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Let K denote a field and letV denote aK-vector space.

10.1. Let n ∈ N. A subspaceU of theK-vector spaceV has codimensionn if and only there
existsn linearly independent linear formsf1, . . . , fn onV such thatU = ⋂n

i=1 Kernfi .

10.2. Let U1, . . . , Un be finite codimensional subspaces ofV and letU := ⋂n
i=1 Ui . Further, let

U ′
i := ⋂

j �=i Uj , i = 1, . . . , n.

a). U is finite codimensional and Codim(U, V ) ≤ ∑n
i=1 Codim(Ui , V ) .

b). The following statements are equivalent :

(1) The inequality in the part a) is an equality.
(2) The canonical homomorphismV/U → ⊕n

i=1 V/Ui is an isomorphism.
(3) Ui + U ′

i = V for all i = 1, . . . , n.
(4) Es istU ′

1 + · · · + U ′
n = V .

(5) The sum of the subspacesU ◦
i , i = 1, . . . , n, in V ∗ is direct.

c). Let f :V → W be a linear map of finite dimensionalK-vector spaces. Then

Dim kerf − Dim Cokerf = Dim V − Dim W .

10.3. Let f be an operator onV . Then the following statements are equivalent:

(1) f induces an automorphism of imf .
(2) f induces an automorphism ofV/ kerf .
(3) V = im f ⊕ Kernf .
(4) kerf has af -invariant complementW such thatf |W is an automorphismus ofW . (Remark :

The subspaceW in (4) must be imf .)

10.4. ( E u l e r - P o i n c a r ´e - C h a r a c t e r i s t i c ) Let

V• : 0 −→ Vn −→ Vn−1 −→ · · · −→ V1 −→ V0 −→ 0

be a complex of finite dimensionalK-vector spaces and letH0, H1, . . . , Hn−1, Hn be the corre-
sponding homology spaces. Then

n∑

i=0

(−1)i DimKHi =
n∑

i=0

(−1)i DimKVi .

(Remark : The alternating sum on the left hand side is called theE u l e r - P o i n c a r é - C h a r a c t e r i s t i c
of the complexV• and is usually denoted byχ(V•) . This can be defined if the homology spacesHi ,
i = 0, . . . , n are finite dimensional .)

10.5. ( I ndex o f a l i nea r map) If the kernel and the cokernel of aK-linear mapf :V → W

are finite dimensional, then we say thatf has a index and Indf := DimK Kerf −DimK Cokerf
is called thei n d e x o f f . (Remark : In this case Indf is also the Euler-Poincaré-Characteristic of

th complex 0−→ V 0 f 0
−→ V 1 −→ 0 , whereV 0 := V , V 1 := W , f 0 := f . )

a). If V andW are finite dimensional, then Indf = DimKV − DimKW .

b). Let
0 −−−−−−−−−−−−−−−−−−−−−−−� Vn −−−−−−−−−−−−−−−−−−−−−−−� · · · −−−−−−−−−−−−−−−−−−−−−−−� V0 −−−−−−−−−−−−−−−−−−−−−−−� 0

fn �
f0 �

0 −−−−−−−−−−−−−−−−−−−−−−−� Wn −−−−−−−−−−−−−−−−−−−−−−−� · · · −−−−−−−−−−−−−−−−−−−−−−−� W0 −−−−−−−−−−−−−−−−−−−−−−−� 0
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be a commutative diagramm ofK-vector spaces andK-linear maps with exact rows. Then all
but at most of the linear mapsf0, . . . , fn have an index, then all these maps have an index and∑n

i=0 Indfi = 0 . (Hint : Prove the assertion by induction onn. In the casen = 2, use the snake-lemma
from exercise T10.4.)

c). If f :V → W andg :W → X have index, then the compositegf :V → X also has an index
and Indgf = Indg + Indf . (Hint : Consider the following commutative diagramm :

0 −−−−−−−−−−−−−−−−−� Kerf −−−−−−−−−−−−−−−−−−−−−−−−−−−� V −−−−−−−−−−−−−f−−−−−−−−−−−−−−� W −−−−−−−−−−−−−−−−−−−−−−−−−−−� Cokerf −−−−−−−−−−−−−−−−−� 0

�
id

�
g

�
g

�
0 −−−−−−−−−−−−−−−−−� Kergf −−−−−−−−−−−−−−−−−−−−−−−−−−−� V −−−−−−−−−−−−−gf−−−−−−−−−−−−−−� X −−−−−−−−−−−−−−−−−−−−−−−−−−−� Cokergf −−−−−−−−−−−−−−−−−� 0 . )

d). If f :V → W has an index and ifg :V → W has a finite rank, thenf + g has an index and
Ind (f + g) = Indf . (Hint : Let U := im g and(f, g)(x) := (

f (x) , g(x)
)

and consider the
commutative diagramms:

0 −−−−−−−−−−−−−−−−−� 0 −−−−−−−−−−−−−−−−−−−−−−−−−−−� V −−−−−−−−−−−−−id−−−−−−−−−−−−−−� V −−−−−−−−−−−−−−−−−� 0

�
(f,g)

�
f +g

�
0 −−−−−−−−−−−−−−−−−� U −−−−−−−−−−−−−−−−−� W ⊕ U −−−−−−−−−−−−−−−−−� W −−−−−−−−−−−−−−−−−� 0 and

0 −−−−−−−−−−−−−−−−−� 0 −−−−−−−−−−−−−−−−−−−−−−−−−−−� V −−−−−−−−−−−−−id−−−−−−−−−−−−−−� V −−−−−−−−−−−−−−−−−� 0

�
(f,g)

�
f

�
0 −−−−−−−−−−−−−−−−−� U −−−−−−−−−−−−−−−−−� W ⊕ U −−−−−−−−−−−−−−−−−� W −−−−−−−−−−−−−−−−−� 0 . )

e). The mapf :V → W has an index if and only if the dual mapf ∗ :W ∗ → V ∗ has an index and in this
case Indf ∗ = −Indf .

10.6. Let V ′ → V → V ′′ be a complex ofK-vector spaces with the homology spaceH and let
X be an anotherK-vector space. Then the homology spaces of the complexes

HomK(V ′′, X) −→ HomK(V, X) −→ HomK(V ′, X) ,

HomK(X, V ′) −→ HomK(X, V ) −→ HomK(X, V ′′)

are canonically isomorphic to HomK(H, X) resp. to HomK(X, H) . In particular, ifX �= 0, then
from the exactness of one the Hom-Sequence, the exactness of the other follows.

On the other side one can see (simple) test-exercises ; their solutions need not be submitted.
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Test-Exercises

T10.1. Let U, W be subspaces of theK-vector spaceV with U ⊆ W . If W ′ is a complement ofW in V ,
then(U + W ′)/U is a complement ofW/U in V/U , which is isomorphic toW ′

T10.2. a). Letϕ :V → V ′ be a homomorphism ofK-vector spaces and letU resp.U ′ be subspaces ofV resp.
V ′ with ϕ(U) ⊆ U ′. Thenϕ induces a homomorphismϕ :V/U → V ′/U ′ such thatϕ(x + U) = ϕ(x) + U ′,
i.e. the following diagram is commutative.

V −−−−−−−−−−−−−ϕ−−−−−−−−−−−−−−� V ′

π

�
π

�
V/U −− ϕ−−−� V ′/U ′

b). ( N o e t h e r ’s i s o m o r p h i s m t h e o r e m ) LetU andW be subspaces ofK-vector spaceV . The
natural injective mapι : U → U + W induces an isomorphismι : U/(U ∩ W) ∼= (U + W)/W . The
following diagram is commutative.

U −−−−−−−−−−−−−ι−−−−−−−−−−−−−−� U + W

π

�
π

�
U/(U ∩ W) −− ι−−−� (U + W)/W

c). LetU andW be subspaces of theK-vector spaceV with W ⊆ U . Then the indentity map ofV induces a
homomorphismV/W → V/U and futher induces an isomorphism(V/W)/(U/W) ∼= V/U . The following
diagram is commutative.

V −−−−−−−−−−−−−idV−−−−−−−−−−−−−−� V

π

�
π

�
V/W −−idV−−−� V/U

π

� idV�����

(V/W)/(U/W)

T10.3. Let H andF be subgroups of the abelain groupG. Then the sequences

0 −→ H ∩ F
f−→ H ⊕ F

g−→ H + F −→ 0

with f (x) = (x, −x) undg(y, z) = y + z and

0 −→ G/(H ∩ F)
h−→ (G/H) ⊕ (G/F)

k−→ G/(H + F) −→ 0

with h(x) = (x , −x) undk(y , z) = y + z are exact.

T10.4. ( S n a k e - l e m m a )Suppose that the diagram

G′ −−−−−−−−−−−−−g
′

−−−−−−−−−−−−−−� G −−−−−−−−−−−−−g−−−−−−−−−−−−−−� G′′ −−−−−−−−−−−−−−−−−� 0

h′
�

h
� h′′

�
0 −−−−−−−−−−−−−−−−−� F ′ −−−−−−−−−−−−−f

′
−−−−−−−−−−−−−−� F −−−−−−−−−−−−−f−−−−−−−−−−−−−−� F ′′

of abelain groups and group homomorphisms is commutative and its rows are exact. Then the complexes

Kerh′ g′
−→ Kerh

g−→ Kerh′′ and Cokerh′ f
′

−→ Cokerh
f−→ Cokerh′′ ,

are exact. Further (more important), there is a canonical homomorphismδ :Kernh′′ −→ Kokernh′ which
connects both the exact sequences to a long exact seqeunce called theexac t Ke r -Coke r - sequence1).

Kerh′ g′
−→ Kerh

g−→ Kerh′′ −− δ−−−� Cokerh′ f
′

−→ Cokerh
f−→ Cokerh′′ ,

1) This exact sequence explains the name “Snake-lemma”.
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The homomorphismδ is called thec o n n e c t i n g h o m o m o r p h i s m u . (Proof Defineδ as follows: Let
x ′′ ∈ Kernh′′. Sinceg is surjective, there existsx ∈ G with g(x) = x ′′. Thenf h(x) = h′′g(x) = h′′(x ′′) = 0,
and soh(x) ∈ Kerf = im f ′ andh(x) = f ′(y ′) with (unique)y ′ ∈ F ′. Defineδ(x ′′) := y ′ ∈ Kokernh′ =
F ′/Bild h′. The imageδ(x ′′) does not depend on the choice of the inverse imagex of x ′′. For, if g(̃x) = x ′′,
thenx − x̃ ∈ Kerg = im g′, i.e.x − x̃ = g′(x ′) and forỹ ′ ∈ F ′ with h(̃x) = f ′(̃y ′) gilt y ′ − ỹ ′ = h′(x ′) ,
thereforey ′ = ỹ ′ in F ′/im h′.

It can be easily checked thatδ is a homomorphism. Further, the exactness of the above long seqeunce at the
places Kerh′′ and Cokerh′ can be easily verified byd i a g r a m c h a s i n g(similar to the above proof of
independence and the proof of exactness at the other places.)

If g′ is injective resp. f is surjective, then Kerh′ −→ Kerh is injective resp. Cokerh −→ Cokerh′′ is
surjective.

T10.5. (F ive-Lemma)Suppose that the following diagram of abelian groups and group homomorphisms

G5 −−−−−−−−−−−−−−−−−−−−−−−−−−−� G4 −−−−−−−−−−−−−−−−−−−−−−−−−−−� G3 −−−−−−−−−−−−−−−−−−−−−−−−−−−� G2 −−−−−−−−−−−−−−−−−−−−−−−−−−−� G1

h5 �
h4 �

h3 �
h2 �

h1 �
F5 −−−−−−−−−−−−−−−−−−−−−−−−−−−� F4 −−−−−−−−−−−−−−−−−−−−−−−−−−−� F3 −−−−−−−−−−−−−−−−−−−−−−−−−−−� F2 −−−−−−−−−−−−−−−−−−−−−−−−−−−� F1

has exact rows. Then :

a). If h2 andh4 are injective andh5 is surjective, thenh3 injective.

b). If h2 andh4 are surjective andh1 is injective, thenh3 is surjective.

c). If h1, h2, h4, h5 are bijective, thenh3 is bijektive.

T10.6. Let 0 −→ Gn −→ · · · −→ G0 −→ 0 be a complex of finite abelian groups with the homology
groupsH0, . . . , Hn . Then

∏n

i=0 |Hi |(−1)i = ∏n

i=0 |Gi |(−1)i . (Hint : Use the exercise 10.4. )

T10.7. ( H e r b r a n d - Q u o t i e n t s ) If the kernel and cokernel of a homomorphismh :G → F of abelian
groups are finite, then we say thath has a H e r b r a n d - Q u o t i e n t s anddefine this by

q(h) := |Kerh|/|Kokerh| .

a). If G andF are finite then q(h) = |G|/|F | .

b). Let
0 −−−−−−−−−−−−−−−−−−−−−−−−−−−� Gn −−−−−−−−−−−−−−−−−−−−−−−−−−−� · · · −−−−−−−−−−−−−−−−−−−−−−−−−−−� G0 −−−−−−−−−−−−−−−−−−−−−−−−−−−� 0

hn �
h0 �

0 −−−−−−−−−−−−−−−−−−−−−−−−−−−� Fn −−−−−−−−−−−−−−−−−−−−−−−−−−−� · · · −−−−−−−−−−−−−−−−−−−−−−−−−−−� F0 −−−−−−−−−−−−−−−−−−−−−−−−−−−� 0

be a commutative diagramm of abelian groups and group homomorphisms. If all but at most one of
homomorphismsh1, . . . , hn have a Herbrand-Quotients, then all have Herbrand-Quotients and

n∏

i=0

q(hi)
(−1)i = 1.

c). If h : G → F and j : F → E have a Herbrand-Quotients then the composite homomorphismus
jh :G → E also have Herbrand-Quotient and q(jh) = q(j) q(h) .

d). If h :G → F has a Herbrand-Quotient and ifj :G → F is a homomorphism with a finite image, then
h + j has a Herbrand-Quotient and q(h + j) = q(h) .
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