MA-219 Linear Algebra

9. Dual spaces

September 24, 2003 ; Submit solutions before 11:00 AM ; October 03, 2003.
Let K be a field and let V be a K-vector space.
9.1. Suppose that V is not finite dimensional and let $v_{i}, i \in I$ be a basis of V. Further, let v_{i}^{*}, $i \in I$ be the coordinate functions with respect to the basis $v_{i} i \in I$ and $W:=\sum_{i \in I} K v_{i}^{*} \subseteq V^{*}$ be the subspace of V^{*} generated by $v_{i}^{*}, i \in I .^{1}$)
a). The linear form $\sum_{i \in I} a_{i} v_{i} \longmapsto \sum_{i \in I} a_{i}$ on V does not belong to W. In particular, $W \neq V^{*}$ and $v_{i}^{*}, i \in I$ not basis of V^{*}.
b). ${ }^{\circ} W=0$ and so $\left({ }^{\circ} W\right)^{\circ}=V^{*} \neq W$.
c). The cannonical homomorphism $\sigma_{V}: V \rightarrow V^{* *}$ is not surjective.
9.2. Let V be a K-vector space and let $f_{1}, \ldots, f_{n} \in V^{*}$ be linear forms on V. Let $f: V \rightarrow K^{n}$ be the homomorphism defined by $f(x):=\left(f_{1}(x), \ldots, f_{n}(x)\right)$. Then $\operatorname{Dim}\left(K f_{1}+\cdots+K f_{n}\right)=$ $\operatorname{Dim}(\operatorname{im} f)$. In particular, f_{1}, \ldots, f_{n} are linearly independent if and only if the homomorphism f is surjective.
9.3. Suppose that V is a finite dimensional. Then
a). For every basis $f_{i}, i \in I$ of V^{*}, there exists a (unique) basis $v_{i}, i \in I$ of V such that $f_{i}=v_{i}^{*}, i \in I$.
b). $\operatorname{Dim} U=\operatorname{Codim}\left(U^{\circ}, V^{*}\right)$ for every subspace $U \subseteq V$. (Remark: It is enough to assume that U is finite dimensional.)
c). For subspaces $U_{1}, U_{2} \subseteq V$ resp. $W_{1}, W_{2} \subseteq V^{*}$, show that

$$
\begin{array}{ll}
\left(U_{1}+U_{2}\right)^{\circ}=U_{1}^{\circ} \cap U_{2}^{\circ}, & \\
{ }^{\circ}\left(U_{1} \cap U_{2}\right)^{\circ}=U_{1}^{\circ}+U_{2}^{\circ}, \\
\left.W_{2}\right)={ }^{\circ} W_{1} \cap{ }^{\circ} W_{2}, & { }^{\circ}\left(W_{1} \cap W_{2}\right)={ }^{\circ} W_{1}+{ }^{\circ} W_{2} .
\end{array}
$$

9.4. Let $r \in \mathbb{N}$. The maps $W \mapsto{ }^{\circ} W$ and $U \mapsto U^{\circ}$ are inverses of each other on the set of all r-dimensional subspaces W of V^{*} and the set of all r-codimensional subspaces U of V. (Remark: A subspace $U \subseteq V$ is called r-codimensional in V if one (and hence every) of the complement of U in V is r-dimensional. - the map $U \mapsto U^{\circ}$ from the set of all r-dimensional subspace U of V into the set of all r-codimensional subspaces of V^{*} is injective, see exercise 9.??. But not surjective in the case when V is not finite dimensional.)
9.5. Let $f: V \rightarrow W$ be a homomorphism of K-vector spaces.
a). The K-linear map f is injective resp. surjective resp. bijective resp. 0 if and only if the dual map $f^{*}: W^{*} \rightarrow V^{*}$ is surjective resp. injective resp. bijective resp. 0.
b). The kernel of the dual map $f^{*}: W^{*} \rightarrow V^{*}$ is is the space of all linear forms $g: W \rightarrow K$ on W, which vanish on the $\operatorname{im} f$ and so $\operatorname{Kern} f^{*}=(\operatorname{Bild} f)^{\circ}$. The image of f^{*} is the space of all linear forms $V \rightarrow K$, which vanish on the $\operatorname{Ker} f$ and so $\operatorname{im} f^{*}=(\operatorname{Ker} f)^{\circ}$.
9.6. Let x_{1}, \ldots, x_{n} be all non-zero vectors in a K-vector space V over a field K with at least n elements. Then there exists a hyperplane H in V such that the vectors $x_{i} \notin H$ for all $i=1, \ldots, n$. (Hint: There exist a linear form $f: V \rightarrow K$ such that $f\left(x_{i}\right) \neq 0$ for all $i=1, \ldots, n$.)

On the other side one can see (simple) test-exercises ; their solutions need not be submitted.

[^0]
Test-Exercises

T9.1. For a subspace U of V, the following statements are equivalent:
(1) $U \neq V$ and there exists a $v \in V$ such that $V=U+K v$.
(1') There exists a $v \in V, v \neq 0$ such that $V=U \oplus K v$.
(2) There exists a linear form $f \neq 0$ on V such that $U=\operatorname{Kern} f$. (Remark: The subspaces U with these properties are called hyperplanes in V.)

T9.2. a). If V^{*} is finite dimensional, then V is finite dimensional.
b). Let v_{1}, \ldots, v_{n} be a basis of V. For $a_{1}, \ldots, a_{n} \in K$, find a basis of the kernel of the linear form $a_{1} v_{1}^{*}+\cdots+a_{n} v_{n}^{*}$.
T9.3. Let K be a subfield of the field L.
a). A family $f_{i} \in K^{D}, i \in I$ of K-valued functions on D is linearly independent over K if and only if the family $f_{i}, i \in I$ as a family of L-valued functions on D is linearly independent over L. Further, $\operatorname{Dim}_{K}\left(\sum_{i \in I} K f_{i}\right)=\operatorname{Dim}_{L}\left(\sum_{i \in I} L f_{i}\right)$ for an arbitrary family $f_{i} \in K^{D}, i \in I$.
b). Let W be a K-subspace of the K-vector space K^{D} and $L \cdot W$ be the L-subspace of the L-vector space L^{D} generated by W. Then $K^{D} \cap L \cdot W=W$. (Hint: Let $f \in K^{D} \cap L W$, but $f \notin W$. Then f can be expressed as $f=c_{1} f_{1}+\cdots+c_{r} f_{r}$ with $c_{1}, \ldots, c_{r} \in L$ and linear independent functions $f_{1}, \ldots, f_{r} \in W$. Then f, f_{1}, \ldots, f_{r} are linearly independent over K, but are linearly dependent over L, a contradiction!)
9.7. (Linear Independence of functions) Let D be an arbitrary set and let $f_{1}, \ldots, f_{n} \in K^{D}$ be K-valued functions on D. Let W denote the subspace of K^{D} generated by these functions.
a). The following statements are equivalent:
(1) The functions f_{1}, \ldots, f_{n} are linearly independent in K^{D}.
(1') $\operatorname{Dim}_{K} W=n$.
(2) The image of f is a generating system of K^{n}.
(2') There exist elements $t_{1}, \ldots, t_{n} \in D$ such that the images $f\left(t_{i}\right)=\left(f_{1}\left(t_{i}\right), \ldots, f_{n}\left(t_{i}\right)\right), i=1, \ldots, n$, is a generating system (i.e. a basis) of K^{n}.
(3) There exists a subset $E \subseteq D$ with $|E|=n$ such that the restrictions $f_{1}\left|E, \ldots, f_{n}\right| E$ are linearly independent in K^{E} (and hence form a basis of K^{E}).
(3') There exist elements $t_{1}, \ldots, t_{n} \in D$ such that the n-tuples $\left(f_{j}\left(t_{1}\right), \ldots, f_{j}\left(t_{n}\right)\right), j=1, \ldots, n$, are linearly independent in K^{n} (and hence form a basis of K^{n}).
(4) There exist function $g_{1}, \ldots, g_{n} \in W$ and elements $t_{1}, \ldots t_{n} \in D$ such that $g_{j}\left(t_{i}\right)=\delta_{i j}$ for $1 \leq i, j \leq n$.
b). Let $f: D \rightarrow K^{n}$ be the map defined by $t \mapsto f(t):=\left(f_{1}(t), \ldots, f_{n}(t)\right)$. Then $\operatorname{Dim} W$ is equal to the dimension of the subspaces of K^{n} generated by the image im f of f.

T9.4. (\mathbb{C}-anti-linear forms) Let V be a \mathbb{C}-Vektorraum. A \mathbb{C}-anti-linear map $V \rightarrow \mathbb{C}$ is called a \mathbb{C} -anti-linear form on V. The \mathbb{C}-vector space of the \mathbb{C}-anti-linear forms on V is denoted by \bar{V}^{*}.
a). $\quad f: V \rightarrow \mathbb{C}$ is linear over \mathbb{C} if and only if $\bar{f}: V \rightarrow \mathbb{C}(x \mapsto \overline{f(x)})$ is \mathbb{C}-anti-linear. The linear forms $f_{i} \in V^{*}, i \in I$ form a \mathbb{C}-basis of V^{*} if and only if the \mathbb{C}-anti-linear forms $\bar{f}_{i}, i \in I$ form a \mathbb{C}-basis of \bar{V}^{*}.
b). If $v_{i}, i \in I$ is a finite \mathbb{C}-basis of V, then $\overline{v_{i}^{*}}, i \in I$ is a \mathbb{C}-basis of \bar{V}^{*}. In particular, $\operatorname{Dim}_{\mathbb{C}} V=$ $\operatorname{Dim}_{\mathbb{C}} V^{*}=\operatorname{Dim}_{\mathbb{C}} \bar{V}^{*}$ for every finite dimensional \mathbb{C}-vector spaces V.
c). $\operatorname{Hom}_{\mathbb{R}}(V, \mathbb{C})=V^{*} \oplus \bar{V}^{*}\left(\subseteq \mathbb{C}^{V}\right)$.

T9.5. Let $K \subseteq L$ be a field extension and let V be a L-vector space (and hence it is also a K-vector space by the restriction of scalars). Further, let $\sigma: L \rightarrow K$ be a K-linear form $\neq 0$. (Remark: Such a function is also called a generalised trace function. In the case $\mathbb{R} \subseteq \mathbb{C}$ one may choose $\sigma:=\operatorname{Re}.) \operatorname{Hom}_{K}(V, K)$ is L-vector space with scalar multiplication $(b f)(x):=f(b x)$ for $b \in L, x \in V$ and $f \in \operatorname{Hom}_{K}(V, K)$.
a). Let $[L: K]<\infty$. Then the map $\operatorname{Hom}_{L}(V, L) \xrightarrow{\sim} \operatorname{Hom}_{K}(V, K)$ defined by $f \mapsto \sigma \circ f$ is an isomorphism of L-vector spaces. (Hint: With the help of a L-basis of V one can reduce to the case $V=L$. In this case use a dimension-argument. In the case $\mathbb{R} \subseteq \mathbb{C}$ and $\sigma:=\operatorname{Re}$ the map $g \longmapsto(x \mapsto g(x)-\mathrm{i} g(\mathrm{i} x))$ is the inverse map.)
b). If $[L: K]<\infty$. Then every K-subspace $U \subseteq V$ with $\operatorname{Codim}_{K}(U, V)=r \in \mathbb{N}$ is contain a L-subspace U^{\prime} with $\operatorname{Codim}_{L}\left(U^{\prime}, V\right) \leq r$. (See exercise 9.4.)
c). There exists a \mathbb{Q}-hyperplane H in \mathbb{R}^{2} such that H donot contain any \mathbb{R}-hyperplane in \mathbb{R}^{2}.

[^0]: ${ }^{1}$) Consider in particular, the concrete situation $V:=K^{(I)}, v_{i}:=e_{i}, i \in I$ with $V^{*} \cong K^{I}, W \cong K^{(I)} \subset K^{I}$.

