MA-219 Linear Algebra

9. Dual spaces

September 24, 2003 ; Submit solutions before 11:00 AM ; October 03, 2003.

Let *K* be a field and let *V* be a *K*-vector space.

9.1. Suppose that *V* is *not* finite dimensional and let v_i , $i \in I$ be a basis of *V*. Further, let v_i^* , $i \in I$ be the coordinate functions with respect to the basis v_i $i \in I$ and $W := \sum_{i \in I} K v_i^* \subseteq V^*$ be the subspace of V^* generated by v_i^* , $i \in I$.¹)

a). The linear form $\sum_{i \in I} a_i v_i \mapsto \sum_{i \in I} a_i$ on V does not belong to W. In particular, $W \neq V^*$ and v_i^* , $i \in I$ not basis of V^* .

b). $^{\circ}W = 0$ and so $(^{\circ}W)^{\circ} = V^* \neq W$.

c). The canonical homomorphism $\sigma_V: V \to V^{**}$ is not surjective.

9.2. Let *V* be a *K*-vector space and let $f_1, \ldots, f_n \in V^*$ be linear forms on *V*. Let $f: V \to K^n$ be the homomorphism defined by $f(x) := (f_1(x), \ldots, f_n(x))$. Then $\text{Dim}(Kf_1 + \cdots + Kf_n) = \text{Dim}(\text{im } f)$. In particular, f_1, \ldots, f_n are linearly independent if and only if the homomorphism f is surjective.

9.3. Suppose that V is a finite dimensional. Then

a). For every basis f_i , $i \in I$ of V^* , there exists a (unique) basis v_i , $i \in I$ of V such that $f_i = v_i^*$, $i \in I$.

b). Dim $U = \text{Codim}(U^{\circ}, V^{*})$ for every subspace $U \subseteq V$. (**Remark**: It is enough to assume that U is finite dimensional.)

c). For subspaces $U_1, U_2 \subseteq V$ resp. $W_1, W_2 \subseteq V^*$, show that

$$(U_1 + U_2)^{\circ} = U_1^{\circ} \cap U_2^{\circ}, \qquad (U_1 \cap U_2)^{\circ} = U_1^{\circ} + U_2^{\circ}, ^{\circ}(W_1 + W_2) = {}^{\circ}W_1 \cap {}^{\circ}W_2, \qquad {}^{\circ}(W_1 \cap W_2) = {}^{\circ}W_1 + {}^{\circ}W_2.$$

9.4. Let $r \in \mathbb{N}$. The maps $W \mapsto {}^{\circ}W$ and $U \mapsto U^{\circ}$ are inverses of each other on the set of all *r*-dimensional subspaces *W* of *V*^{*} and the set of all *r*-codimensional subspaces *U* of *V*. (**Remark**: A subspace $U \subseteq V$ is called *r*-codimensional in *V* if one (and hence every) of the complement of *U* in *V* is *r*-dimensional. – the map $U \mapsto U^{\circ}$ from the set of all *r*-dimensional subspace *U* of *V* into the set of all *r*-codimensional subspaces of *V*^{*} is injective, see exercise 9.??. But not surjective in the case when *V* is not finite dimensional.)

9.5. Let $f: V \to W$ be a homomorphism of *K*-vector spaces.

a). The K-linear map f is injective resp. surjective resp. bijective resp. 0 if and only if the dual map $f^*: W^* \to V^*$ is surjective resp. injective resp. bijective resp. 0.

b). The kernel of the dual map $f^*: W^* \to V^*$ is is the space of all linear forms $g: W \to K$ on W, which vanish on the im f and so Kern $f^* = (\text{Bild } f)^\circ$. The image of f^* is the space of all linear forms $V \to K$, which vanish on the Ker f and so im $f^* = (\text{Ker } f)^\circ$.

9.6. Let x_1, \ldots, x_n be all non-zero vectors in a *K*-vector space *V* over a field *K* with at least *n* elements. Then there exists a hyperplane *H* in *V* such that the vectors $x_i \notin H$ for all $i = 1, \ldots, n$. (Hint: There exist a linear form $f: V \to K$ such that $f(x_i) \neq 0$ for all $i = 1, \ldots, n$.)

On the other side one can see (simple) test-exercises; their solutions need not be submitted.

¹) Consider in particular, the concrete situation $V := K^{(I)}$, $v_i := e_i$, $i \in I$ with $V^* \cong K^I$, $W \cong K^{(I)} \subset K^I$.

Test-Exercises

T9.1. For a subspace U of V, the following statements are equivalent:

(1) $U \neq V$ and there exists a $v \in V$ such that V = U + Kv.

(1') There exists a $v \in V$, $v \neq 0$ such that $V = U \oplus Kv$.

(2) There exists a linear form $f \neq 0$ on V such that U = Kern f. (Remark: The subspaces U with these properties are called hyperplanes in V.)

T9.2. a). If V^* is finite dimensional, then V is finite dimensional.

b). Let v_1, \ldots, v_n be a basis of V. For $a_1, \ldots, a_n \in K$, find a basis of the kernel of the linear form $a_1v_1^* + \cdots + a_nv_n^*$.

T9.3. Let *K* be a subfield of the field *L*.

a). A family $f_i \in K^D$, $i \in I$ of *K*-valued functions on *D* is linearly independent over *K* if and only if the family f_i , $i \in I$ as a family of *L*-valued functions on *D* is linearly independent over *L*. Further, $\text{Dim}_K \left(\sum_{i \in I} Kf_i \right) = \text{Dim}_L \left(\sum_{i \in I} Lf_i \right)$ for an arbitrary family $f_i \in K^D$, $i \in I$.

b). Let *W* be a *K*-subspace of the *K*-vector space K^D and $L \cdot W$ be the *L*-subspace of the *L*-vector space L^D generated by *W*. Then $K^D \cap L \cdot W = W$. (Hint: Let $f \in K^D \cap LW$, but $f \notin W$. Then *f* can be expressed as $f = c_1 f_1 + \cdots + c_r f_r$ with $c_1, \ldots, c_r \in L$ and linear independent functions $f_1, \ldots, f_r \in W$. Then *f*, f_1, \ldots, f_r are linearly independent over *K*, but are linearly dependent over *L*, a contradiction!)

9.7. (Linear Independence of functions) Let *D* be an arbitrary set and let $f_1, \ldots, f_n \in K^D$ be *K*-valued functions on *D*. Let *W* denote the subspace of K^D generated by these functions.

a). The following statements are equivalent :

(1) The functions f_1, \ldots, f_n are linearly independent in K^D .

(1') $Dim_{K}W = n$.

(2) The image of f is a generating system of K^n .

(2') There exist elements $t_1, \ldots, t_n \in D$ such that the images $f(t_i) = (f_1(t_i), \ldots, f_n(t_i))$, $i = 1, \ldots, n$, is a generating system (i.e. a basis) of K^n .

(3) There exists a subset $E \subseteq D$ with |E| = n such that the restrictions $f_1|E, \ldots, f_n|E$ are linearly independent in K^E (and hence form a basis of K^E).

(3') There exist elements $t_1, \ldots, t_n \in D$ such that the *n*-tuples $(f_j(t_1), \ldots, f_j(t_n))$, $j = 1, \ldots, n$, are linearly independent in K^n (and hence form a basis of K^n).

(4) There exist function $g_1, \ldots, g_n \in W$ and elements $t_1, \ldots, t_n \in D$ such that $g_j(t_i) = \delta_{ij}$ for $1 \le i, j \le n$. **b).** Let $f: D \to K^n$ be the map defined by $t \mapsto f(t) := (f_1(t), \ldots, f_n(t))$. Then Dim W is equal to the dimension of the subspaces of K^n generated by the image im f of f.

T9.4. (\mathbb{C} -anti-linear forms) Let V be a \mathbb{C} -Vektorraum. A \mathbb{C} -anti-linear map $V \to \mathbb{C}$ is called a \mathbb{C} -anti-linear form on V. The \mathbb{C} -vector space of the \mathbb{C} -anti-linear forms on V is denoted by \overline{V}^* .

a). $f: V \to \mathbb{C}$ is linear over \mathbb{C} if and only if $\overline{f}: V \to \mathbb{C}$ ($x \mapsto \overline{f(x)}$) is \mathbb{C} -anti-linear. The linear forms $f_i \in V^*$, $i \in I$ form a \mathbb{C} -basis of V^* if and only if the \mathbb{C} -anti-linear forms $\overline{f_i}$, $i \in I$ form a \mathbb{C} -basis of \overline{V}^* .

b). If v_i , $i \in I$ is a finite \mathbb{C} -basis of V, then $\overline{v_i^*}$, $i \in I$ is a \mathbb{C} -basis of \overline{V}^* . In particular, $\text{Dim}_{\mathbb{C}}V = \text{Dim}_{\mathbb{C}}\overline{V}^* = \text{Dim}_{\mathbb{C}}\overline{V}^*$ for every finite dimensional \mathbb{C} -vector spaces V.

c). Hom_{\mathbb{R}} $(V, \mathbb{C}) = V^* \oplus \overline{V}^* \ (\subseteq \mathbb{C}^V)$.

T9.5. Let $K \subseteq L$ be a field extension and let V be a L-vector space (and hence it is also a K-vector space by the restriction of scalars). Further, let $\sigma : L \to K$ be a K-linear form $\neq 0$. (**Remark**: Such a function is also called a generalised trace function. In the case $\mathbb{R} \subseteq \mathbb{C}$ one may choose $\sigma := \text{Re}$.)Hom_K(V, K) is L-vector space with scalar multiplication (bf)(x) := f(bx) for $b \in L, x \in V$ and $f \in \text{Hom}_K(V, K)$.

a). Let $[L : K] < \infty$. Then the map $\operatorname{Hom}_L(V, L) \xrightarrow{\sim} \operatorname{Hom}_K(V, K)$ defined by $f \mapsto \sigma \circ f$ is an isomorphism of *L*-vector spaces. (Hint: With the help of a *L*-basis of *V* one can reduce to the case V = L. In this case use a dimension-argument. In the case $\mathbb{R} \subseteq \mathbb{C}$ and $\sigma := \operatorname{Re}$ the map $g \mapsto (x \mapsto g(x) - i g(ix))$ is the inverse map.)

b). If $[L:K] < \infty$. Then every *K*-subspace $U \subseteq V$ with $\operatorname{Codim}_{K}(U, V) = r \in \mathbb{N}$ is contain a *L*-subspace U' with $\operatorname{Codim}_{L}(U', V) \leq r$. (See exercise 9.4.)

c). There exists a Q-hyperplane H in \mathbb{R}^2 such that H donot contain any \mathbb{R} -hyperplane in \mathbb{R}^2 .