MA-219 Linear Algebra

8. Direct sums and projections

September 24, 2003 ; Submit solutions before 11:00 AM ; October 03, 2003.
Let K be a field and let U, V, W be vector spaces over K.
8.1. A linear operator f on a K-vector space V is called an involution of V if $f^{2}=\operatorname{id}_{V}$. Let $\operatorname{Inv}_{K} V$ (resp. $\operatorname{Proj}_{K} V$) denote the set of all involutions (resp. projections) of V. Suppose that Char $K \neq 2$, i.e. $2=1_{K}+1_{K} \neq 0$. Then the map $\gamma: \operatorname{Proj}_{K} V \rightarrow \operatorname{Inv}_{K} V$ defined by $p \mapsto \operatorname{id}_{V}-2 p$ is bijective. Further, for $p \in \operatorname{Proj}_{K} V$ show that
a). $\quad \operatorname{im} p=\operatorname{Ker}(\operatorname{id}+\gamma(p)) \quad$ and $\quad \operatorname{Ker} p=\operatorname{Ker}(\operatorname{id}-\gamma(p))$.
b). For an involution $f=\gamma(p)$ of V there is a direct sum decomposition :

$$
V=V^{-} \oplus V^{+}
$$

where $V^{-}:=\{x \in V \mid f(x)=-x\}=\operatorname{im} p$ and $V^{+}:=\{x \in V \mid f(x)=x\}=\operatorname{Ker} p$.
8.2. Let p_{1}, \ldots, p_{n} be distinct pairwise commuting projections of the K-vector space V. Then
a). The composition $p:=p_{1} \cdots p_{n}$ is a projection of V with $\operatorname{im} p=\left(\operatorname{im} p_{1}\right) \cap \cdots \cap\left(\operatorname{im} p_{n}\right)$ and $\operatorname{Ker} p=\left(\operatorname{Ker} p_{1}\right)+\cdots+\left(\operatorname{Ker} p_{n}\right)$.
b). Let $q_{1}:=\operatorname{id}_{V}-p_{1}, \ldots, q_{n}:=\operatorname{id}_{V}-p_{n}$ be the complementary projections. Then the projections $p_{1}, \ldots, p_{n}, q_{1}, \ldots, q_{n}$ are pairwise commuting.
c). For $H=\left\{i_{1}, \ldots, i_{r}\right\} \subseteq\{1, \ldots, n\}$ with $i_{1}<\cdots<i_{r}$, let $p_{H}:=p_{i_{1}} \cdots p_{i_{r}}$ and $q_{H}:=$ $q_{i_{1}} \cdots q_{i_{r}}$. Then $\operatorname{id}_{V}=\sum_{H \in \mathfrak{P}(\{1,2, \ldots, n\})} p_{H} q_{H}$, where H^{\prime} denotes the complement $\{1, \ldots, n\} \backslash H$ of H in $\{1, \ldots, n\} . \quad\left(\boldsymbol{H i n t}: \operatorname{id}_{V}=\left(p_{1}+q_{1}\right) \cdots\left(p_{n}+q_{n}\right).\right)$
d). V is the direct sum of the subspaces $U_{H}:=\left(\bigcap_{i \in H} \operatorname{Bild} p_{i}\right) \cap\left(\bigcap_{i \notin H} \operatorname{Kern} p_{i}\right), H \in \mathfrak{P}(\{1, \ldots, n\})$.
(Hint: For $H, L \subseteq\{1, \ldots, n\}$ with $H \neq L$, we have $p_{H} q_{H^{\prime}} p_{L} q_{L^{\prime}}=0$.)
8.3. Suppose that the K-vector space V is the direct sum of the subspaces U and W.
a). For every linear map $g: U \rightarrow W$ the graph $\Gamma(g):=\{u+g(u) \mid u \in U\} \subseteq V$ of g is a complement of W in V.

b). The map $\operatorname{Hom}_{K}(U, W) \rightarrow \mathcal{C}(W, V)$ defined by $g \mapsto \Gamma(g)$ is bijective, where denote the set of all complements of W in V.
c). Suppose that $\operatorname{Dim}_{K} U=\operatorname{Dim}_{K} W=n$. Let u_{1}, \ldots, u_{n} and w_{1}, \ldots, w_{n} be bases of U and W, respectively. Then $u_{1}+w_{1}, \ldots, u_{n}+w_{n}$ is a basis of a complement of U as well as a complement of W in V.
d). Let V^{\prime} be another K-vector space and let $f: V \rightarrow V^{\prime}$ be a linear map of K-vector spaces such that $f \mid W: W \rightarrow \operatorname{im} f$ is bijective. Then there exists a unique K-linear map $g: U \rightarrow W$ such that Ker $f=\Gamma(g)=\{u+w \mid u \in U, w=g(u)\}$. (Remark: In this case the equation $w=g(u)$ is called the solution of the equation $f(x)=0, x \in V$, for $w \in W$.)
8.4. Let V be a finite dimensional K-vector space and let $f: V \rightarrow V$ be an operator on V. Then
a). f is a projection of V if and only if there exists a basis x_{1}, \ldots, x_{n} of V such that $f\left(x_{i}\right)=x_{i}$, $i=1, \ldots, r$, and $f\left(x_{i}\right)=0, i=r+1, \ldots, n$. (Remark: An analogous statement hold if V is not finite dimensional, formulate this and the prove!)
b). There exists an automorphism g and projections p, q of V such that $f=p g=g q$. (Hint: Extend a basis of Ker f to a basis of V. - In general, such a representation does not exists for operators on infinite dimensional K-vector spaces. Example!)
8.5. Let E be an affine space over the K-vector space V and let U, W be subspaces of V.
a). Any two affine subspaces F and F^{\prime} of E which are parallel to U and W, respectively, intersects if and only if V is the sum of U and W.
b). Any two affine subspaces F and F^{\prime} of E which are parallel to U and W, respectively, intersects exactly in a point if and only if V is the direct sum of U and W.

8.6. Let $f: V \rightarrow V^{\prime \prime}$ be a surjective K-linear map and let W be its kernel. Then the set of all complements U of W in V is an affine space over the K-vector space $\operatorname{Hom}_{K}\left(V^{\prime \prime}, W\right)$ with respect to the operation $(h, U) \longmapsto h+U:=\{h(f(x))+x \mid x \in U\}, h \in \operatorname{Hom}_{K}\left(V^{\prime \prime}, W\right)$.

On the other side one can see (simple) test-exercises ; their solutions need not be submitted.

Test-Exercises

T8.1. a). The \mathbb{K}-vector space $\mathbb{K}^{\mathbb{R}}$ (resp. $\mathbb{K}^{\mathbb{K}}$) of the \mathbb{K}-valued functions on \mathbb{R} (resp. \mathbb{C}) is the direct sums of the \mathbb{K}-subspaces $W_{\text {even }}$ and $W_{\text {odd }}$ of all even and all odd functions, respectively. (Hint: See exercise 2.3-d).)
b). Let V be a two dimensional K-vector space with basis x, y. The complements of the line $K x$ in V are the distinct lines of the form $K(a x+y), a \in K$.

T8.2. Let U_{1}, \ldots, U_{n} be subspaces of the K-vector space V. Then
a). The sum of the subspaces U_{1}, \ldots, U_{n} is direct if and only if $\left(U_{1}+\cdots+U_{i}\right) \cap U_{i+1}=0$ for all $i=1, \ldots, n-1$.
b). Assume that K has at least n elements, V is finite dimensional and all U_{1}, \ldots, U_{n} have equal dimension. Then U_{1}, \ldots, U_{n} have a common complement in V. (Hint: use the exercise 4.4)
c). Suppose that U_{1}, \ldots, U_{n} are finite dimensional. Then $\operatorname{Dim}\left(U_{1}+\cdots+U_{n}\right) \leq \operatorname{Dim} U_{1}+\cdots+\operatorname{Dim} U_{n}$. Moreover, the above inequality is and equality if and only if the sum of the $U_{i}, i=1, \ldots, n$ is direct.

T8.3. Let $U_{i}, i \in I$ be a family of subspaces of the K-vector space V, let $I_{j}, j \in J$ be a partition of the indexed set I and let $W_{j}:=\sum_{i \in I_{j}} U_{i}, j \in J$. The following statements are equivalent:
(1) The sum of the $U_{i}, i \in I$ is direct.
(2) For every $j \in J$ the sum of the $U_{i}, i \in I_{j}$, is direct and the sum of the $W_{j}, j \in J$, is direct.

T8.4. Let W be a complement of the subspace U in the vector space V. For every subspace V^{\prime} of V with $U \subseteq V^{\prime}$, the subspace $W \cap V^{\prime}$ is a complement of U in V^{\prime}.

T8.5. Suppose that the vector space V is the direct sum of its subspaces U and W. If $V=U^{\prime}+W^{\prime}$ with subspaces $U^{\prime} \subseteq U$ and $W^{\prime} \subseteq W$, then $U^{\prime}=U$ and $W^{\prime}=W$.

T8.6. Let $f: U \rightarrow V$ and $g: V \rightarrow W$ be homomorphisms of K-vector spaces. If $g f$ is an isomorphism of U onto W, then V is the direct sum of $\operatorname{im} f$ and $\operatorname{Ker} g$.

T8.7. Let p be a projection and let f be an arbitrary operator on the K-vector space V.
a). p and f commute (i.e. $f p=p f$) if and only if the subspaces im p and $\operatorname{Ker} p$ are invariant under f, i.e. $f(\operatorname{im} p) \subseteq \operatorname{im} p$ and $f(\operatorname{Ker} p) \subseteq \operatorname{Ker} p$.
b). The subspace im p is invariant under f if and only if $f p=p f p$.
c). The subspace $\operatorname{Ker} p$ is invariant under f if and only if $p f=p f p$.

T8.8. In the situation of exercise 8.2 , let $n=2$. Then for two commuting projections p_{1} and p_{2} of V (by part d)) V is a direct sum of the K-subspaces $U_{1}:=\operatorname{im} p_{1} \cap \operatorname{im} p_{2}, \quad U_{2}:=\operatorname{im} p_{1} \cap \operatorname{Ker} p_{2}$, $U_{3}:=\operatorname{Ker} p_{1} \cap \operatorname{im} p_{2}, \quad U_{4}:=\operatorname{Ker} p_{1} \cap \operatorname{Ker} p_{2}$. For all 16 subsets $S \subseteq\{1,2,3,4\}$ give (with the help of p_{1} and p_{2}) the projection onto $\sum_{i \in S} U_{i}$ along $\sum_{i \notin S} U_{i}$.

T8.9. Let p and q be projections of the K-vector space V.
a). Show by an example that the composition $p q$ can be a projection of V without the condition that p and q are commuting.
b). $\quad p$ and q have the same image if and only if $p q=q$ and $q p=p$.
c). Suppose that Char $K \neq 2$, i.e. $2=1_{K}+1_{K} \neq 0$ in K. Then $p+q$ is a projection of V if and only if $p q=q p=0$. Moreover, in this case $\operatorname{im}(p+q)=\operatorname{im} p \oplus \operatorname{im} q, \quad$ and $\quad \operatorname{Ker}(p+q)=(\operatorname{Ker} p) \cap(\operatorname{Ker} q)$. d). Suppose that Char $K=2$. Then $p+q$ is a projection of V if and only if $p q=q p$. Moreover, in this case $\operatorname{im}(p+q)=(\operatorname{im} p \cap \operatorname{Ker} q) \oplus(\operatorname{im} q \cap \operatorname{Ker} p)$ and $\operatorname{Ker}(p+q)=(\operatorname{im} p \cap \operatorname{im} q) \oplus(\operatorname{Ker} p \cap \operatorname{Ker} q)$.

T8.10. Suppose that U and U^{\prime} are two complements of the subspace W of the K-vector space V and p denote the projection of V onto U along W. Then $p \mid U^{\prime}: U^{\prime} \rightarrow U$ is an isomorphism.

T8.11. Let $v_{i}, i \in I$ be a basis of the finite dimensional K-vector space V and let U be a subspace of V. Then there exists a subset J of I such that the projection p_{J} onto $V_{J}:=\sum_{i \in J} K v_{i}$ along $V_{I \backslash J}=\sum_{i \in I \backslash J} K v_{i}$ induces an isomorphism of U onto V_{J}. (Remark: This assertion is true even if I is not a finite set.)

T8.12. Let $f: V \rightarrow V^{\prime}$ be a homomorphism of K-vector spaces. Then $W \subseteq V$ is a direct summand of Ker f in V if and only if f induces an isomorphism $f \mid W: W \rightarrow \operatorname{im} f$ of W onto im f.

T8.13. Let V be a K-vector space.
a). Let $f_{1}: U_{1} \rightarrow V, f_{2}: U_{2} \rightarrow V$ be two surjective homomorphisms of K-vector spaces and let $f: U_{1} \oplus U_{2} \rightarrow V$ be the homomorphism defined by $f\left(x_{1}, x_{2}\right):=f_{1}\left(x_{1}\right)+f_{2}\left(x_{2}\right), x_{1} \in U_{1}, x_{2} \in U_{2}$. Then $\operatorname{Ker} f_{1} \oplus U_{2} \cong \operatorname{Ker} f \cong U_{1} \oplus \operatorname{Ker} f_{2}$.
b). Let $f: V \rightarrow V^{\prime \prime}$ be a surjective K-linear map, let $U \subseteq V$ be a K-subspace of V and let $f \mid U: U \rightarrow V^{\prime \prime}$ be the restriction of f to U. Then
(1) $f \mid U$ is injective if and only if $U \cap \operatorname{Ker} f=0$.
(2) $f \mid U$ is surjective if and only if $U+\operatorname{Ker} f=V$.
(3) $f \mid U$ is an isomorphism if and only if $V=U \oplus \operatorname{Ker} f$, i.e. U is a complement of $\operatorname{Ker} f$ in V.

T8.14. Let K be a finite field with $\operatorname{card}(K)=q$ (note that $q=p^{m}$ for some $m \in \mathbb{N}^{+}$, where $p:=$ Char K) and let V be an n-dimensional K-vector space.
a). For $n \in \mathbb{N}$, let $\alpha_{q}(n, r)$ be the number of linearly independent r-tuples $\left(x_{1}, \ldots, x_{r}\right) \in V^{r}$. For $1 \leq r \leq n$, show that $\alpha_{q}(n, r)=q^{(r-1) r / 2} \prod_{i=n-r+1}^{n}\left(q^{i}-1\right)$. In particular, $\alpha_{q}(n, r)$ depends only on q, n, r and does not depend on K and V. (Hint: Use induction on r.)
b). $\quad \operatorname{card}\left(\operatorname{End}_{K}(V)\right)=q^{n^{2}}$ and $\operatorname{card}\left(\operatorname{Aut}_{K}(V)\right)=\alpha_{q}(n, n)$.
c). For $n \in \mathbb{N}$, let $\beta_{q}(n, r)$ be the number of r-dimensional K-subspaces of V. For $1 \leq r \leq n$, show that Char K does not divide $\beta_{q}(n, r)$ and $\beta_{q}(n, r)=\alpha_{q}(n, r) \alpha_{q}(r, r)^{-1}$. In particular, $\beta_{q}(n, r)$ depends only on q, n, r and does not depend on K and V.
d). The number of projections of V are $\sum_{r=0}^{n} \beta_{q}(n, r) q^{r(n-r)}$.
e). Let H be an elementary abelian p-group ${ }^{1}$) of order p^{n}, where p is a prime number. Compute the number of endomorphisms and automorphisms of H and the number of subgroups.
f). Let p be a prime numebr and let $n \in \mathbb{N}$. For $r \in \mathbb{Z}$, let $\left[\begin{array}{c}n \\ r\end{array}\right]$ denote the number of subgroups of order p^{r} in an elementary abelain p-group of order p^{n}. This number is 0 for $r<0$ and $r>n$; further,

$$
\left[\begin{array}{l}
n \\
r
\end{array}\right]=\frac{\left(p^{n}-1\right)\left(p^{n-1}-1\right) \cdots\left(p^{n-r+1}-1\right)}{(p-1)\left(p^{2}-1\right) \cdots\left(p^{r}-1\right)}
$$

for $0 \leq r \leq n$. (Remark: One can define these numbers by the above properties without any reference to the groups - and vector spaces. Note the similarity between these numbers and the binomial coefficients : $\left[\begin{array}{c}n \\ r\end{array}\right]=\left[\begin{array}{c}n \\ n-r\end{array}\right]$, and for $n \geq 1$, we have the recursion formula : $\left[\begin{array}{c}n \\ r\end{array}\right]=p^{r}\left[\begin{array}{c}n-1 \\ r\end{array}\right]+\left[\begin{array}{c}n-1 \\ r-1\end{array}\right]$.)
g). In the set of subspaces of V which is ordered by the inclusion, the maximal number of elements which are not comparable is $\beta_{q}(n,[n / 2])$.

[^0]
[^0]: ${ }^{1}$) The additive groups or the vector spaces over the field $\mathbf{K}_{p}=\mathbb{Z} / \mathbb{Z} p$ are called the elementary abelian p - groups.

