MA-219 Linear Algebra

7. Rank Theorem

September 19, 2003; Submit solutions before 11:00AM; September 29, 2003.

Let K be a field and let U, V, W be vector spaces over K.

- **7.1. a).** (Inequality of Sylvester) Let $f: U \to V$ and let $g: V \to W$ be linear maps. If U and V are finite dimensional, then Rank $f + \text{Rank } g \text{Dim } V \leq \text{Rank } (gf) \leq \text{Min } (\text{Rank } f, \text{ Rank } g)$. (Hint: Rank $(gf) = \text{Rank } f \text{Dim } (\text{im } f \cap \text{Ker } g)$.)
- **b).** (Inequality of Frobenius) Let $f: U \to V$, $g: V \to W$ and let $h: W \to X$ be K-linear maps. If U, V and W are finite dimensional, then Rank $(hg) + \text{Rank } (gf) \leq \text{Rank } g + \text{Rank } (hgf)$. (Hint: We may assume that g is surjective and apply the part a).)
- **7.2.** Let $f: V \to W$ be a homomorphism of K-vector spaces. Show that Ker f is finite dimensional if and only if there exists a homomorphism of K-vector space $g: W \to V$ and an operator $h: V \to V$ on V such that Rank h is finite and $gf = h + \mathrm{id}_V$.
- **7.3.** Let $f_1, \ldots, f_r \in \operatorname{Hom}_K(V, W)$ be K-vector space homomorphisms of finite rank. For arbitrary $a_1, \ldots, a_r \in K$, the rank of $a_1 f_1 + \cdots + a_r f_r$ is finite and

$$\operatorname{Rank}(a_1 f_1 + \cdots + a_r f_r) \leq \operatorname{Rank} f_1 + \cdots + \operatorname{Rank} f_r$$
.

- **7.4.** Let V and W be finite dimensional K-vector space and let V', W' be subspaces of V resp. W. Show that there exists a K-homomorphism $f:V\to W$ with Ker f=V' and im f=W' if and only if $\operatorname{Dim} V'+\operatorname{Dim} W'=\operatorname{Dim} V$.
- **7.5.** a). Let $a_{ij} \in K$, i = 1, ..., m, j = 1, ..., n. Then the linear system of equations

$$a_{11}x_1 + \dots + a_{1n}x_n = b_1$$

$$\dots$$

$$a_{m1}x_1 + \dots + a_{mn}x_n = b_m$$

over K has a solution in K^n for every $(b_1, \ldots, b_m) \in K^m$ if and only if its rank is m. Moreover, in this case the solution space is an affine subspace of dimension n-m.

- **b).** Let $s, n \in \mathbb{N}$, $s \le n$. Then every affine subspace of K^n of dimension s is a solution space of a linear system of equations of rank n s in n unknowns and n s equations.
- **c).** Let $f_i: V_i \to V_{i+1}$, $i=1,\cdots,r$, be surjective K-vector space homomorphism with finite dimensional kernels. Then the composition $f:=f_r\circ\cdots\circ f_1$ from V_1 to V_{r+1} also has finite dimensional kernel and $\mathrm{Dim}_K\mathrm{Ker}\ f=\sum_{i=1}^r\mathrm{Dim}_K\mathrm{Ker}\ f_i$. (Remark: For example: Let $P(x)=(x-\lambda_1)\cdots(x-\lambda_n)$ be a polynomial in $\mathbb{C}[x]$ with (not necessarily distinct) zeros $\lambda_1,\ldots,\lambda_n\in\mathbb{C}$. Then the differential operator $P(D)=(D-\lambda_1)\cdots(D-\lambda_n)$ on $\mathrm{C}^\infty_\mathbb{C}(I)$, where $I\subseteq\mathbb{R}$ is an interval has n-dimensional kernel, since $D-\lambda$ is surjective for every $\lambda\in\mathbb{C}$ with a finite dimensional kernel $\mathbb{C}e^{\lambda t}$, .)

On the other side one can see (simple) test-exercises; their solutions need not be submitted.

Test-Exercises

- **T7.1.** Let f and g be endomorphisms of the finite dimensional K-vector space V with $g \circ f = 0$. Then Rank $f + \text{Rank } g \leq \text{Dim } V$. In particular, if f^2 (= $f \circ f$) = 0, then Rank $f \leq \frac{1}{2} \text{Dim } V$.
- **T7.2.** Let $g: V \to W$ be K-linear and let V' be a subspace of V. If V is finite dimensional, then Dim V Dim V' > Rank g Rank (g|V').
- **T7.3.** Let f be an operator on the finite dimensional K-vector space V of odd dimension. Then im $f \neq \text{Ker } f$.
- **T7.4.** Let f be an operator on the finite dimensional K-vector space V.
- a). The following statements are equivalent:
- (1) Ker $f = \operatorname{im} f$. (2) $f^2 = 0$ and $\operatorname{Dim} V = 2 \cdot \operatorname{Rank} f$.
- **b).** The following statements are equivalent:
- (1) Rank $f = \text{Rank } f^2$. (1') im $f = \text{im } f^2$. (2) Dim Ker $f = \text{Dim Ker } f^2$. (2') Ker $f = \text{Ker } f^2$.
- (3) im $f \cap \text{Ker } f = 0$. (4) im f + Ker f = V.

(Remark: (3) and (4) together mean that V is the direct sum of im f and Ker f.)

- **T7.5.** Let $f: U \to V$ and let $g: V \to W$ be homomorphisms of K-vector spaces. If one of these homomorphism have a finite rank, then the composition $g \circ f$ also has a finite rank. If f is surjective (resp. g is injective), then Rank $(g \circ f) = \text{Rank } g$ (resp. Rank $(g \circ f) = \text{Rank } f$).
- **T7.6.** Let $f: V \to W$ be a homomorphism of K-vector spaces and let u_i , $i \in I$, be a basis of Ker f. Then for a family v_j , $j \in J$, of vectors of V, the family $f(v_j)$, $j \in J$, of the image vectors is a basis of im f if and only if the families u_i , $i \in I$; v_j , $j \in J$, together form a basis of V.