

MA-219 Linear Algebra**10. Quotient spaces – Exact sequences**

September 24, 2003 ; Submit solutions **before 11:00 AM ; October 03, 2003.**

Let K denote a field and let V denote a K -vector space.

10.1. Let $n \in \mathbb{N}$. A subspace U of the K -vector space V has codimension n if and only there exists n linearly independent linear forms f_1, \dots, f_n on V such that $U = \bigcap_{i=1}^n \text{Kern } f_i$.

10.2. Let U_1, \dots, U_n be finite codimensional subspaces of V and let $U := \bigcap_{i=1}^n U_i$. Further, let $U'_i := \bigcap_{j \neq i} U_j$, $i = 1, \dots, n$.

a). U is finite codimensional and $\text{Codim}(U, V) \leq \sum_{i=1}^n \text{Codim}(U_i, V)$.

b). The following statements are equivalent :

- (1) The inequality in the part a) is an equality.
- (2) The canonical homomorphism $V/U \rightarrow \bigoplus_{i=1}^n V/U_i$ is an isomorphism.
- (3) $U_i + U'_i = V$ for all $i = 1, \dots, n$.
- (4) Es ist $U'_1 + \dots + U'_n = V$.
- (5) The sum of the subspaces U_i° , $i = 1, \dots, n$, in V^* is direct.

c). Let $f: V \rightarrow W$ be a linear map of finite dimensional K -vector spaces. Then

$$\text{Dim } \ker f - \text{Dim } \text{Coker } f = \text{Dim } V - \text{Dim } W.$$

10.3. Let f be an operator on V . Then the following statements are equivalent:

- (1) f induces an automorphism of $\text{im } f$.
- (2) f induces an automorphism of $V/\ker f$.
- (3) $V = \text{im } f \oplus \text{Kern } f$.

(4) $\ker f$ has a f -invariant complement W such that $f|W$ is an automorphism of W . (Remark: The subspace W in (4) must be $\text{im } f$.)

10.4. (Euler-Poincaré-Characteristic) Let

$$V_\bullet: 0 \longrightarrow V_n \longrightarrow V_{n-1} \longrightarrow \dots \longrightarrow V_1 \longrightarrow V_0 \longrightarrow 0$$

be a complex of finite dimensional K -vector spaces and let $H_0, H_1, \dots, H_{n-1}, H_n$ be the corresponding homology spaces. Then

$$\sum_{i=0}^n (-1)^i \text{Dim}_K H_i = \sum_{i=0}^n (-1)^i \text{Dim}_K V_i.$$

(Remark: The alternating sum on the left hand side is called the Euler-Poincaré-Characteristic of the complex V_\bullet and is usually denoted by $\chi(V_\bullet)$. This can be defined if the homology spaces H_i , $i = 0, \dots, n$ are finite dimensional.)

10.5. (Index of a linear map) If the kernel and the cokernel of a K -linear map $f: V \rightarrow W$ are finite dimensional, then we say that f has a index and $\text{Ind } f := \text{Dim}_K \text{Ker } f - \text{Dim}_K \text{Coker } f$ is called the index of f . (Remark: In this case $\text{Ind } f$ is also the Euler-Poincaré-Characteristic of the complex $0 \longrightarrow V^0 \xrightarrow{f^0} V^1 \longrightarrow 0$, where $V^0 := V$, $V^1 := W$, $f^0 := f$.)

a). If V and W are finite dimensional, then $\text{Ind } f = \text{Dim}_K V - \text{Dim}_K W$.

b). Let

$$\begin{array}{ccccccc} 0 & \longrightarrow & V_n & \longrightarrow & \dots & \longrightarrow & V_0 & \longrightarrow & 0 \\ & & f_n \downarrow & & & & f_0 \downarrow & & \\ 0 & \longrightarrow & W_n & \longrightarrow & \dots & \longrightarrow & W_0 & \longrightarrow & 0 \end{array}$$

be a commutative diagramm of K -vector spaces and K -linear maps with exact rows. Then all but at most of the linear maps f_0, \dots, f_n have an index, then all these maps have an index and $\sum_{i=0}^n \text{Ind } f_i = 0$. (**Hint:** Prove the assertion by induction on n . In the case $n = 2$, use the snake-lemma from exercise T10.4.)

c). If $f:V \rightarrow W$ and $g:W \rightarrow X$ have index, then the composite $gf:V \rightarrow X$ also has an index and $\text{Ind } gf = \text{Ind } g + \text{Ind } f$. **(Hint:** Consider the following commutative diagramm:

$$\begin{array}{ccccccc}
 0 & \longrightarrow & \text{Ker } f & \longrightarrow & V & \xrightarrow{f} & \text{Coker } f & \longrightarrow 0 \\
 & & \downarrow & & \text{id} \downarrow & & \bar{g} \downarrow \\
 0 & \longrightarrow & \text{Ker } gf & \longrightarrow & V & \xrightarrow{gf} & X & \longrightarrow \text{Coker } gf & \longrightarrow 0
 \end{array}$$

d). If $f : V \rightarrow W$ has an index and if $g : V \rightarrow W$ has a finite rank, then $f + g$ has an index and $\text{Ind}(f + g) = \text{Ind } f$. **(Hint:** Let $U := \text{im } g$ and $(f, g)(x) := (f(x), g(x))$ and consider the commutative diagramms:

$$\begin{array}{ccccccc}
0 & \longrightarrow & 0 & \longrightarrow & V & \xrightarrow{\text{id}} & V \longrightarrow 0 \\
& & \downarrow & & \downarrow (f,g) & & \downarrow f+g \\
0 & \longrightarrow & U & \longrightarrow & W \oplus U & \longrightarrow & W \longrightarrow 0
\end{array}
\quad \text{and} \quad
\begin{array}{ccccccc}
0 & \longrightarrow & 0 & \longrightarrow & V & \xrightarrow{\text{id}} & V \longrightarrow 0 \\
& & \downarrow & & \downarrow (f,g) & & \downarrow f \\
0 & \longrightarrow & U & \longrightarrow & W \oplus U & \longrightarrow & W \longrightarrow 0
\end{array} \dots$$

e). The map $f: V \rightarrow W$ has an index if and only if the dual map $f^*: W^* \rightarrow V^*$ has an index and in this case $\text{Ind } f^* = -\text{Ind } f$.

10.6. Let $V' \rightarrow V \rightarrow V''$ be a complex of K -vector spaces with the homology space H and let X be an another K -vector space. Then the homology spaces of the complexes

$$\begin{aligned} \text{Hom}_K(V'', X) &\longrightarrow \text{Hom}_K(V, X) \longrightarrow \text{Hom}_K(V', X), \\ \text{Hom}_K(X, V') &\longrightarrow \text{Hom}_K(X, V) \longrightarrow \text{Hom}_K(X, V'') \end{aligned}$$

are canonically isomorphic to $\text{Hom}_K(H, X)$ resp. to $\text{Hom}_K(X, H)$. In particular, if $X \neq 0$, then from the exactness of one the Hom-Sequence, the exactness of the other follows.

On the other side one can see (simple) test-exercises ; their solutions need not be submitted.

Test-Exercises

T10.1. Let U, W be subspaces of the K -vector space V with $U \subseteq W$. If W' is a complement of W in V , then $(U + W')/U$ is a complement of W/U in V/U , which is isomorphic to W'

T10.2. a). Let $\varphi: V \rightarrow V'$ be a homomorphism of K -vector spaces and let U resp. U' be subspaces of V resp. V' with $\varphi(U) \subseteq U'$. Then φ induces a homomorphism $\bar{\varphi}: V/U \rightarrow V'/U'$ such that $\bar{\varphi}(x + U) = \varphi(x) + U'$, i.e. the following diagram is commutative.

$$\begin{array}{ccc} V & \xrightarrow{\varphi} & V' \\ \pi \downarrow & & \downarrow \pi \\ V/U & \dashrightarrow \bar{\varphi} & V'/U' \end{array}$$

b). (Noether's isomorphism theorem) Let U and W be subspaces of K -vector space V . The natural injective map $\iota: U \rightarrow U + W$ induces an isomorphism $\bar{\iota}: U/(U \cap W) \cong (U + W)/W$. The following diagram is commutative.

$$\begin{array}{ccc} U & \xrightarrow{\iota} & U + W \\ \pi \downarrow & & \downarrow \pi \\ U/(U \cap W) & \dashrightarrow \bar{\iota} & (U + W)/W \end{array}$$

c). Let U and W be subspaces of the K -vector space V with $W \subseteq U$. Then the identity map of V induces a homomorphism $V/W \rightarrow V/U$ and further induces an isomorphism $(V/W)/(U/W) \cong V/U$. The following diagram is commutative.

$$\begin{array}{ccc} V & \xrightarrow{\text{id}_V} & V \\ \pi \downarrow & & \downarrow \pi \\ V/W & \dashrightarrow \bar{\text{id}}_V & V/U \\ \pi \downarrow & & \swarrow \bar{\text{id}}_V \\ (V/W)/(U/W) & & \end{array}$$

T10.3. Let H and F be subgroups of the abelian group G . Then the sequences

$$0 \longrightarrow H \cap F \xrightarrow{f} H \oplus F \xrightarrow{g} H + F \longrightarrow 0$$

with $f(x) = (x, -x)$ und $g(y, z) = y + z$ and

$$0 \longrightarrow G/(H \cap F) \xrightarrow{h} (G/H) \oplus (G/F) \xrightarrow{k} G/(H + F) \longrightarrow 0$$

with $h(\bar{x}) = (\bar{x}, -\bar{x})$ und $k(\bar{y}, \bar{z}) = \bar{y} + \bar{z}$ are exact.

T10.4. (Snake-lemma) Suppose that the diagram

$$\begin{array}{ccccccc} G' & \xrightarrow{g'} & G & \xrightarrow{g} & G'' & \longrightarrow & 0 \\ h' \downarrow & & h \downarrow & & h'' \downarrow & & \\ 0 & \longrightarrow & F' & \xrightarrow{f'} & F & \xrightarrow{f} & F'' \end{array}$$

of abelian groups and group homomorphisms is commutative and its rows are exact. Then the complexes

$$\text{Ker } h' \xrightarrow{g'} \text{Ker } h \xrightarrow{g} \text{Ker } h'' \quad \text{and} \quad \text{Coker } h' \xrightarrow{\bar{f}'} \text{Coker } h \xrightarrow{\bar{f}} \text{Coker } h'',$$

are exact. Further (more important), there is a canonical homomorphism $\delta: \text{Kern } h'' \longrightarrow \text{Kokern } h'$ which connects both the exact sequences to a long exact sequence called the exact Ker-Coker-sequence¹.

$$\text{Ker } h' \xrightarrow{g'} \text{Ker } h \xrightarrow{g} \text{Ker } h'' \dashrightarrow \text{Coker } h' \xrightarrow{\bar{f}'} \text{Coker } h \xrightarrow{\bar{f}} \text{Coker } h'',$$

¹⁾ This exact sequence explains the name “Snake-lemma”.

The homomorphism δ is called the connecting homomorphism. (**Proof** Define δ as follows: Let $x'' \in \text{Kern } h''$. Since g is surjective, there exists $x \in G$ with $g(x) = x''$. Then $fh(x) = h''g(x) = h''(x'') = 0$, and so $h(x) \in \text{Ker } f = \text{im } f'$ and $h(x) = f'(y')$ with (unique) $y' \in F'$. Define $\delta(x'') := \overline{y'} \in \text{Kokern } h' = F'/\text{Bild } h'$. The image $\delta(x'')$ does not depend on the choice of the inverse image x of x'' . For, if $g(\tilde{x}) = x''$, then $x - \tilde{x} \in \text{Ker } g = \text{im } g'$, i.e. $x - \tilde{x} = g'(x')$ and for $\tilde{y}' \in F'$ with $h(\tilde{x}) = f'(\tilde{y}')$ gilt $y' - \tilde{y}' = h'(x')$, therefore $\overline{y'} = \overline{\tilde{y}'}$ in $F'/\text{im } h'$.

It can be easily checked that δ is a homomorphism. Further, the exactness of the above long sequence at the places $\text{Ker } h''$ and $\text{Coker } h'$ can be easily verified by diagram chasing (similar to the above proof of independence and the proof of exactness at the other places.)

If g' is injective resp. f is surjective, then $\text{Ker } h' \rightarrow \text{Ker } h$ is injective resp. $\text{Coker } h \rightarrow \text{Coker } h''$ is surjective.

T10.5. (Five-Lemma) Suppose that the following diagram of abelian groups and group homomorphisms

$$\begin{array}{ccccccc} G_5 & \longrightarrow & G_4 & \longrightarrow & G_3 & \longrightarrow & G_2 & \longrightarrow & G_1 \\ h_5 \downarrow & & h_4 \downarrow & & h_3 \downarrow & & h_2 \downarrow & & h_1 \downarrow \\ F_5 & \longrightarrow & F_4 & \longrightarrow & F_3 & \longrightarrow & F_2 & \longrightarrow & F_1 \end{array}$$

has exact rows. Then :

- a). If h_2 and h_4 are injective and h_5 is surjective, then h_3 injective.
- b). If h_2 and h_4 are surjective and h_1 is injective, then h_3 is surjective.
- c). If h_1, h_2, h_4, h_5 are bijective, then h_3 is bijective.

T10.6. Let $0 \rightarrow G_n \rightarrow \dots \rightarrow G_0 \rightarrow 0$ be a complex of finite abelian groups with the homology groups H_0, \dots, H_n . Then $\prod_{i=0}^n |H_i|^{(-1)^i} = \prod_{i=0}^n |G_i|^{(-1)^i}$. (**Hint:** Use the exercise 10.4.)

T10.7. (Herbrand-Quotients) If the kernel and cokernel of a homomorphism $h: G \rightarrow F$ of abelian groups are finite, then we say that h has a Herbrand-Quotients and define this by

$$q(h) := |\text{Ker } h|/|\text{Koker } h|.$$

- a). If G and F are finite then $q(h) = |G|/|F|$.

b). Let

$$\begin{array}{ccccccc} 0 & \longrightarrow & G_n & \longrightarrow & \dots & \longrightarrow & G_0 & \longrightarrow & 0 \\ & & h_n \downarrow & & & & h_0 \downarrow & & \\ 0 & \longrightarrow & F_n & \longrightarrow & \dots & \longrightarrow & F_0 & \longrightarrow & 0 \end{array}$$

be a commutative diagram of abelian groups and group homomorphisms. If all but at most one of homomorphisms h_1, \dots, h_n have a Herbrand-Quotients, then all have Herbrand-Quotients and

$$\prod_{i=0}^n q(h_i)^{(-1)^i} = 1.$$

- c). If $h: G \rightarrow F$ and $j: F \rightarrow E$ have a Herbrand-Quotients then the composite homomorphism $jh: G \rightarrow E$ also have Herbrand-Quotient and $q(jh) = q(j)q(h)$.
- d). If $h: G \rightarrow F$ has a Herbrand-Quotient and if $j: G \rightarrow F$ is a homomorphism with a finite image, then $h + j$ has a Herbrand-Quotient and $q(h + j) = q(h)$.