Prof. D. P.Patil, Department of Mathematics, Indian Institute of Science, Bangalore August-December 2003

MA-219 Linear Algebra
6. Linear Maps
September 12, 2003 ; Submit solutions before 11:00AM ; September 22, 2003.
Let K be afield.

6.1. LetV andW be finite dimensionak -vector spaces. Show that

a). There is an injectivek -homomorphism fron into W if and only if DimgV < Dimg W.
Deduce that a homogeneous linear system @fguations im unknowns ovelk with n > m has
a non-trivial solution.

b). There is a surjectiv& -homomorphism from onto W if and only if DimgV > Dimg W.

Deduce that a linear syster[}’:1 a;jxj =b;, i =1,...,m ofmequations im unknowns over

K with n < m has no solution for som@y, ..., b,,) € K™.

c). A homogeneous linear systeﬁij;’:1 a;jxj =0, i=1,...,n ofnequations im unknowns
over K has a non-trivial solution if and only if at least one of the corresponding inhomogeneous
system of linear equationif=1 a;jxj =b;, i =1,...,n hasno solution.

6.2. a). Let V be aK-vector space with DimV > 2 (i.e. V contain at least two linearly
independent vectors) . Then every additive nfapy — V with f(Kx) C Kx forallx € Visa
homothecy ofV, i.e. a multiplicationy, by a scalau € K.

b). Let V be a finite dimensionak-vector space and ld/, W be subspaces df of equal
dimension. Then there existskaxautomorphismy of V such thatf (U) = W.

c). Let f1:V — Viandf,:V — V, be homomorphisms df -vector spaces. ThE-linear map
f:V — Vi x V, defined byf (x) = (f1(x), f2(x)) is an isomorphism if and only if; surjective
and f>|Ker f1: Ker f1 — V5 is bijective.

6.3. LetV be a finite dimensiona -vector space and lgt: V — V be an endomorphism df.
Show that the following statements are equivalent:

(i) f isnotan automorphism o¥.

(i) There exists & -endomorphisng # 0 of V such thag o f = 0.

(ii") There exists alk -endomorphisng’ # idy of V such thatg’ o f = f.

(i) There exists ank-endomorphismk # 0 of V such thatf o h = 0.

(iii") There exists alK -endomorphisnt’ # idy of V such thatf o i’ = f.

6.4. a). LetV be aK-vector space of countable infinite dimension. Theand the direct sum
V @ V are isomorphic. (Remark: This is true for arbitrary infinite dimensional vector spatey

b). Give an example of an endomorphism of a vector space (necessarily infinite dimensional)
which is injective, but not surjective (resp. surjective, but not injective).

c). LetV be akK-vector space with basis,i € I andletf:V — K be alinear form# 0 onV
with f(x;) =a; € K,i € I. Find a basis of Key.

6.5. Letfi,..., f, belinearlyindependerk -valued functions on the sét. Further, lety, ..., 1,
be pairwise distinct points i and letV be the subspace & ” (n-dimensional) generated by
f1, ..., fu. Show that for every choice @4, . .., b, € K theinterpolation problem

f(tl):blv"'vf(ti’l):bn
has a solutiory € V if and only if the trivial problem

ft) == f(t,) =0,
has only trivial (the zero function) solution .

On the other side one can see (simple) test-exercises ; their solutions need not be submitted.
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Test-Exercises

T6.1. LetV := K]r] betheK-vector space df-valued polynomial functions dd. Which of the following
mapsf : V — V areK-linear ? Find the bases for K¢rand im f for those f which areK-linear.

a). f(x):=x" = (then-th derivative ofx, n € N.)

b). f(x):=x0)+X.

c). f(x) =t [yri(r)dr).

d). f(x):= P(D)x, whereP(r) € K[] is a monic polynomidl) and D is the differential operator — x.
T6.2. Leth:D — D’be an arbitrary map. For every fiekt], the map:*: K? — KP defined byg > goh
is K-linear. Describe the functions in Ket and in imk*. Show that:* is injective (resp. surjective) if
and only ifa is surjective (resp. injective).

T6.3. a). Amapf:V — W of Q-vector space¥ andW is Q-linear if and only if it is additive.

b). For everyK—vector spac&, the mapf — f(1) is aK-isomorphism of Hom (K, V) onto V.

c). Let K’ be a subfield of the fiel&, V be aK’-vector space an® be aK-vector space, theW is a
K’-vector space in a natural way. With this HpniV, W) is a K -subspace oV .

T6.4. a). Let f andg be endomorphisms of the finite dimensional vector spécelf g o f is an
automorphism o/, then bothg and f are also automorphisms &f.

b). Let f:V — W be a homomorphism of finite dimensiorktvector spaces.

(1) Show thatf injective if and only if there exists a homomorphigmW — V such thag o f = idy.
(2) Show thatf surjective if and only if there exists a homomorphismW — V such thatf o & = idyy.

T6.5. (Pointer representation) Lei € R} andV be theR-vector space of the functions
asin(wt + @), a, ¢ € R, with basis sinwt, coswt, (see exercise 4.6). Then the map

yiasin(wt + @) —> ae’, a >0,

is aRR-vector space isomorphism &f onto C. (Remark: This isomorphism is called thpointer
representation of themple harmonic motion with the circular frequensy The differentiation inv
correspond to the multiplication bwito the pointer representation, ie(x) = iwy (x) forx € V. In the
representatione'? of a sin(wt + ¢),a > 0,a = |ae'?| is called the mnaximal) amplitude and? is
called thephase factor.)

T6.6. Let! C R be an interval with more than one point and 1.

a). Forn e N*, LetT,, : C-1(I) — K[t], be the map which maps every functighe CL (1) to its
Taylor polynomial of dgree< n of f ata, i.e.

f = Ta,n(.f) = Z f k|(a) (t —Cl)k.
k=0 )

Show thatT, , is K-linear. Describe the kernel and imagemf,.

1) A polynomial P(t) = 3 ya;it' € K[t] of degreen over a fieldk is called amonic polynomial
if the leading co-efficient, = 1.
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b). LetT,:C¥(I) — K[r — a] be the map which maps every functighe C¥ () toits Taylor’s
series off atq, i.e.

— Y@ "
TN =) g t-a
k=0
Show that7, is aK-linear map of G (1) in the spac&][+ — a] of all power series iz — a) with coefficients
in K. The kernel of, is the space of all functions which gpate?) ata. Further, show thak, is surjective.

(Remark This is precisely the following classical theorem of real analysis which is proved in 1895 by the
French mathematiciaBOREL, EMILE FELIX EDOUARD-JUSTIN (1871-1956) in his thesis.

Theorem (Borel) For every sequence a,, n € N, of real or complex numbers there exists an infinitely
many timesdifferentiablefunction f on R withvaluesinR resp. C suchthat for all n € N gilt: f®(0) = a, .

A differentiable function on interval C R can be given by using its derivative if f is continuous, then
the function & € I be a fixed point)faxf(t) dt , upto an additive constant, is the required function. This
can be generalised, for instance to give a constructidmbfunctions which are further useful for many
constructions in analysis. A functioln: R — R iscalled ahat-function if itsatisfies properties stated
in the following theorem :

Theorem Leta,a’, b, b € Rwith a <a’ <b' <b. Then there exists an infinitely many times differentiable
function #:R — R suchthat 4(t) = 0for t¢& [a,b], h(t) = 1forre[d’, b'] and O<h(r) <1 otherwise.

2y (Plate Functions) Lef:D — C be ananalytic ®) function on an intervaD < R or a domain
D C C. Ifthe derivativesf ™ (a) of f ata pointz € D are zero, then by thEaylor’s formula 4) the function
f vanishes in a neighbourhood @find hence by thiglentity theorem®) f is identically 0 on the whol@®.
The analogous result doest hold for functions defined on an intervalC R, which are infinitely many
times differentiable. An infinitely many times differentiable functipn/ — C is calledplate at point
ael,if f®(a) = 0foralln € N. There are functions which are plate at a point, but are not indentically
zero in any neighbourhood of this point. Such a function cannot be analytic; for example, the function
f:R — R defined by
) e x  ifx >0,

Fe '_{ 0, ifx=<o.
This function is infinitely many times differentiable and it is plate at 0. It is enough to show that|R, is
plate at 0. For > 0, we have (can be seen easily by inductiomdrf ™ (x) = h,(1/x) exp(—1/x) with a
monic polynomial functiork, of degree 2. Since lim._ o4 #(1/x) exp(—1/x) = O for every polynomial
function#, the assertion follows.

1 1

e1/x \ V
> X

-2 -1 0 1 2 -2 -1 0 1 2

3 (Analytic functions) LetitherD be an interval irR with more than one point or an open subset
ininC. A function f: D — Kis calledanalytic at a point € D, if there exists a neighbourhoad

of a and a convergent power serigsa; (x — a)* suchthat f(x) = Y ;- gar(x —a)* forallx e UND. —
Afunction f: D — Kiscalledanalytic in D ,if f is analytic at every point ob.

Y Let f =32 ya,(x — a)" be the power series expansion of the analytic funcfio® — C at a point
a € D. Thenforeveryn e N fm =3 # a,(x—a)"™™ is the power series expansion of theth

derivative off at the pointz € D. All these power series have the same radius of convergence. In particular,
an = % forallm € N (this is also known asth€aylor-formula for analytic functions.).

9 (Identity theorem for analytic functions) L&t be either an interval if® or a domain in
C. Two analytic functions oD are equal on the whol® if and only if they are equal on a seubset/df
which has at least one limit point iR.
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a a v b

Proof The graph of the derivativé := 1’ of the required function is the following:

f=H
v b
a a ‘\f

Further, we must havgfa“/f(t)dt = —jb'f f()dt = 1. Letg: R — R be the function defined by
g(1) = 0forr <0 andg(r) = eV for t > 0. Theng is infinitely many times differentiable function.

Now, let f(r) := (g(t —a)g(a’ —1)/c) — (g(t — b")g(b —1)/d), wherec := fua/g(t —a)g(a —t)dt and

d = fbb,g(t —b)g(b —1)dt. Thenf is the required function and the functianx) := [ f(¢) dt has the
properties stated in the assertion. °

Now using hat-functions, we can give a proof of the Borel's theorem :

Proof of Borel's theorem: Letk:R — R be an infinitely many times differentiable hat- function with
h(t) = 1for|t| < 1 andh(r) = O for all 1] > 2, further, leth,(t) := t"h(t),n € N. Then|h" ()| < M,
forallr e Rand allv € Nwith 0 < v < n. Putb, := |a,|M, + 1 andf,(t) ‘= a,h,(b,t)/n'b!. Then
the functionf (r) := Y .- f.(¢) is a required function. Sindg’"’(s)| < 1/n! forall n > v and allz € R,
the seriesy °2 £ (¢) of v-th derivatives is uniformly convergefij for everyv € N. Therefore by’)
FO) =302 £ (1) and in particular,f™(0) = > 5 £*(0) = a, for all v € N. o)

6) Uniform convergence Let D be an arbitrary set and léf,) be a sequence of functiors: D — K on
D with values inK .

(1) The sequencgf,) is called(pointwise) convergent (ob), if there exists a functioif : D — K
with lim f,(x) = f(x) forall x € D, i.e. if for everyx € D and for every > 0 there exists (dependent on
x ande) ng € Nsuchthat f,(x) — f(x)| <eforalln > ng.

(2) The sequencef,) is calleduniformly convergent (om), if there exists a functiorf : D — K
such that for every > 0 there exists (depending only eland not orx) ng € Nsuchthatf, (x) — f(x)| < ¢
for all n > ng.

Uniform convergence of the function sequerigg) implies its point-wise convergence. The functign
with f(x) = lim f,(x) is called the limitfunction orthe limit of thesequencéf,) and is denoted

by f=Ilim,_. f, =lim f,.

For a sequencef,) of functionsf, : D — K, the sequence of partial su@ﬁzo fn, k € N, is called the
series of thef,, n € N. Its limit function (if it exists) it is denoted by} -, £, . If the convergence of
partial sums is uniform o, then we say that the series converges uniformlybon

7Y Theorem Let D be a domainin C or aninterval in R and let f.: D — C, n € N, be a sequence of
differentiable functions. Further, let xo € D be afixed point. Suppose that:

(1) The sequence f, (xp) , n € N, is convergent.

(2) The sequence £/, n € N, of derivativesis locally uniformly convergent &) on D.

Then the sequence f,, n € N, is locally uniformly convergent on D to a differentiable limit function
f:D— C,and f' =1lim,_ f, .

8) A sequencef,,:D — K, n € N, of functionsonD C C iscalledlocally uniform convergent,
if for every pointa € D there exists a neighbourhoddof a such that the sequengg|U N D, n € N, is
uniformly convergent o/ N D.
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