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MA-219 L inear Algebra
11. Operations of Groups

11.1. A group G is called h o m o g e n e o u s if the natural action (see N11.6-a)) of the automorphism
group Aut(G) of G on G is transitive on the Aut(G)-subset G \ {e}. Show that if G is a finite group
then G is homogeneous if and only if G is a finite product of Zp = {0, . . . , p − 1} = the cyclic group
of prime order p.

11.2. Let H be a subgroup of finite index in a group G. If G =
⋃
g∈G

gHg−1 then show that G = H .

(Hint : Let N be the kernel of the action of the left coset G-set G/H . By passing to the group G/N reduce to
the case of finite groups. – or use T11.6.). Give an example to show that the assumption finite index is

necessary. (Hint : H = { (
a 0
b c

)
∈ G | ac �= 0

} �= G = GL(2,C) =
⋃
g∈G

gHg−1. )

11.3. Let G be a group and let X be a G-set. Show that

a). ( B u r n s i d e ’s F o r m u l a ) card(G) · card(X/G) = ∑
g∈G card(Fixg(X)).(Hint : Let Y := {(g, x) ∈

G×X | gx = x}. Look at the fibres of the mappings Y → G, (g, x) �→ g and Y → X, (g, x) �→ x. )

b). Suppose that G is finite. For g ∈ G, let n(g) = card(Fixg(X)). Show that

(1) If G acts transitively on X then card(G) = ∑
g∈G n(g). Deduce that, if card(X) ≥ 2 and G acts

transitively on X then there exists g ∈ G such that Fixg(G) = ∅. (Hint : Use the Burnside ’s formula. )
(2) If G acts 2-transitively on X then 2 · card(G) = ∑

g∈G n(g)
2. (Hint : Use 11.7-c) and the part (1)

above. )

11.4. ( S p l i t - s e q u e n c e s ) Let 1 −−−−−−−� N −−−ϕ−−−−� G−−−ψ−−−−� H −−−−−−−� 1 be an exact sequence of (not necessarily
abelian) groups, i.e. ϕ is injective with im ϕ = kerψ and ψ is surjective (then H ∼= G/ im ϕ and
N ∼= im ϕ .).

a). The group homomorphism ψ has a section, i.e. there exists a group homomorphismus σ :H → G

such that ψσ = idH and so G is a semi-direct product of im ϕ ∼= N and im σ ∼= H . In this case, we
say that the short exact sequence 1 −−−−−−−� N −−−−−−−� G−−−−−−−� H −−−−−−−� 1 is a w e a k - s p l i t s e q u e n c e and the
image im σ is called the w e a k - c o m p l e m e n t of im ϕ in G.

b). Suppose that there exists a projection π :G → N such that πϕ = idN and soG is a direct product
of im ϕ ∼= N and ker π ∼= H , i.e. the map (x, y) �→ xy is a group isomorphism im ϕ × ker π −→ G.
In this case we say that the short exact sequence 1 −−−−−−−� N −−−−−−−� G−−−−−−−� H −−−−−−−� 1 is a ( s t r o n g )- s p l i t
s e q u e n c e and the kernel ker π is called a s t r o n g - c o m p l e m e n t of im ϕ in G.

c). Every (strong) split sequence is weak-split sequence. If σ is a section ofψ and im σ is normal inG,
then im σ is a strong-complement of im ϕ and the sequence 1 −−−−−−−� N −−−−−−−� G−−−−−−−� H −−−−−−−� 1 is (strong)-split.

d). If G (and hence H and N ) is abelian, then 1 −−−−−−−� N −−−−−−−� G−−−−−−−� H −−−−−−−� 1 is split sequence if and
only if this sequence is weak-split.

e). IfH is abelian, then the sequence 1 −−−−−−−� N −−−−−−−� G−−−−−−−� H −−−−−−−� 1 is a split sequence if and only if the
sequence 1 −−−−−−−� N ∩ϕ−1

(
Z(G)

) −−−−−−−� Z(G)−−−−−−−� H −−−−−−−� 1 of abelian groups is exact and split, where Z(G)
denote the center ofG .) Every complement of (im ϕ)∩ Z(G) in Z(G) is then a strong-complement of
im ϕ in G.

11.5. Let N be a group. Then every semi-direct product (see N11.11) of the form N � H , where H
is a group, is equal to the direct product N ×H if and only if N has at most two elements. (Hint : It is
enough to show that every groupN with more than two elements has an automorphism different from the identity
map. – In the non-abelian case the conjugation, and in the abelain case the inverse map and for the elementary
abelian 2-groups, see footnote 1, the linear map of K2-vector spaces. – This result can also be formulated as:
Every weak-split exact sequence of groups 1 −→ N −→ G −→ H −→ 1 is strong-split if and only if N has
atmost two elements. )
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11.2 MA-219 Linear Algebra / August-December 2003 11. Operations of Groups

11.6. Suppose that a finite groupG of order n operates on the (additively written) abelian group H as
a group of automorphisms.

a). FixG H is a subgroup of H .

b). For every x ∈ H , the sum Nx := ∑
g∈G gx is a fixed point of the operation of G. (Hint :

h (Nx) = ∑
g∈G(hg)x = ∑

g∈G gx = Nx for every h ∈ G, since G = {hg | g ∈ G}.)
c). ( M e a n ) Suppose that the multiplication λn by n onH is bijektive. Then λn and the inverse (λn)−1

of λn areG-invariant. The element πHx := 1
n

Nx = 1
n

∑
g∈G gx is called the m e a n or a v e r a g e o f

x and is fixed point.

d). The group homomorphism πH : H → H is a projection of H onto the subgroups FixGH , i.e.
πH = π2

H and im πH = FixGH . (Hint : Let π := πH . The inclusion π(H) ⊆ FixGH is mentioned in the part
b). Conversely, let x ∈ FixGH , then πx = 1

n

∑
g∈G gx = 1

n
nx = x. This proves the inclusion FixGH ⊆ π(H)

and hence π = π2. –Remark : This is the most effective way of computing the fixed points. For example, it
can be applied to the additive group H of a vector space over a field K with n · 1K �= 0 (or moregenerally to the
additive groups of a module over a ring A with n · 1A ∈ A×) . )

e). Let G be a finite group of order n and let H ′, H resp. H ′′ be abelain groups on which G opera-

tes by automorphisms. Further, let H ′ f ′
−→ H

f−→ H ′′ be an exact sequence of G-invariant group
homomorphisms. If the multiplication by n on H and H ′ are bijective 1) , then the induced sequence
FixGH ′ → FixGH → FixGH ′′ is also exact. (Hint : For x ∈ FixGH with f (x) = 0 we need
to find x ′ ∈ FixGH ′ with f ′(x ′) = x. Let x̃ ∈ H ′ be such that f ′(̃x) = x. Then x ′ := π ′

H (̃x) ∈ FixGH ′ and
f ′(x ′) = f ′π ′

H (̃x) = πHf
′(̃x) = πHx = x . – Remark : In the above situation, the sequence of the fixed-point

groups is not exact in general, for example, the group G := Z× = {1,−1} operates (see N11.6-c)) in a natural
way, i.e. the operation of −1 is the inverse map. Then the canonical projection of Z onto Z/Z2 is surjective, but
the induced homomorphism 0 → Z/Z2 on the fixed-point groups is not surjective. )

On the other side one can see (simple) test-exercises ; their solutions need not be submitted.

1) It is enough to assume that on H ′ it is surjective and on im f ′ = Ker f it is injective.
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Operations of groups

Below we collect definitions, basic results and examples on operations of groups.

N11.1 . ( G r o u p a c t i o n s - - a c t i o n h o m o m o r p h i s m s a n d G - s e t s ) Let G be a (multiplicative)
group with the identity element e. An o p e r a t i o n or a c t i o n ofG on a set X is a mapG×X → X (called an
o p e r a t i o n m a p or a c t i o n m a p ) and denoted by (g, x) �→ gx such that for all g, h ∈ G and for all x ∈ X,
we have : (1) ex = x (2) (gh)x = g(hx).

For a fixed g ∈ G, the map ϑg : X → X defined by x �→ gx is called the o p e r a t i o n o f g o n X . Then
ϑe = idX and ϑgh = ϑgϑh by the conditions (1) and (2) above, respectively. In particular, for every g ∈ G, the
map ϑg is a permutation of X and (ϑg)−1 = ϑg−1 . Therefore the map ϑ : G → S(X) defined by ϑ(g) := ϑg is
a group homomorphism. This group homomorphism is called the a c t i o n h o m o m o r p h i s m of the action
of G on X. Conversely, if ϑ : G → S(X) is a group homomorphism then the map G × X → X defined by
(g, x) �→ ϑ(g)(x) gives an operation on X.

A set X with an action of a groupG is called a G - s e t ; the action homomorphism ϑ : G → S(X) is called the
a c t i o n h o m o m o r p h i s m of the G- set X.

N11.2 . ( O r b i t s a n d i s o t r o p y s u b g r o u p s - - S t a b i l i z e r s ) Let G be a group acting on a set X.

a). The operation ofG onX defines an equivalence relation oX : For x, y ∈ X, x ∼G y if and only if there exists
g ∈ G with gx = y.

b). The equivalence class of x ∈ X under ∼G is denoted by Gx := {gx | g ∈ G} and is called the o r b i t of
x. The quotient set of all equivalence classes of the relation ∼G is denoted by X/G. We have the canonical
surjective map X → X/G, x �→ Gx .

c). For x ∈ X, Gx := {g ∈ G | gx = x} is a subgroup of G. This subgroup is called the i s o t r o p y g r o u p or
s t a b i l i z e r of x.

d). For x ∈ X, the fibres of the cannonical surjective map G → Gx , g �→ gx are the left-cosets of Gx in G.
In particular : ( O r b i t - S t a b i l i s e r t h e o r e m ) card(Gx) = [G : Gx] , i.e. the cardinality of the orbit Gx of
x is the index [G : Gx] of the isotropy subgroup of x in G and in particular, if G is finite then card(Gx) divides
the order of the group G.

e). For g ∈ G, x ∈ X, Ggx = gGxg
−1. i.e. Isotropy subgroups of the elements in the same orbit are conjugate

subgroups in G.

f). An element x ∈ X is called a f i x e d or i n v a r i a n t e l e m e n t with respect to the element g ∈ G

if gx = x. The set of fixed elements with respect to g ∈ G is denoted by Fixg(X). If E ⊆ G then we put
FixE(X) := ∩g∈E Fixg(X). The elements of FixG(X) are called f i x e d e l e m e n t s of the operation ofG on X.
An element x ∈ X belongs to FixG(X) if and only if Gx = G.

N11.3 . Let G be a group acting on a set X with action homomorphism ϑ : G → S(G) . We say that

(1) G operates t r a n s i t i v e l y on X if X/G is a singleton set, i.e. there is exactly one orbit.
(2) G operates f r e e l y on X if for every x ∈ X the isotropy group Gx at x is trivial group, i.e. Gx = {e}.
(3) G operates f a i t h f u l l y on X if for every g, h ∈ G, gx = hx for all x ∈ X implies that g = h. Note that G
operates on X faithfully if and only if the action homomorphism ϑ : G → S(X) is injective.
(4) G operates s i m p l y t r a n s i t i v e l y on X if G operates transitively and freely on X.

a). For x ∈ X, the orbit Gx of x is invariant under g for every g ∈ G and so G operates on Gx transitively.

b). ( R e s t r i c t i o n o f a n a c t i o n ) Let H be a subgroup of G. Then H operates on X by restriction; the

corresponding action homomorphism is the composite homomorphism H
ι−→ G

ϑX−→ S(X) .

c). ( L e f t - t r a n s l a t i o n a c t i o n - - C a y l e y ’s r e p r e s e n t a t i o n ) The binary operation of a groupG define
a simple transitive operation onG. The corresponding action homomorphism is injective group homomorphism
λ : G → S(G). This is the permutation representation of G and is called the C a y l e y ’s r e p r e s e n t a t i o n
of G. For any subgroup H of G, the orbits of the restriction of the left-transaltion action to H on G are the
right-cosets of H in G and the isotropy groups are trivial.

d). ( I n d u c e d a c t i o n ) The normal subgroup N = ker ϑ is called the k e r n e l o f t h e a c t i o n of G on X.
Therefore ϑ induces a group homomorphism ϑ : G/N → S(X) and hence the quotient group G/N acts on the
set X with the action homomorphism ϑ . This action of G/N is called the i n d u c e d a c t i o n of G on X. It is
clear that G/N acts faithfully on X.
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e). The kernel of an operation of a group G on a set X is the intersection of all isotropy groups Gx , x ∈ X. – If
G is abelian, then G operates simple trasitively if and only if G operates transitively and faithfully.

f). If card(G) is a prime number > cardX then the action homomorphism is trivial, i.e. ϑ(g)(x) = x for every
g ∈ G and x ∈ X.

g). If X is finite then the kernel of the action homomorphism ϑ is a subgroup of finite index in G.

h). Suppose that G acts transitively on X and x ∈ X. Then the map G → X defined by g �→ g · x is surjective
and card(X) = [G : Gx]. In particular, if G is finite then X is finite and card(X) divides card(G).

N11.4 . ( C l a s s E q u a t i o n ) Let G be a group operating on a set X. Then

card(X) = card(FixG(X)+
∑

Gx∈X/G
card(Gx)>1

card(Gx).

a). ( C l a s s e q u a t i o n f o r t h e l e f t - t r a n s l a t i o n a c t i o n - - L a g r a n g e ’s t h e o r e m ) Let G be a
group and let H be a subgroup. The group H acts on G by the restriction of the left-transaltion action of G on
G to H ; the orbits of this cation are the right-cosets of H in G and the isotropy groups are trivial. Therefore the
class equation for this action of H on G is card(G) = card(H) · card(G/H) . In particular,

( L a g r a n g e ’s t h e o r e m ) LetG be a finite group and letH be a subgroup ofG. Then the order ofH divides
the order of G. More precisely, ord(G) = ord(H) · [G : H ] .

b). ( C o n j u g a t i o n a c t i o n a n d t h e c l a s s e q u a t i o n f o r a g r o u p ) LetG be a group. ThenG acts on
G by the c o n j u g a t e a c t i o n , i.e. the action homomorphism is the group homomorphism κ : G → Aut(G),
g �→ κg : G → G, x �→ gxg−1. The fixed point set of this operation is the center Z(G) of G. The center
of G is also the kernel of this operation. In particular, the class equation for this operation is called the c l a s s
e q u a t i o n f o r G :

card(G) = card(Z(G))+
∑
j∈J

card(Cj ),

where Cj , j ∈ J are distinct conjugacy classes of G with more than one element, i. e. Ci �= Cj for i, j ∈ J,

i �= j and card(Cj ) > 1 for every j ∈ J . If xi ∈ Ci , then Ci = {gxig−1 | g ∈ G} and card(Ci ) = [G : CG(xi)],
where for x ∈ G, CG(x) := {g ∈ G | gx = xg} is the subgroup of elemenst of G which commute with x. This
subgroup is called the c e n t r a l i s e r of x in G. If G is a finite group and Ci , i = 1, . . . , r are all distinct
conjugacy classes in G with card(Ci ) > 1 for all i = 1, . . . , r , then the numbers card(Z(G)) and card(Ci ),
i = 1, . . . , r divide the order OrdG of G and the number of all conjugacy classes in G is card(Z(G))+ r and is
called the c l a s s n u m b e r of G.

c). Let p be a prime number and letG be a finite group of order pn with n ∈ N+. Suppose thatG acts on a finite
set X. Then card(X) ≡ card(FixG(X)) (mod p) . In particular, the center Z(G) of G is non-trivial. (Hint : For
the last part use the class equation for G.)

d). ( C a u c h y ’s t h e o r e m a n d F e r m a t ’s l i t t l e t h e o r e m ) LetG be a finite group of order n and let p be
a prime number. On the set Gp of p-tuples of G the cyclic group H := Z/Zp operates by

(
a, (x1, . . . , xp)

) �→
(x1+a , . . . , xp+a) , where a and the indices 1, . . . , p are the residue classes in Z/Zp. The fixed points are the
constant p-tuples (x, . . . , x) . The group Z/Zp also operates on the subsetX := {(x1, . . . , xp) ∈ Gp | x1 · · · xp =
e} ofGp (since x1x2 · · · xp = (x1 · · · xr)(xr+1 · · · xp) = e and so (xr+1 · · · xp)(x1 · · · xr) = e for r = 1, . . . , p−1.)
Therefore by part c) card(X) = np−1 ≡ |FixH X| mod p .

(1) If p divides n, then p also divides |FixHX|, i.e. the cardinality of the set of x ∈ G with xp = e is divisible by
p. In particular,
( C a u c h y ’s t h e o r e m ) Let G be a finite group of order n and let p be a prime divisor of n. Then G has an
element of order p.
(2) If p is not a divisor of n, then FixHX contain only the constant tuple (e, . . . , e). In particular,
( F e r m a t ’s l i t t l e t h e o r e m ) Let p is a prime number and let n ∈ N+. If p does not divide n, then p divides
np−1 − 1, i.e. np−1 ≡ 1 mod p.

N11.5 . Let G and H be two groups acting on the sets X and Y with action homomorphisms ϑX : G → S(X)
and ϑY : H → S(Y ) respectively.

a). ( P r o d u c t a c t i o n ) The product groupG×H acts on the product setX×Y with the action homomorphism
ϑX×Y : G×H → S(X× Y ) defined by (g, h) �→ ϑX(g)× ϑY (h) for g ∈ G and h ∈ H. This action is called the
p r o d u c t a c t i o n ofG×H onX×Y . The orbit (G×H)(x, y) of (x, y) ∈ X×Y , is the productG · x×H · y
of orbtis of x and y. What is the isotropy subgroup (G×H)(x,y) at (x, y) ?
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b). ( D i a g o n a l a c t i o n ) Suppose that H = G above. Then the group G acts on X × Y with the action

homomorphism G
	G−→G×G ϑX×Y−→ S(X×Y ), where	G : G → G×G is the diagonal homomorphism defined

by g �→ (g, g) for g ∈ G and ϑX×Y is defined as above with H = G. This action is called the d i a g o n a l
a c t i o n of G on X × Y . The isotropy subgroup G(x,y) of (x, y) ∈ X × Y is the intersection Gx ∩ Gy of the
isotropy subgroups of x and y. What is the orbit G(x, y) of (x, y)?

c). Give an example to show that the diagonal action of G on X × Y need not be transitive even if G acts
transitively on both X and Y. (Hint : Take the left translation action (see N11.3-c)) of G on X = Y = G. )

N11.6 . (A u t o m o r p h i s m a c t i o n s ) LetG andH be two groups. Suppose that the groupG acts onH with
the action homomorphism ϑ : G → S(H). If im(ϑ) ⊆ Aut(H) = (the set of all automorphisms of the group
H ) then we say that G a c t s o n H b y a u t o m o r p h i s m s or ϑ i s a n a u t o m o r p h i s m a c t i o n
and in this case we write ϑ : G → Aut(H) instead of ϑ : G → S(H).

a). The automorphism group Aut(G) ofG acts onG in a natural way, infact by automorphisms; the automorphism
action ϑ = idAut(G) : Aut(G) → Aut(G). The subset G \ {e} is invariant under this action.

b). The conjugate action of the group G on G is the automorphism action κ : G → Aut(G), g �→ κg , where for
g ∈ G, κg : G → G is the inner automorphism of G defined by x �→ gxg−1 for x ∈ G. What is the kernal of
this action ?

c). Let N be an (additive) abelian group. The cyclic group Z× = {1,−1} of order 2 operates on N by automor-
phisms, where −1 operates as the inverse map x �→ −x of the group N .

N11.7 . ( k - t r a n s i t i v e a c t i o n s ) Let G be a group and let X be a G-set with the action homomorphism
ϑ : G → S(X). Let k ∈ N+. Then X is called k - t r a n s i t i v e or we say that G acts k - t r a n s i t i v e l y on
X if for any two k-tuples (x1, . . . , xk) ∈ Xk with xi �= xj for 1 ≤ i �= j ≤ k and (y1, . . . , yk) ∈ Xk with yi �= yj
for 1 ≤ i �= j ≤ k, there exists an element g ∈ G such that ϑ(g)(xi) = yi for every 1 ≤ i ≤ k. 1-transitive is
same as transitive (see N11.3 -(1)).

a). Let k ∈ N+. If card(X) < k then X is k-transitive vacuously. If card(X) ≥ k and X is k-transitive then X is
r-transitive for every 1 ≤ r ≤ k.

b). For n ∈ N+, any subgroup of Sn acts naturally on the set {1, . . . , n}, in fact, the action homomorphism is tha
natural inclusion ι : G → Sn . This natural action of the permutation group Sn (respectively, the alternating
group An ) on the set {1, . . . , n} is n-transtive (respectively, (n− 2)-transitive but not (n− 1)-transitive).

c). The subset X(n) := {(x1, . . . , xn) | xi ∈ X, xi �= xj , 1 ≤ i �= j ≤ n}, (n ∈ N+) of Xn is a G-subset of the
diagonal action (see N11.5-b)) of G on Xn. Then G acts n-transitively on X if and only if G-acts transitively on
X(n).

d). The isotropy subgroup Gx , x ∈ X acts on X \ {x} in a natural way. If G acts transtively on X, then G acts
2-transitively on X if and only if Gx transitively on X \ {x} for every x ∈ X.

e). If G is a finite group, G acts 2-transitively on X and [G : Gx] = n for x ∈ X, then (n − 1)n divides
ord(G). (Hint : Use N11.3-g). )

N11.8 . ( L e f t c o s e t G - s e t s ) LetG be any group and letH be a subgroup ofG. Let X := G/H = {xH |
x ∈ G} be the set of all left cosets ofH inG and let ϑ : G → S(G/H) be defined by ϑ(g) := g̃ : G/H → G/H ,
xH �→ gxH for xH ∈ G/H . Then X = G/H is a G-set with the action homomorphism ϑ . This G-set is called
the l e f t c o s e t G - s e t of H in G.

a). G acts transitively onG/H and the isotropy group atH isGH = H . In particular, the isotropy subgroups are
gHg−1, g ∈ G and so N = ∩g∈GgHg−1 is the kernel of the action ofG onG/H . ThereforeG/N acts faithfully
on G/H with the induced action homomorphism ϑ : G/N → S(G/H). Further, N is the biggest normal
subgroup ofG contained inH and the quotient groupG/N is isomorphic to a subgroup of the permutation group
of G/H . (Hint : Let F be a normal subgroup of G with F ⊆ H . Then F = gFg−1 ⊆ gHg−1 for every g ∈ G.
Therefore F ⊆ ∩g∈GgHg−1 = N )

b). If [G : H ] is finite then so is [G : N] and [G : N] divides [G : H ]!. (Hint : Follows from part a) that
ϑ : G/N → S(G/H) is injective. )

N11.9 . ( G - h o m o m o r p h i s m s ) Let G be a group and let X, Y be two G-sets with the operation maps
ϕX : G×X → X and ϕY : G× Y → Y respectively. A map f : X → Y is called a G - h o m o m o r p h i s m if
f (gx) = gf (x) for every g ∈ G and x ∈ X, i.e. the diagram
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G×X −−−−−−−−−−−−−ϕX−−−−−−−−−−−−−−� X

id×f
�

f

�
G× Y −−−−−−−−−−−−−ϕY−−−−−−−−−−−−−−� Y

is commutative. A G-homomorphism f : X → Y is called a G - i s o m o r p h i s m if there exists a G-
homomorphism f ′ : Y → X such that f ′ ◦ f = idX and f ◦ f ′ = idY .

Let f : X → Y be a G-homomorphism. Then

a). The orbit Gx is mapped onto the orbit Gf (x) for every x ∈ X; in particular, induces a map f :X\G → Y\G
on the quotient spaces such that the diagramm

X −−−−−−−−−−−−−−−−−−−−−−−−−−−� X/G

f

� f�
Y −−−−−−−−−−−−−−−−−−−−−−−−−−−� Y/G

is commutative, where X → X/G and Y → Y/G are the cannonical projection maps.

b). f (FixG(X)) ⊆ FixG(Y ). In particular, f induces a mapping FixG(X) → FixG(Y ).

c). For x ∈ X, the isotropy subgroup Gx is a subgroup of Gf(x).

d). f is a G-isomorphism if and only if f is bijective. Moreover, in this case, the diagram

G −−−−−−−−−−−−−ϑX−−−−−−−−−−−−−−� S(X)∣∣∣∣∣∣ 
f
�

G −−−−−−−−−−−−−ϑY−−−−−−−−−−−−−−� S(Y )
of groups and group homomorphisms is commutative, where ϑX, ϑY are action homomorphisms of X, Y respec-
tively and 
f : S(X) → S(Y ) is the group homomorphism defined by 
f (σ) := f ◦ σ ◦ f −1 for σ ∈ S(X).

e). Moregenerally, let ϕ :G → H be a homomorphism of groups. Suppose that G and H operates on the sets X
and Y respectively. A map f :X → Y is called ϕ- i n v a r i a n t m a p if for all g ∈ G and for all x ∈ X, we have
: f (gx) = ϕ(g)f (x) , i.e. if the canonical diagramm

G×X −−−−−−−−−−−−−−−−−−−−−−−−−−−� X

ϕ×f
�

f

�
H × Y −−−−−−−−−−−−−−−−−−−−−−−−−−−� Y

is commutative. A map f :X → Y ϕ-invariant if and only if f is a G-invariant map, where the H -operation on
Y via ϕ defines a G-operation on Y , i.e. gy := ϕ(g)y , g ∈ G, y ∈ Y .

N11.10 . ( S e m i - d i r e c t P r o d u c t – H o l o m o r p h o f a g r o u p ) Let N and H be groups. Suppose that
H operates on N by automorphisms (see N11.6), i.e. the action homomorphism is ϑ :H → AutN ⊆ S(N).
We shall construct a group G such that H is a subgroup of G and N is a normal subgoup of G and the given
operation of H on N is the conjugation of H on N . Let G := N × H and define the multiplication in G by
(n, h) (n′, h′) := (n ϑh(n

′) , hh′) . (Hint : The group axioms for G can be easily verified; the element (eN , eH )
is the identity element and the inverse of (n, h) is (ϑh−1(n−1) , h−1) . The group N can be identified with the
normal subgroup N × {eH } of G and the group H can be identified with the subgroup {eN } ×H of G. With this
identification the pair (n, h) is the product nh = (n, eH )(eN , h) . )This group G is called the s e m i - d i r e c t
p r o d u c t of the groups N and H with respect to the operation ϑ of H on N . The semi-direct product of N and
H with respt to ϑ :H → AutN is denoted by N �H = N �ϑ H .

a). The operation ϑ of H on N is trivial if and only if G = N � H is the product group. This can also be
characterised by the condition that H is normal in G.

b). Suppose thatH = AutN and ϑ is the natural action (see N11.6-a)) onN . Then the corresponding semi-direct
product is called the f u l l h o l o m o r p h of N and is denoted by HolN . In the case H ⊆ AutN is a subgroup,
the semi-direct product is called a h o l o m o r p h of N .

c). The full holomorph (and hence every holomorph) of N can be canonically embedded in the permutation
group S(N) of N , where the normal subgroup N of Hol (N) is identified with the group of left-translations of
N using the Cayley’s representation and AutN is embedded canonically in S(N), i.e. the map (n, σ ) �→ λnσ ,
n ∈ N , σ ∈ AutN is an injective group homomorphism of Hol (N) into the permutation group S(N) , where λn
for n ∈ N denote the left-translation by n.
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d). The subgroup Hol (N) of S(N) is generated by the left-translations and the automorphisms of N . Further,
since ρn = λn ◦ κn−1 = κn−1 ◦ λn for n ∈ N , the subgroup Hol (N) also contain right-translationen.

N11.11 . ( D i h e d r a l g r o u p s ) LetN be an (additive) abelian group. The cyclic group Z× = {1,−1} of order
2 operates on N by automorphisms (see N11.6), where −1 operates as the inverse map x �→ −x of the group
N . The corresponding semi-direct product is called the d i h e d r a l g r o u p of N and is denoted by D(N). The
binary operation in D(N) is given by (n, ε) (n′, ε′) = (n+ εn′, εε′) , n, n′ ∈ N , ε, ε′ ∈ Z×.

a). The dihedral group D(N) is the direct product of N and Z×, i.e. is an abelain group if and only if the inverse
map of N is trivial, i.e. every element of N is its inverse in N . 2)

b). If N = Zn = Z/Zn is the cyclic group of order n > 0, then for D(N) we simply write Dn; its order is
Ord Dn = 2n. The infinite dihedral group D0 := D(Z) is the full holomorph of the additive group Z. Therefore
we have a sequence Dn, n ∈ N, of the d i h e d r a l g r o u p s . (Remark : We shall show that the dihedral
group D(R) is isomorphic to the group of motions of an affine Euclidean line and the dihedral group D (R/Z)
is isomorphic to the group of isometries of an (oriented) two-dimensional Euclidean vector space. The group
D(R/Z) (and occasionally the group D(Q/Z) ) is also denoted by D∞ .

N11.12 . LetG be a finite group of order n. ThenG acts on the power set P(G) ofG by the left-multiplication,
i.e. the action homomorphism is ϑ : G → S(P(G)) given by g �→ ϑ(g), where ϑ(g) : P(G) → P(G) is
defined by A �→ gA := {ga | a ∈ A}.
a). For every fixed positive integer r ≤ n, the subset Pr (G) := {A ∈ P(G) | card(A) = r} of a G-set P(G) is
invariant under the above G-action.

b). Each orbit of P(G) under the above G-action contains either exactly one subgroup of G or contains no
subgroup of G. (Proof Let H and H ′ be subgroups of G belonging to the same orbit of P(G).
Then there exists A ∈ P(G) such that H ∼G A and H ′ ∼G A. Therefore, since ∼G is an equivalence relation
on P(G), it follows that H ∼G H

′ and so there exists g ∈ G such that H ′ = gH. If g �∈ H then g−1 �∈ H−1,
so that e = gg−1 �∈ gH = H ′. This contradicts the fact that H ′ is a subgroup of G. Therefore g ∈ H and so
H ′ = gH = H .)

c). Let p be a prime with n = pαq and gcd(p, q) = 1 , where α := vp(ord(G)). Let β be a positive integer with
0 ≤ β ≤ α. Let X ⊆ Ppβ (G) be a orbit of an element A ∈ Ppβ (G) the above G-action. Then the following
statments are equivalent :

(i) vp(card(X))≤ α−β =: γ . (ii) card(X)= pα−β . (iii) X contains exactly one subgroup H (of order pβ).
(Proof Let A ∈ Ppβ (G) be such that the orbit of A =: X. By the orbit-stabiliser theorem (N11.2-d))

(c.1) card(GA) card(X) = card(G) = pαq and so

(c.2) α = vp(card(G)) = vp(card(GA))+ vp(card(X)).

Since GA = {g ∈ G | gA = A}, we have ga ∈ A for every g ∈ GA and a ∈ A. Therefore, for any a ∈ A,

there is a natural inclusion GA · a ↪→ A. In particular, card(GA) = card(GA · a) ≤ card(A) = pβ and so
vp(card(GA)) ≤ β. (i)⇒ (ii) : If vp(card(X)) ≤ γ then vp(card(GA)) = β by (c.2) above and so card(GA) = pβ .
Therefore card(X) = pγ q by (c.1) above. (ii)⇒ (iii) : Since card(X) = pγ q, we have vp(card(X)) = γ and
so vp(card(GA)) = β by (c.2) above. Therefore card(GA · a)) = card(GA) = pβ and so GA · a = A for every
a ∈ A. Now, by N11.2-e)Ga−1A = a−1 ·GA · a = a−1A ∈ the orbit of A = X. Therefore X contains a subgroup
namely,Ga−1A and by the part b) this subgroup is unique. (iii)⇒ (i) : LetH be a subgroup ofG such thatH ∈ X.
Then X is the orbit of H = G/H = {gH | g ∈ G}. Therefore card(X) = [G : H ] = pαq/pβ = pγ q and so
vp(card(X)) = γ .)

d). With the notation as in the part c) above, there exists a natural number t such that(
pαq

pβ

)
= dG(p, β)pγ q + tpγ+1 ,

where dG(p, β) is the number of subgroups of order pβ and γ = α − β. (Proof The action of G on Ppβ (G)

gives a decomposition Ppβ (G) = ⋃{ orbits with cardinality = pγ q}∪⋃{ orbits with cardinality �= pγ q} . Since
the orbits with cardinality = pγ q are precisely the orbits which contains exactly one subgroup of G of order pβ

(by the equivalence (i) ⇐⇒ (ii) of (c)) and the orbits with cardinality �= pγ q are precisely the orbits whose
cardinality is divisible by pγ+1 (by the equivalence (i) ⇐⇒ (iii) of (c)), there exists a natural number t such
that

(
pαq

pβ

) = card(Ppβ (G)) = dpγ q + tpγ+1.)

2) Such a groupN is called an elementary (abelian) 2-group. They are precisely the additive groups of the vector
spaces over the field K2 with 2 elements.
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e). In particular, if G is cyclic in the part d) above then there exists a natural number s such that
(
pαq

pβ

) =
pγ q + spγ+1, where γ := α − β. (Proof Since card(Ppβ (G)) does not depend the group, the assertion
follows from (5) by taking G to be the cyclic group.)

N11.13 . ( S y l o w t h e o r e m s 3)) Let G be a finite group of order n and let p be a prime divisor of n with
n = pαq and gcd(p, q) = 1, where α = vp(OrdG). Let β be a non-negative integer with 0 ≤ β ≤ α and let
dG(p, β) be the number f subgroups of G of order pβ . Then

a). dG(p, β) ≡ 1(mod p) . In particular, G has a subgroup of order pα . (Proof It follows from
N11.12-d) and e) that there exist natural numbers s and t such that pγ q+ spγ+1 = (

pαq

pβ

) = dG(p, β)pγ q+ tpγ+1,
where γ := α − β. Therefore dG(p, β)q = q + (s − t)p ≡ q(mod p) and so dG(p, β) ≡ (mod p), since
gcd(p, q) = 1. )

b). IfH is a subgroup of order pα andH ′ is a subgroup of order pβ , then there exist an element g ∈ G such that
H ′ ⊆ gHg−1. In particular, any two subgroups of order pα are conjugates inG. (Proof Restrict the operation
(see N11.8) of G on the set of left-cosets G/H of H in G to the subgroup H ′. The class equation for this action
is (see N11.4-c)) q = |G/H | ≡ |FixH ′(G/H)| mod p) and hence FixH ′(G/H) �= 0, i.e. there exists a left-coset
gH , g ∈ G of H in G which is invariant under all left-translations of the elements from H ′, i.e. H ′ ⊆ gHg−1.
restriction of the left-coset

c). dG(p, α) divides q and so it divides n. (Proof By a) there is a subgroup H of G of order pα and by b)
all subgroups of order pα are conjuagtes in G. But by T11.6-d) the number of conjugate subgroups of H in G is
the index [G : NG(H)] of the normaliser NG(H) of H in G and [G : NG(H)] divides [G : H ] = q.

Test-Exercises

T11.1. Let V be a n-dimensional vector space over a field K , n ∈ N+ and let G := AutK(V ) = GLK(V ) be
the automorphism group of V . In each of the following examples show that G acts on the set X with the action
homomorphism ϑ : G → S(X) . For x ∈ X , describe the orbit Gx of x under G geometrically (whenever
possible) and find the isotropy subgroup Gx at x.

a). Let X = V \ {0} and let ϑ : G → S(V ) be defined by ϑ(f )(v) := f (v) for f ∈ G and v ∈ V \ {0}.
b). Let X = B := {(v1, . . . , vn) ∈ V n | v1, . . . , vn is a basis of V } and let ϑ : G → S(B) be defined by
ϑ(f )((v1, . . . , vn)) := (f (v1), . . . , f (vn)) for f ∈ G and (v1, . . . , vn) ∈ B.

c). Let r ∈ N, r ≤ n and let Gr (V ) be the set of r-dimensional subspaces of V . Let X = Gr (V ) and let
ϑ : G → S(Gr (V )) be defined by ϑ(g)(W) := g(W) for g ∈ G and W ∈ Gr (V ).

d). Let F be the set of all flags {(0 = V0 ⊂ V1 ⊂ · · · ⊂ Vn = V )}, where Vi is a subspace of V, for 0 ≤ i ≤ n.

Let X = F and let ϑ : G → S(F) be defined by (V0 ⊂ V1 ⊂ · · · ⊂ Vn) �→ (g(V0) ⊂ g(V1) ⊂ · · · ⊂ g(Vn)) for
g ∈ G and (V0 ⊂ V1 ⊂ · · · ⊂ Vn) ∈ F.

e). Let X = V ∗ := Hom(V ,K) and let ϑ : G → S(V ∗) be defined by ϑ(g) := (g−1)∗ = (g∗)−1 for g ∈ G.

T11.2. Let G be a group acting on a set X with the corresponding group homorphism ϑ :G → S(X). This
homomorphism induces many other operations, in a natural way. For example:

a). If ψ :G′ → G is a homomorphism of groups, then the group G′ operates on X by g′x := ψ(g′)x , g′ ∈ G′,
x ∈ X. The corresponding group homomorphism of G′ in S(X) is ϑψ .

b). If ϕ :G → G′′ is a surjective group homomorphism such that the kernel Ker ϕ ⊆ Ker ϑ , then the group
G′′ operates on X by g′′x := gx, where g ∈ ϕ−1(g′′) ia arbitrary. The corresponding group homomorphism
G′′ → S(X) is induced by ϑ :G → S(X).

c). If X′ ⊆ X is a G-invariant subset of X, i.e. for every x ∈ X′, the orbit Gx of x is contained in X′, then G
operates on X′ by restriction. In particular, G operates on each orbit and in fact transitively.

d). A map f :X → Y is said to be c o m p a t i b l e w i t h t h e o p e r a t i o n of G on X if for all x, x ′ ∈ X,
the equality f (x) = f (x ′) implies the equality f (gx) = f (gx ′) for all g ∈ G. Moreover, if f is surjective, then

3) These theorems were first proved by the Norwegian mathematician Ludwig Sylow (1832-1918) in 1872
[Sylow, L., Theoremes sur groups de substitutions, Math. Ann. V(1872), p. 584.]. We have given the proofs
using elegant arguments due to Wielandt, H., which is a great improvement over the older method of double
cosets, see [Wielandt, H., Ein Beweis für die Exitenz der Sylowgruppes, Archiv der Mathematik, vol. 10(1959),
p. 402-403.].
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the operation of G on X induces an operation of G on Y by gy := f (gx), where x ∈ f −1(y) is arbitrary. This
mean that the map f is a G-map. Further, in this case f (FixG(X)) ⊆ FixG(Y ). Give an example to show that
this inclusion can be strict. (Hint : Let G be the multiplicative cyclic group {−1, 1} of order 2, X := Z

and Y := Z2 = {0, 1}. Then G acts on X (resp. on Y ) by the action homomorphism ϑ : G → Aut Z (resp.
ϑ : G → Aut Z2), ϑ(1) = idZ and ϑ(−1) : Z → Z, n �→ −n (resp. ϑ(1) = idZ2 and ϑ(−1) : Z2 → Z2,
n �→ −n). Further, let f : Z → Z2 be the canonical surjective map. Then FixG(X) = 0 and FixG(Y ) = Y . )

e). Let Y be an another set. ThenG operates on the set of all maps XY by (gf̃ )(y) := g
(
f̃ (y)

)
, g ∈ G, f̃ ∈ XY

and y ∈ Y . The action homomorphism of the G-set XY is λYX ◦ ϑ : G → S(X) → S(X Y ), where λYX is defined
in the footnote 4) and the fixed set FixG(XY ) = {f ∈ XY | im(f ) ⊆ FixG(X)}. The map c : X → XY defined
by x �→ cx : Y → X = the constant map y �→ x, is a G-homomorphism.

f). Let Y be an another set. ThenG operates on the set of all maps YX by (gf )(x) := f (g−1 · x), g ∈ G, f ∈ YX
and x ∈ X. The action homomorphism of the G-set Y X is ρYX ◦ ϑ : G → S(X) → S(YX), where ρYX is defined
in the footnote 4) and the fixed set FixG(Y X) = {f ∈ XY | f is constant on theG-orbits of X}.
g). Let H be an another group and let Y be a H -set. Then the product group H × G operates on the set YX

by ((h, g)f ) (x) := h · f (g−1 · x) , (h, g) ∈ H × G , f ∈ YX and x ∈ X . The action homomorphism of
the H × G -set Y X is ϑY × ϑX ◦ µYX : H × G → S(Y ) × S(X) → S(YX) , where µYX is defined in the
footnote 4). In particular, if H = G and if Y is a G-set then the set YX is a G×G-set and so G acts on YX via
the diagonal homomorphism G → G × G , g �→ (g, g) , g ∈ G . the fixed set FixG(YX) = HomG(X, Y ) =
{f ∈ YX | f is aG-homomorphism }.
T11.3. Let G be a group and let H be a subgroup of G.

a). If H is of finite index in G, then H contains a normal subgroup N of finite index such that [G : N] divides
[G : H ]!.

b). If G is simple and H �= G, then G isomorphic to a subgroup of S(G/H). In particular, if G is simple and
H is a subgroup of G of finte index n > 1, then G is finite, moreover, order of G divides n! . (Hint : Look at
the kernel of the action of the left-coset G-set G/H (see N11.8). )

c). H is normal in G if and only if the orbits of the restriction action of H on the left-coset G- set G/H are
singleton.

d). (Y a n g ) IfG is finite andH is a subgroup of prime index p, where p is the smallest prime divisor of OrdG,
then H is normal inG. In particular, if every subgroup of a groupG of order pn, n ∈ N+ of index p is normal in
G.

e). Suppose that G is finite and ord(G) = mn, ord(H) = n.

(1) Let N be the kernel of the action of the left coset G-set G/H . Then [H : N] divides gcd(n, (m− 1)!).
(2) ( F r o b e n i u s ) If n has no prime factor less than m then H is normal in G . (Hint : Use (1) above. )
(3) If ord(G) = 2r · 3 with r ∈ N+, thenG has a normal subgroup of order 2r or 2r−1. In particular, if r ≥ 2 then
G is not simple. (Hint : Apply (1) above to the 2-Sylow subgroup H of G.)

f). IfH is normal inG then the orbits of the restriction of any transitiveG-action toH have the same cardinality.
(Hint : Let X be a transitive G-set. For g ∈ G and x ∈ X, the maps Hx → g−1Hgx , hx �→ g−1hgx and
g−1Hgx → Hgx , g−1hgx �→ hgx are bijective. )

g). The product groupH×H acts onGwith the action homomorphismϑ : H×H → G defined by ϑ(h′, h)(x) =
h′xh−1, for (h′, h) ∈ H ×H and x ∈ G. Then H is normal in G if and only if every orbit of the action defined
by ϑ has the cardinality = card(H).

T11.4. Let p be a prime number. Then

4) Set Theoretic Results Let X and Y be two sets. For σ ∈ S(X), let λσ : XY → XY (resp. ρσ : Y X → Y X)
be defined by f �→ σ ◦ f for f ∈ XY (resp. f �→ f ◦ σ for f ∈ Y X). For (τ, σ ) ∈ S(Y ) × S(X), let
µ(τ,σ ) : Y X → Y X be defined by f �→ τ ◦ f ◦ σ for f ∈ Y X. Show that the maps

(i) λYX : S(X) → S(X Y ) defined by σ �→ λσ

(ii) ρYX : S(X) → S(Y X) defined by σ �→ ρσ

(iii) µYX : S(Y )× S(X) → S(Y X) defined by (τ, σ ) �→ µ(τ,σ )

are group homomorphisms.

D. P. Patil / Exercise Set 11 la03-e011 ; October 15, 2003 ; 10:04 a.m. 44



11.10 MA-219 Linear Algebra / August-December 2003 11. Operations of Groups

a). Every group of order p2 is abelian and in fact either a cyclic or isomorphic to a product of two cyclic groups
of order p. (Hint : Use N11.4-c). )

b). Every group of order 2p is either cyclic or isomorphic to the Dihedral group Dp . (Remark : The case p = 2
is a special case. – For a generalisation see exercise set 12 on affine maps )

c). Let G be a non-abelian group of order p3. Show that the derived subgroup (the subgroup of G generated
by the set of all commutators {[a, b] | aba−1b−1 | a, b ∈ G}) = [G,G] = Z(G) and the class number of G is
p2 + p − 1. (Hint : G acts transitively on G \ {e} by the conjugation action. Then use N11.3-h). Remark There
exists infinite groups of class number 2. )

T11.5. Let G be a finite group of odd order and let x ∈ G, x �= e. Show that CG(x) �= CG(x
−1), i.e. x and x−1

belongs to different conjugacy classes. (Hint : If CG(x) = CG(x
−1), then show that card(CG(x)) is even. But

by N11.4-b) card(CG(x)) divides the order ord(G) of G a contradiction. )

T11.6. Let G be a group. Then G operates on the power-set P(G) of G by conjugation. For a subset A of G
the isotropy group GA with respect to this operation is called the n o r m a l i s e r of A in G and is denoted by
NG(A).

a). The subgroup NG(A) is the biggest subgroup of G, which operates on A by conjugation.

b). The kernel of this operation of NG(A) on A is the c e n t r a l i s e r CG(A) = ⋂
a∈ACG(a) of A. In particular,

CG(A) is normal in NG(A) .

c). If H is a subgroup of G, then NG(H) is the biggest subgroup of G in which H is normal.

d). The index [G : NG(H)] is the number of conjugate subgroups of H in G and if [G : H ] is finite, then
[G : NG(H)] divides [G : H ].

T11.7. Let G and H be finite groups. Then

a). The order of G is a power of a prime number p if and only if order of every element of G is a power of
p . (Hint : Use Cauchy’s theorem (N11.4-d)(1)). –Remark : A group in which order of every element G is a
power of a prime number p, is called a p- g r o u p . )

b). Every subgroup of the product group G×H is of the form G′ ×H ′, where G′ is a subgroup of G and H ′ is
a subgroup of H if and only if the orders of G and H are relatively prime. (Hint : Use Cauchy’s theorem
(N11.4-d)(1)). )

T11.8. Let X be a G-set. A subset Y of X is called a G - s u b s e t if gy ∈ Y for every g ∈ G and y ∈ Y . If
Y ⊆ X is aG-subset of X then the natural inclusion map Y ↪→ X is aG-homomorphism. Each orbit of X under
G is a transitive G-subset of X.

a). Every subset Y of a G-set X is a G-subset if and only if it is a union of orbits of X under G. Moreover, if Y
is transitive G-subset of X then Y must be an orbit of x ∈ X under G.

b). Let {Xi | i ∈ I } be a collection of G-sets.

(1) If Xi are disjoint, that is, Xi ∩ Xj = ∅ for every i, j ∈ I with i �= j then show that ∪i∈IXi is a G-set in a
natural way.
(2) If Xi are not necessarily disjoint then X′

i := {(x, i) | x ∈ Xi, i ∈ I } are disjoint and each X′
i is a G-set in a

natural way. Further the maps Xi → X ′
i defined by x �→ (x, i) are G-isomorphisms.

c). Suppose that X is a transitiveG-set and Let x0 ∈ X and let Y be the left cosetG-set of the isotropy subgroup
Gx0 , i.e. Y = G/Gx0 with the natural (see N11.8) G-action on Y . Show that there exists a G-isomorphism
f : X → Y. (Hint : For x ∈ X, let g ∈ G with gx0 = x0 and put f (x) := gGx0 . )

d). Every G-set X is isomorphic to the disjoint union of left coset G-sets. (Hint : X is the disjoint union of its
orbits which are transitive G-subsets of X. Now use the parts c) and b)-1) above. )

T11.9. Let G be a finitely generated group and let n ∈ N+.

a). The set of all subgroups of index n in G is finite. (Hint : Using left coset G-sets reduce the problem to that
of normal subgroups and these are nothing but kernels of the group homomorphismsG → Sn which are finitely
many. Why ? )

b). Let ϕ : G → G be a surjective endomorphism of G. Show that the mapping H �→ ϕ−1(H) is a bijection on
the set of all subgroups of index n in G. (Hint : Use the part a) above. )
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