitely many times differentiable function.
Now, letf (t) := (

g(t − a)g(a′ − t)/c
) − (

g(t − b′)g(b − t)/d
)
, wherec := ∫ a′

a
g(t − a) g(a′ − t) dt and

d := ∫ b

b′g(t − b′) g(b − t) dt . Thenf is the required function and the functionh(x) := ∫ x

a
f (t) dt has the

properties stated in the assertion. •
Now using hat-functions, we can give a proof of the Borel’s theorem :

Proof of Borel’s theorem : Let h : R → R be an infinitely many times differentiable hat- function with
h(t) = 1 for |t | ≤ 1 andh(t) = 0 for all |t | ≥ 2, further, lethn(t) := tnh(t) , n ∈ N. Then|h(ν)

n (t)| ≤ Mn

for all t ∈ R and allν ∈ N with 0 ≤ ν ≤ n. Putbn := |an|Mn + 1 andfn(t) := anhn(bnt)/n!bn
n. Then

the functionf (t) := ∑∞
n=0 fn(t) is a required function. Since|f (ν)

n (t)| ≤ 1/n! for all n > ν and allt ∈ R,
the series

∑∞
n=0 f (ν)

n (t) of ν-th derivatives is uniformly convergent6) for everyν ∈ N. Therefore by7)

f (ν)(t) = ∑∞
n=0 f (ν)

n (t) and in particular,f (ν)(0) = ∑∞
n=0 f (ν)

n (0) = aν for all ν ∈ N. • )

6) Uniform convergence Let D be an arbitrary set and let(fn) be a sequence of functionsfn : D → K on
D with values inK .

(1) The sequence(fn) is called( p o i n t w i s e ) c o n v e r g e n t (onD) , if there exists a functionf :D → K

with lim fn(x) = f (x) for all x ∈ D, i.e. if for everyx ∈ D and for everyε > 0 there exists (dependent on
x andε) n0 ∈ N such that|fn(x) − f (x)| ≤ ε for all n ≥ n0 .

(2) The sequence(fn) is calledu n i f o r m l y c o n v e r g e n t (onD) , if there exists a functionf :D → K

such that for everyε > 0 there exists (depending only onε and not onx) n0 ∈ N such that|fn(x)−f (x)| ≤ ε

for all n ≥ n0.

Uniform convergence of the function sequence(fn) implies its point-wise convergence. The functionf

with f (x) = lim fn(x) is called the l i m i t f u n c t i o n or the l i m i t of thesequence(fn) and is denoted
by f = limn→∞ fn = lim fn .

For a sequence(fn) of functionsfn : D → K, the sequence of partial sums
∑k

n=0 fn, k ∈ N, is called the
s e r i e s of thefn, n ∈ N. Its limit function (if it exists) it is denoted by

∑∞
n=0 fn . If the convergence of

partial sums is uniform onD, then we say that the series converges uniformly onD.

7) Theorem Let D be a domain in C or an interval in R and let fn : D → C, n ∈ N, be a sequence of
differentiable functions. Further, let x0 ∈ D be a fixed point. Suppose that:

(1) The sequence fn(x0) , n ∈ N, is convergent.

(2) The sequence f ′
n , n ∈ N, of derivatives is locally uniformly convergent 8) on D.

Then the sequence fn , n ∈ N, is locally uniformly convergent on D to a differentiable limit function
f :D → C, and f ′ = limn→∞ f ′

n .

8) A sequencefn :D → K, n ∈ N, of functions onD ⊆ C is called l o c a l l y u n i f o r m c o n v e r g e n t ,
if for every pointa ∈ D there exists a neighbourhoodU of a such that the sequencefn|U ∩ D, n ∈ N, is
uniformly convergent onU ∩ D.
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