MA-219 Linear Algebra

8. Direct sums and projections

September 24, 2003 ; Submit solutions before 11:00 AM ; October 03, 2003.

Let K be a field and let U, V, W be vector spaces over K.

8.1. A linear operator f on a K-vector space V is called an involution of V if $f^2 = id_V$. Let $Inv_K V$ (resp. $Proj_K V$) denote the set of all involutions (resp. projections) of V. Suppose that $Char K \neq 2$, i.e. $2 = 1_K + 1_K \neq 0$. Then the map $\gamma : Proj_K V \rightarrow Inv_K V$ defined by $p \mapsto id_V - 2p$ is bijective. Further, for $p \in Proj_K V$ show that

a). im $p = \text{Ker}(\text{id} + \gamma(p))$ and $\text{Ker} p = \text{Ker}(\text{id} - \gamma(p))$.

b). For an involution $f = \gamma(p)$ of V there is a direct sum decomposition :

$$V = V^- \oplus V^+$$

where $V^- := \{x \in V \mid f(x) = -x\} = \text{im } p \text{ and } V^+ := \{x \in V \mid f(x) = x\} = \text{Ker } p$.

8.2. Let p_1, \ldots, p_n be distinct pairwise commuting projections of the *K*-vector space *V*. Then **a).** The composition $p := p_1 \cdots p_n$ is a projection of *V* with im $p = (\text{im } p_1) \cap \cdots \cap (\text{im } p_n)$ and Ker $p = (\text{Ker } p_1) + \cdots + (\text{Ker } p_n)$.

b). Let $q_1 := id_V - p_1, \ldots, q_n := id_V - p_n$ be the complementary projections. Then the projections $p_1, \ldots, p_n, q_1, \ldots, q_n$ are pairwise commuting.

c). For $H = \{i_1, \ldots, i_r\} \subseteq \{1, \ldots, n\}$ with $i_1 < \cdots < i_r$, let $p_H := p_{i_1} \cdots p_{i_r}$ and $q_H := q_{i_1} \cdots q_{i_r}$. Then $\mathrm{id}_V = \sum_{H \in \mathfrak{P}(\{1, 2, \ldots, n\})} p_H q_H$, where H' denotes the complement $\{1, \ldots, n\} \setminus H$

of *H* in $\{1, ..., n\}$. (Hint: $id_V = (p_1 + q_1) \cdots (p_n + q_n)$.)

d). V is the direct sum of the subspaces $U_H := \left(\bigcap_{i \in H} \text{Bild } p_i\right) \cap \left(\bigcap_{i \notin H} \text{Kern } p_i\right), H \in \mathfrak{P}(\{1, \ldots, n\}).$ (**Hint:** For $H, L \subseteq \{1, \ldots, n\}$ with $H \neq L$, we have $p_H q_{H'} p_L q_{L'} = 0.$)

8.3. Suppose that the *K*-vector space *V* is the direct sum of the subspaces *U* and *W*.

a). For every linear map $g: U \to W$ the graph $\Gamma(g) := \{u + g(u) \mid u \in U\} \subseteq V$ of g is a complement of W in V.

b). The map $\operatorname{Hom}_{K}(U, W) \to \mathbb{C}(W, V)$ defined by $g \mapsto \Gamma(g)$ is bijective, where denote the set of all complements of W in V.

c). Suppose that $\text{Dim}_K U = \text{Dim}_K W = n$. Let u_1, \ldots, u_n and w_1, \ldots, w_n be bases of U and W, respectively. Then $u_1 + w_1, \ldots, u_n + w_n$ is a basis of a complement of U as well as a complement of W in V.

d). Let V' be another K-vector space and let $f: V \to V'$ be a linear map of K-vector spaces such that $f|W: W \to \text{im } f$ is bijective. Then there exists a unique K-linear map $g: U \to W$ such that Ker $f = \Gamma(g) = \{u + w \mid u \in U, w = g(u)\}$. (Remark: In this case the equation w = g(u) is called the solution of the equation $f(x) = 0, x \in V$, for $w \in W$.)

8.4. Let V be a finite dimensional K-vector space and let $f: V \to V$ be an operator on V. Then

a). f is a projection of V if and only if there exists a basis x_1, \ldots, x_n of V such that $f(x_i) = x_i$, $i = 1, \ldots, r$, and $f(x_i) = 0$, $i = r + 1, \ldots, n$. (Remark: An analogous statement hold if V is not finite dimensional, formulate this and the prove!)

b). There exists an automorphism g and projections p, q of V such that f = pg = gq. (Hint: Extend a basis of Ker f to a basis of V. – In general, such a representation does not exists for operators on infinite dimensional K-vector spaces. Example!)

8.5. Let *E* be an affine space over the *K*-vector space *V* and let *U*, *W* be subspaces of *V*.

a). Any two affine subspaces F and F' of E which are parallel to U and W, respectively, intersects if and only if V is the sum of U and W.

b). Any two affine subspaces F and F' of E which are parallel to U and W, respectively, intersects exactly in a point if and only if V is the direct sum of U and W.

8.6. Let $f: V \to V''$ be a surjective *K*-linear map and let *W* be its kernel. Then the set of all complements *U* of *W* in *V* is an affine space over the *K*-vector space Hom_{*K*}(*V''*, *W*) with respect to the operation $(h, U) \mapsto h + U := \{h(f(x)) + x \mid x \in U\}, h \in \text{Hom}_{K}(V'', W).$

On the other side one can see (simple) test-exercises; their solutions need not be submitted.

Test-Exercises

T8.1. a). The K-vector space $\mathbb{K}^{\mathbb{R}}$ (resp. $\mathbb{K}^{\mathbb{K}}$) of the K-valued functions on \mathbb{R} (resp. \mathbb{C}) is the direct sums of the K-subspaces W_{even} and W_{odd} of all even and all odd functions, respectively. (Hint: See exercise 2.3-d).)

b). Let V be a two dimensional K-vector space with basis x, y. The complements of the line Kx in V are the distinct lines of the form K(ax + y), $a \in K$.

T8.2. Let U_1, \ldots, U_n be subspaces of the *K*-vector space *V*. Then

a). The sum of the subspaces U_1, \ldots, U_n is direct if and only if $(U_1 + \cdots + U_i) \cap U_{i+1} = 0$ for all $i = 1, \ldots, n-1$.

b). Assume that *K* has at least *n* elements, *V* is finite dimensional and all U_1, \ldots, U_n have equal dimension. Then U_1, \ldots, U_n have a common complement in *V*. (Hint: use the exercise 4.4)

c). Suppose that U_1, \ldots, U_n are finite dimensional. Then $\text{Dim}(U_1 + \cdots + U_n) \leq \text{Dim} U_1 + \cdots + \text{Dim} U_n$. Moreover, the above inequality is and equality if and only if the sum of the U_i , $i = 1, \ldots, n$ is direct.

T8.3. Let U_i , $i \in I$ be a family of subspaces of the *K*-vector space *V*, let I_j , $j \in J$ be a partition of the indexed set *I* and let $W_j := \sum_{i \in I_j} U_i$, $j \in J$. The following statements are equivalent:

(1) The sum of the U_i , $i \in I$ is direct.

(2) For every $j \in J$ the sum of the U_i , $i \in I_j$, is direct and the sum of the W_i , $j \in J$, is direct.

T8.4. Let W be a complement of the subspace U in the vector space V. For every subspace V' of V with $U \subseteq V'$, the subspace $W \cap V'$ is a complement of U in V'.

T8.5. Suppose that the vector space V is the direct sum of its subspaces U and W. If V = U' + W' with subspaces $U' \subseteq U$ and $W' \subseteq W$, then U' = U and W' = W.

T8.6. Let $f : U \to V$ and $g : V \to W$ be homomorphisms of *K*-vector spaces. If gf is an isomorphism of *U* onto *W*, then *V* is the direct sum of im *f* and Ker *g*.

T8.7. Let p be a projection and let f be an arbitrary operator on the K-vector space V.

a). p and f commute (i.e. fp = pf) if and only if the subspaces im p and Ker p are invariant under f, i.e. $f(\operatorname{im} p) \subseteq \operatorname{im} p$ and $f(\operatorname{Ker} p) \subseteq \operatorname{Ker} p$.

b). The subspace im p is invariant under f if and only if fp = pfp.

c). The subspace Ker p is invariant under f if and only if pf = pfp.

T8.8. In the situation of exercise 8.2, let n = 2. Then for two commuting projections p_1 and p_2 of V (by part d)) V is a direct sum of the K-subspaces $U_1 := \operatorname{im} p_1 \cap \operatorname{im} p_2$, $U_2 := \operatorname{im} p_1 \cap \operatorname{Ker} p_2$, $U_3 := \operatorname{Ker} p_1 \cap \operatorname{im} p_2$, $U_4 := \operatorname{Ker} p_1 \cap \operatorname{Ker} p_2$. For all 16 subsets $S \subseteq \{1, 2, 3, 4\}$ give (with the help of p_1 and p_2) the projection onto $\sum_{i \in S} U_i$ along $\sum_{i \notin S} U_i$.

T8.9. Let *p* and *q* be projections of the *K*-vector space *V*.

a). Show by an example that the composition pq can be a projection of V without the condition that p and q are commuting.

b). p and q have the same image if and only if pq = q and qp = p.

c). Suppose that Char $K \neq 2$, i.e. $2 = 1_K + 1_K \neq 0$ in K. Then p + q is a projection of V if and only if pq = qp = 0. Moreover, in this case im $(p+q) = \operatorname{im} p \oplus \operatorname{im} q$, and $\operatorname{Ker}(p+q) = (\operatorname{Ker} p) \cap (\operatorname{Ker} q)$. **d).** Suppose that Char K = 2. Then p + q is a projection of V if and only if pq = qp. Moreover, in this case im $(p+q) = (\operatorname{im} p \cap \operatorname{Ker} q) \oplus (\operatorname{im} q \cap \operatorname{Ker} p)$ and $\operatorname{Ker}(p+q) = (\operatorname{im} p \cap \operatorname{im} q) \oplus (\operatorname{Ker} p \cap \operatorname{Ker} q)$.

T8.10. Suppose that U and U' are two complements of the subspace W of the K-vector space V and p denote the projection of V onto U along W. Then $p|U': U' \to U$ is an isomorphism.

T8.11. Let v_i , $i \in I$ be a basis of the finite dimensional *K*-vector space *V* and let *U* be a subspace of *V*. Then there exists a subset *J* of *I* such that the projection p_J onto $V_J := \sum_{i \in J} K v_i$ along $V_{I \setminus J} = \sum_{i \in I \setminus J} K v_i$ induces an isomorphism of *U* onto V_J . (**Remark**: This assertion is true even if *I* is not a finite set.) **T8.12.** Let $f: V \to V'$ be a homomorphism of K-vector spaces. Then $W \subseteq V$ is a direct summand of Ker f in V if and only if f induces an isomorphism $f|W:W \to im f$ of W onto im f.

T8.13. Let V be a K-vector space.

a). Let $f_1: U_1 \to V$, $f_2: U_2 \to V$ be two surjective homomorphisms of K-vector spaces and let $f: U_1 \oplus U_2 \to V$ be the homomorphism defined by $f(x_1, x_2) := \hat{f_1}(x_1) + \hat{f_2}(x_2), x_1 \in U_1, x_2 \in U_2$. Then Ker $f_1 \oplus U_2 \cong$ Ker $f \cong U_1 \oplus$ Ker f_2 .

b). Let $f: V \to V''$ be a surjective K-linear map, let $U \subseteq V$ be a K-subspace of V and let $f|U: U \to V''$ be the restriction of f to U. Then

(1) f|U is injective if and only if $U \cap \text{Ker } f = 0$.

(2) f|U is surjective if and only if U + Ker f = V.

(3) f|U is an isomorphism if and only if $V = U \oplus \text{Ker } f$, i.e. U is a complement of Ker f in V.

T8.14. Let K be a finite field with card(K) = q (note that $q = p^m$ for some $m \in \mathbb{N}^+$, where $p := \operatorname{Char} K$) and let V be an n-dimensional K-vector space.

a). For $n \in \mathbb{N}$, let $\alpha_q(n,r)$ be the number of linearly independent r-tuples $(x_1,\ldots,x_r) \in V^r$. For

 $1 \le r \le n$, show that $\alpha_q(n, r) = q^{(r-1)r/2} \prod_{i=n-r+1}^n (q^i - 1)$. In particular, $\alpha_q(n, r)$ depends only on q, n, r and does not depend on K and V. (Hint: Use induction on r.)

b). card(End_K(V)) = q^{n^2} and card(Aut_K(V)) = $\alpha_q(n, n)$.

c). For $n \in \mathbb{N}$, let $\beta_q(n, r)$ be the number of r-dimensional K-subspaces of V. For $1 \le r \le n$, show that Char K does not divide $\beta_q(n,r)$ and $\beta_q(n,r) = \alpha_q(n,r)\alpha_q(r,r)^{-1}$. In particular, $\beta_q(n,r)$ depends only on q, n, r and does not depend on K and V.

d). The number of projections of V are $\sum_{r=0}^{n} \beta_q(n, r) q^{r(n-r)}$.

e). Let H be an elementary abelian p-group 1) of order p^n , where p is a prime number. Compute the number of endomorphisms and automorphisms of H and the number of subgroups.

f). Let p be a prime number and let $n \in \mathbb{N}$. For $r \in \mathbb{Z}$, let $\begin{bmatrix} n \\ r \end{bmatrix}$ denote the number of subgroups of order p^r in an elementary abelain p-group of order p^n . This number is 0 for r < 0 and r > n; further,

$$\begin{bmatrix} n \\ r \end{bmatrix} = \frac{(p^n - 1)(p^{n-1} - 1)\cdots(p^{n-r+1} - 1)}{(p-1)(p^2 - 1)\cdots(p^r - 1)}$$

for $0 \le r \le n$. (Remark: One can define these numbers by the above properties without any reference to the groups - and vector spaces. Note the similarity between these numbers and the binomial coefficients : $\begin{bmatrix} n \\ r \end{bmatrix} = \begin{bmatrix} n \\ n-r \end{bmatrix}$, and for $n \ge 1$, we have the recursion formula: $\begin{bmatrix} n \\ r \end{bmatrix} = p^r \begin{bmatrix} n-1 \\ r \end{bmatrix} + \begin{bmatrix} n-1 \\ r-1 \end{bmatrix}$.

g). In the set of subspaces of V which is ordered by the inclusion, the maximal number of elements which are not comparable is $\beta_a(n, [n/2])$.

¹) The additive groups or the vector spaces over the field $\mathbf{K}_p = \mathbb{Z}/\mathbb{Z}p$ are called the elementary abelian p - groups.