MA-219 Linear Algebra

11. Operations of Groups

11.1. A group G is called homogeneous if the natural action (see N11.6-a)) of the automorphism $\operatorname{group} \operatorname{Aut}(G)$ of G on G is transitive on the $\operatorname{Aut}(G)$-subset $G \backslash\{e\}$. Show that if G is a finite group then G is homogeneous if and only if G is a finite product of $\mathbb{Z}_{p}=\{0, \ldots, p-1\}=$ the cyclic group of prime order p.
11.2. Let H be a subgroup of finite index in a group G. If $G=\bigcup_{g \in G} g H g^{-1}$ then show that $G=H$. (Hint: Let N be the kernel of the action of the left coset G-set G / H. By passing to the group G / N reduce to the case of finite groups. - or use T11.6.). Give an example to show that the assumption finite index is necessary. (Hint: $H=\left\{\left.\left(\begin{array}{ll}a & 0 \\ b & c\end{array}\right) \in G \right\rvert\, a c \neq 0\right\} \neq G=\mathrm{GL}(2, \mathbb{C})=\bigcup_{g \in G} g H^{-1}$.)
11.3. Let G be a group and let X be a G-set. Show that
a). (Burnside 's Formula) $\operatorname{card}(G) \cdot \operatorname{card}(X / G)=\sum_{g \in G} \operatorname{card}\left(\operatorname{Fix}_{g}(X)\right.$ Hint: Let $Y:=\{(g, x) \in$ $G \times X \mid g x=x\}$. Look at the fibres of the mappings $Y \rightarrow G,(g, x) \mapsto g$ and $Y \rightarrow X,(g, x) \mapsto x$.)
b). Suppose that G is finite. For $g \in G$, let $n(g)=\operatorname{card}\left(\operatorname{Fix}_{g}(X)\right)$. Show that
(1) If G acts transitively on X then $\operatorname{card}(G)=\sum_{g \in G} n(g)$. Deduce that, if $\operatorname{card}(X) \geq 2$ and G acts transitively on X then there exists $g \in G$ such that $\operatorname{Fix}_{g}(G)=\emptyset$. (Hint: Use the Burnside 's formula.) (2) If G acts 2-transitively on X then $2 \cdot \operatorname{card}(G)=\sum_{g \in G} n(g)^{2} . \quad$ (Hint: Use 11.7-c) and the part (1) above.)
11.4. (Split-sequences) Let $1 \rightarrow N \xrightarrow{\varphi} G \xrightarrow{\psi} H \rightarrow 1$ be an exact sequence of (not necessarily abelian) groups, i.e. φ is injective with $\operatorname{im} \varphi=\operatorname{ker} \psi$ and ψ is surjective (then $H \cong G / \operatorname{im} \varphi$ and $N \cong \operatorname{im} \varphi$.).
a). The group homomorphism ψ has a section, i.e. there exists a group homomorphismus $\sigma: H \rightarrow G$ such that $\psi \sigma=\operatorname{id}_{H}$ and so G is a semi-direct product of $\operatorname{im} \varphi \cong N$ and $\operatorname{im} \sigma \cong H$. In this case, we say that the short exact sequence $1 \rightarrow N \rightarrow G \rightarrow H \rightarrow 1$ is a weak-split sequence and the image $\operatorname{im} \sigma$ is called the weak-complement of $\operatorname{im} \varphi$ in G.
b). Suppose that there exists a projection $\pi: G \rightarrow N$ such that $\pi \varphi=\mathrm{id}_{N}$ and so G is a direct product of $\operatorname{im} \varphi \cong N$ and $\operatorname{ker} \pi \cong H$, i.e. the map $(x, y) \mapsto x y$ is a group isomorphism $\operatorname{im} \varphi \times \operatorname{ker} \pi \longrightarrow G$. In this case we say that the short exact sequence $1 \rightarrow N \rightarrow G \longrightarrow H \rightarrow 1$ is a (strong)-split sequence and the kernel ker π is called a strong-complement of im φ in G.
c). Every (strong) split sequence is weak-split sequence. If σ is a section of ψ and $\operatorname{im} \sigma$ is normal in G, then $\operatorname{im} \sigma$ is a strong-complement of $\operatorname{im} \varphi$ and the sequence $1 \rightarrow N \rightarrow G \rightarrow H \rightarrow 1$ is (strong)-split. d). If G (and hence H and N) is abelian, then $1 \rightarrow N \rightarrow G \rightarrow H \rightarrow 1$ is split sequence if and only if this sequence is weak-split.
e). If H is abelian, then the sequence $1 \rightarrow N \rightarrow G \rightarrow H \rightarrow 1$ is a split sequence if and only if the sequence $1 \rightarrow N \cap \varphi^{-1}(\mathrm{Z}(G)) \rightarrow \mathrm{Z}(G) \rightarrow H \rightarrow 1$ of abelian groups is exact and split, where $\mathrm{Z}(G)$ denote the center of G.) Every complement of $(\operatorname{im} \varphi) \cap \mathrm{Z}(G)$ in $\mathrm{Z}(G)$ is then a strong-complement of $\operatorname{im} \varphi$ in G.
11.5. Let N be a group. Then every semi-direct product (see N 11.11) of the form $N \rtimes H$, where H is a group, is equal to the direct product $N \times H$ if and only if N has at most two elements. (Hint: It is enough to show that every group N with more than two elements has an automorphism different from the identity map. - In the non-abelian case the conjugation, and in the abelain case the inverse map and for the elementary abelian 2-groups, see footnote 1, the linear map of \mathbf{K}_{2}-vector spaces. - This result can also be formulated as: Every weak-split exact sequence of groups $1 \longrightarrow N \longrightarrow G \longrightarrow H \longrightarrow 1$ is strong-split if and only if N has atmost two elements.)
11.6. Suppose that a finite group G of order n operates on the (additively written) abelian group H as a group of automorphisms.
a). $\mathrm{Fix}_{G} H$ is a subgroup of H.
b). For every $x \in H$, the sum $\mathrm{N} x:=\sum_{g \in G} g x$ is a fixed point of the operation of G.
(Hint: $h(\mathrm{~N} x)=\sum_{g \in G}(h g) x=\sum_{g \in G} g x=\mathrm{N} x$ for every $h \in G$, since $G=\{h g \mid g \in G\}$.)
c). (Mean) Suppose that the multiplication λ_{n} by n on H is bijektive. Then λ_{n} and the inverse $\left(\lambda_{n}\right)^{-1}$ of λ_{n} are G-invariant. The element $\pi_{H} x:=\frac{1}{n} \mathrm{~N} x=\frac{1}{n} \sum_{g \in G} g x$ is called the mean or average of x and is fixed point.
d). The group homomorphism $\pi_{H}: H \rightarrow H$ is a projection of H onto the subgroups $\mathrm{Fix}_{G} H$, i.e. $\pi_{H}=\pi_{H}^{2}$ and $\operatorname{im} \pi_{H}=\operatorname{Fix}_{G} H$. (Hint: Let $\pi:=\pi_{H}$. The inclusion $\pi(H) \subseteq \operatorname{Fix}_{G} H$ is mentioned in the part b). Conversely, let $x \in \operatorname{Fix}_{G} H$, then $\pi x=\frac{1}{n} \sum_{g \in G} g x=\frac{1}{n} n x=x$. This proves the inclusion $\operatorname{Fix}_{G} H \subseteq \pi(H)$ and hence $\pi=\pi^{2}$. -Remark: This is the most effective way of computing the fixed points. For example, it can be applied to the additive group H of a vector space over a field K with $n \cdot 1_{K} \neq 0$ (or moregenerally to the additive groups of a module over a ring A with $n \cdot 1_{A} \in A^{\times}$).)
e). Let G be a finite group of order n and let H^{\prime}, H resp. $H^{\prime \prime}$ be abelain groups on which G operates by automorphisms. Further, let $H^{\prime} \xrightarrow{f^{\prime}} H \xrightarrow{f} H^{\prime \prime}$ be an exact sequence of G-invariant group homomorphisms. If the multiplication by n on H and H^{\prime} are bijective ${ }^{1}$), then the induced sequence $\mathrm{Fix}_{G} H^{\prime} \rightarrow \mathrm{Fix}_{G} H \rightarrow \operatorname{Fix}_{G} H^{\prime \prime}$ is also exact. \quad (Hint: For $x \in \operatorname{Fix}_{G} H$ with $f(x)=0$ we need to find $x^{\prime} \in \operatorname{Fix}_{G} H^{\prime}$ with $f^{\prime}\left(x^{\prime}\right)=x$. Let $\tilde{x} \in H^{\prime}$ be such that $f^{\prime}(\widetilde{x})=x$. Then $x^{\prime}:=\pi_{H}^{\prime}(\widetilde{x}) \in \operatorname{Fix}_{G} H^{\prime}$ and $f^{\prime}\left(x^{\prime}\right)=f^{\prime} \pi_{H}^{\prime}(\widetilde{x})=\pi_{H} f^{\prime}(\widetilde{x})=\pi_{H} x=x$. - Remark: In the above situation, the sequence of the fixed-point groups is not exact in general, for example, the group $G:=\mathbb{Z}^{\times}=\{1,-1\}$ operates (see N11.6-c)) in a natural way, i.e. the operation of -1 is the inverse map. Then the canonical projection of \mathbb{Z} onto $\mathbb{Z} / \mathbb{Z} 2$ is surjective, but the induced homomorphism $0 \rightarrow \mathbb{Z} / \mathbb{Z} 2$ on the fixed-point groups is not surjective.)

On the other side one can see (simple) test-exercises ; their solutions need not be submitted.

[^0]
Operations of groups

Below we collect definitions, basic results and examples on operations of groups.
N11.1. (Group actions --action homomorphisms and G-sets) Let G be a (multiplicative) group with the identity element e. An operation or action of G on a set X is a map $G \times X \rightarrow X$ (called an operation map or action map) and denoted by $(g, x) \mapsto g x$ such that for all $g, h \in G$ and for all $x \in X$, we have: (1) $e x=x \quad$ (2) $(g h) x=g(h x)$.

For a fixed $g \in G$, the map $\vartheta_{g}: X \rightarrow X$ defined by $x \mapsto g x$ is called the operation of g on X. Then $\vartheta_{e}=\mathrm{id}_{X}$ and $\vartheta_{g h}=\vartheta_{g} \vartheta_{h}$ by the conditions (1) and (2) above, respectively. In particular, for every $g \in G$, the map ϑ_{g} is a permutation of X and $\left(\vartheta_{g}\right)^{-1}=\vartheta_{g^{-1}}$. Therefore the map $\vartheta: G \rightarrow \mathfrak{S}(X)$ defined by $\vartheta(g):=\vartheta_{g}$ is a group homomorphism. This group homomorphism is called the action homomorphism of the action of G on X. Conversely, if $\vartheta: G \rightarrow \mathfrak{S}(X)$ is a group homomorphism then the map $G \times X \rightarrow X$ defined by $(g, x) \mapsto \vartheta(g)(x)$ gives an operation on X.

A set X with an action of a group G is called a G-set; the action homomorphism $\vartheta: G \rightarrow \mathfrak{S}(X)$ is called the action homomorphism of the G - set X.

N11.2. (Orbits and isotropy subgroups - Stabilizers) Let G be a group acting on a set X.
a). The operation of G on X defines an equivalence relation o X : For $x, y \in X, x \sim_{G} y$ if and only if there exists $g \in G$ with $g x=y$.
b). The equivalence class of $x \in X$ under \sim_{G} is denoted by $G x:=\{g x \mid g \in G\}$ and is called the orbit of x. The quotient set of all equivalence classes of the relation \sim_{G} is denoted by X / G. We have the canonical surjective map $X \rightarrow X / G, x \mapsto G x$.
c). For $x \in X, G_{x}:=\{g \in G \mid g x=x\}$ is a subgroup of G. This subgroup is called the is otropy group or stabilizer of x.
d). For $x \in X$, the fibres of the cannonical surjective map $G \rightarrow G x, g \mapsto g x$ are the left-cosets of G_{x} in G. In particular: (Orbit-Stabiliser theorem) $\operatorname{card}(G x)=\left[G: G_{x}\right]$, i.e. the cardinality of the orbit $G x$ of x is the index [$G: G_{x}$] of the isotropy subgroup of x in G and in particular, if G is finite then card $(G x)$ divides the order of the group G.
e). For $g \in G, x \in X, G_{g x}=g G_{x} g^{-1}$. i.e. Isotropy subgroups of the elements in the same orbit are conjugate subgroups in G.
f). An element $x \in X$ is called a fixed or invariant element with respect to the element $g \in G$ if $g x=x$. The set of fixed elements with respect to $g \in G$ is denoted by $\operatorname{Fix}_{g}(X)$. If $E \subseteq G$ then we put $\operatorname{Fix}_{E}(X):=\cap_{g \in E} \operatorname{Fix}_{g}(X)$. The elements of $\operatorname{Fix}_{G}(X)$ are called fixed elements of the operation of G on X. An element $x \in X$ belongs to $\operatorname{Fix}_{G}(X)$ if and only if $G_{x}=G$.

N11.3. Let G be a group acting on a set X with action homomorphism $\vartheta: G \rightarrow \mathfrak{S}(G)$. We say that
(1) G operates transitively on X if X / G is a singleton set, i.e. there is exactly one orbit.
(2) G operates freely on X if for every $x \in X$ the isotropy group G_{x} at x is trivial group, i.e. $G_{x}=\{e\}$.
(3) G operates faithfully on X if for every $g, h \in G, g x=h x$ for all $x \in X$ implies that $g=h$. Note that G operates on X faithfully if and only if the action homomorphism $\vartheta: G \rightarrow \mathfrak{S}(X)$ is injective.
(4) G operates simply transitively on X if G operates transitively and freely on X.
a). For $x \in X$, the orbit $G x$ of x is invariant under g for every $g \in G$ and so G operates on $G x$ transitively.
b). (Restriction of an action) Let H be a subgroup of G. Then H operates on X by restriction; the corresponding action homomorphism is the composite homomorphism $H \xrightarrow{\iota} G \xrightarrow{\vartheta_{X}} \mathfrak{S}(X)$.
c). (Left-translation action -- Cayley's representation) The binary operation of a group G define a simple transitive operation on G. The corresponding action homomorphism is injective group homomorphism $\lambda: G \rightarrow \mathfrak{S}(G)$. This is the permutation representation of G and is called the Cayley's representation of G. For any subgroup H of G, the orbits of the restriction of the left-transaltion action to H on G are the right-cosets of H in G and the isotropy groups are trivial.
d). (Induced action) The normal subgroup $N=\operatorname{ker} \vartheta$ is called the kernel of the action of G on X. Therefore ϑ induces a group homomorphism $\bar{\vartheta}: G / N \rightarrow \mathfrak{S}(X)$ and hence the quotient group G / N acts on the set X with the action homomorphism $\bar{\vartheta}$. This action of G / N is called the induced action of G on X. It is clear that G / N acts faithfully on X.
e). The kernel of an operation of a group G on a set X is the intersection of all isotropy groups $G_{x}, x \in X$. - If G is abelian, then G operates simple trasitively if and only if G operates transitively and faithfully.
f). If $\operatorname{card}(G)$ is a prime number $>\operatorname{card} X$ then the action homomorphism is trivial, i.e. $\vartheta(g)(x)=x$ for every $g \in G$ and $x \in X$.
g). If X is finite then the kernel of the action homomorphism ϑ is a subgroup of finite index in G.
h). Suppose that G acts transitively on X and $x \in X$. Then the map $G \rightarrow X$ defined by $g \mapsto g \cdot x$ is surjective and $\operatorname{card}(X)=\left[G: G_{x}\right]$. In particular, if G is finite then X is finite and $\operatorname{card}(X)$ divides $\operatorname{card}(G)$.

N11.4. (Clas Equation) Let G be a group operating on a set X. Then

$$
\operatorname{card}(X)=\operatorname{card}\left(\operatorname{Fix}_{G}(X)+\sum_{\substack{G x X X / G \\ \operatorname{card}(G)>1}} \operatorname{card}(G x)\right.
$$

 group and let H be a subgroup. The group H acts on G by the restriction of the left-transaltion action of G on G to H; the orbits of this cation are the right-cosets of H in G and the isotropy groups are trivial. Therefore the class equation for this action of H on G is $\operatorname{card}(G)=\operatorname{card}(H) \cdot \operatorname{card}(G / H)$. In particular,
(Lagrange's theorem) Let G be a finite group and let H be a subgroup of G. Then the order of H divides the order of G. More precisely, $\operatorname{ord}(G)=\operatorname{ord}(H) \cdot[G: H]$.
b). (Conjugation action and the class equation for a group) Let G be a group. Then G acts on G by the conjugate action, i.e. the action homomorphism is the group homomorphism $\kappa: G \rightarrow \operatorname{Aut}(G)$, $g \mapsto \kappa_{g}: G \rightarrow G, x \mapsto g x g^{-1}$. The fixed point set of this operation is the center $\mathrm{Z}(G)$ of G. The center of G is also the kernel of this operation. In particular, the class equation for this operation is called the clas s equation for G :

$$
\operatorname{card}(G)=\operatorname{card}(Z(G))+\sum_{j \in J} \operatorname{card}\left(\mathrm{C}_{j}\right)
$$

where $\mathrm{C}_{j}, j \in J$ are distinct conjugacy classes of G with more than one element, i. e. $\mathrm{C}_{i} \neq \mathrm{C}_{j}$ for $i, j \in J$, $i \neq j$ and $\operatorname{card}\left(\mathrm{C}_{j}\right)>1$ for every $j \in J$. If $x_{i} \in \mathrm{C}_{i}$, then $\mathrm{C}_{i}=\left\{g x_{i} g^{-1} \mid g \in G\right\}$ and $\operatorname{card}\left(\mathrm{C}_{i}\right)=\left[G: \mathrm{C}_{G}\left(x_{i}\right)\right]$, where for $x \in G, \mathrm{C}_{G}(x):=\{g \in G \mid g x=x g\}$ is the subgroup of elemenst of G which commute with x. This subgroup is called the centraliser of x in G. If G is a finite group and $\mathrm{C}_{i}, i=1, \ldots, r$ are all distinct conjugacy classes in G with $\operatorname{card}\left(\mathrm{C}_{i}\right)>1$ for all $i=1, \ldots, r$, then the numbers $\operatorname{card}(\mathrm{Z}(G))$ and $\operatorname{card}\left(\mathrm{C}_{i}\right)$, $i=1, \ldots, r$ divide the order $\operatorname{Ord} G$ of G and the number of all conjugacy classes in G is $\operatorname{card}(\mathrm{Z}(G))+r$ and is called the class number of G.
c). Let p be a prime number and let G be a finite group of order p^{n} with $n \in \mathbb{N}^{+}$. Suppose that G acts on a finite set X. Then $\operatorname{card}(X) \equiv \operatorname{card}\left(\operatorname{Fix}_{G}(X)\right)(\bmod p)$. In particular, the center $\mathrm{Z}(G)$ of G is non-trivial. (Hint: For the last part use the class equation for G.)
d). (Cauchy's theorem and Fermat's little theorem) Let G be a finite group of order n and let p be a prime number. On the set G^{p} of p-tuples of G the cyclic group $H:=\mathbb{Z} / \mathbb{Z} p$ operates by $\left(a,\left(x_{1}, \ldots, x_{p}\right)\right) \mapsto$ $\left(x_{1+a}, \ldots, x_{p+a}\right)$, where a and the indices $1, \ldots, p$ are the residue classes in $\mathbb{Z} / \mathbb{Z} p$. The fixed points are the constant p-tuples (x, \ldots, x). The group $\mathbb{Z} / \mathbb{Z} p$ also operates on the subset $X:=\left\{\left(x_{1}, \ldots, x_{p}\right) \in G^{p} \mid x_{1} \cdots x_{p}=\right.$ $e\}$ of G^{p} (since $x_{1} x_{2} \cdots x_{p}=\left(x_{1} \cdots x_{r}\right)\left(x_{r+1} \cdots x_{p}\right)=e$ and so $\left(x_{r+1} \cdots x_{p}\right)\left(x_{1} \cdots x_{r}\right)=e$ for $r=1, \ldots, p-1$.) Therefore by part c) $\operatorname{card}(X)=n^{p-1} \equiv\left|\mathrm{Fix}_{H} X\right| \bmod p$.
(1) If p divides n, then p also divides $\left|\operatorname{Fix}_{H} X\right|$, i.e. the cardinality of the set of $x \in G$ with $x^{p}=e$ is divisible by p. In particular,
(Cauchy's theorem) Let G be a finite group of order n and let p be a prime divisor of n. Then G has an element of order p.
(2) If p is not a divisor of n, then $\operatorname{Fix}_{H} X$ contain only the constant tuple (e, \ldots, e). In particular,
(Fermat's little theorem) Let p is a prime number and let $n \in \mathbb{N}^{+}$. If p does not divide n, then p divides $n^{p-1}-1$, i.e. $n^{p-1} \equiv 1 \bmod p$.

N11.5. Let G and H be two groups acting on the sets X and Y with action homomorphisms $\vartheta_{X}: G \rightarrow \mathfrak{S}(X)$ and $\vartheta_{Y}: H \rightarrow \mathfrak{S}(Y)$ respectively.
a). (Product action) The product group $G \times H$ acts on the product set $X \times Y$ with the action homomorphism $\vartheta_{X \times Y}: G \times H \rightarrow \mathfrak{S}(X \times Y)$ defined by $(g, h) \mapsto \vartheta_{X}(g) \times \vartheta_{Y}(h)$ for $g \in G$ and $h \in H$. This action is called the product action of $G \times H$ on $X \times Y$. The orbit $(G \times H)(x, y)$ of $(x, y) \in X \times Y$, is the product $G \cdot x \times H \cdot y$ of orbtis of x and y. What is the isotropy subgroup $(G \times H)_{(x, y)}$ at (x, y) ?
b). (Diagonal action) Suppose that $H=G$ above. Then the group G acts on $X \times Y$ with the action homomorphism $G \xrightarrow{\Delta_{G}} G \times G \xrightarrow{\vartheta_{X \times Y}} \mathfrak{S}(X \times Y)$, where $\Delta_{G}: G \rightarrow G \times G$ is the diagonal homomorphism defined by $g \mapsto(g, g)$ for $g \in G$ and $\vartheta_{X \times Y}$ is defined as above with $H=G$. This action is called the diagonal action of G on $X \times Y$. The isotropy subgroup $G_{(x, y)}$ of $(x, y) \in X \times Y$ is the intersection $G_{x} \cap G_{y}$ of the isotropy subgroups of x and y. What is the orbit $G(x, y)$ of (x, y) ?
c). Give an example to show that the diagonal action of G on $X \times Y$ need not be transitive even if G acts transitively on both X and Y. (Hint: Take the left translation action (see N11.3-c)) of G on $X=Y=G$.)

N11.6. (Automorphism actions) Let G and H be two groups. Suppose that the group G acts on H with the action homomorphism $\vartheta: G \rightarrow \mathfrak{S}(H)$. If $\operatorname{im}(\vartheta) \subseteq \operatorname{Aut}(H)=$ (the set of all automorphisms of the group $H)$ then we say that G acts on H by atomorphismsor ϑ is an automorphism action and in this case we write $\vartheta: G \rightarrow \operatorname{Aut}(H)$ instead of $\vartheta: G \rightarrow \mathfrak{S}(H)$.
a). The automorphism group $\operatorname{Aut}(G)$ of G acts on G in a natural way, infact by automorphisms; the automorphism action $\vartheta=\operatorname{id}_{\operatorname{Aut}(G)}: \operatorname{Aut}(G) \rightarrow \operatorname{Aut}(G)$. The subset $G \backslash\{e\}$ is invariant under this action.
b). The conjugate action of the group G on G is the automorphism action $\kappa: G \rightarrow \operatorname{Aut}(G), g \mapsto \kappa_{g}$, where for $g \in G, \kappa_{g}: G \rightarrow G$ is the inner automorphism of G defined by $x \mapsto g x g^{-1}$ for $x \in G$. What is the kernal of this action?
c). Let N be an (additive) abelian group. The cyclic group $\mathbb{Z}^{\times}=\{1,-1\}$ of order 2 operates on N by automorphisms, where -1 operates as the inverse map $x \mapsto-x$ of the group N.

N11.7. (k-transitive actions) Let G be a group and let X be a G-set with the action homomorphism $\vartheta: G \rightarrow \mathfrak{S}(X)$. Let $k \in \mathbb{N}^{+}$. Then X is called $k-\operatorname{transitive}$ or we say that G acts $k-\operatorname{transitively}$ on X if for any two k-tuples $\left(x_{1}, \ldots, x_{k}\right) \in X^{k}$ with $x_{i} \neq x_{j}$ for $1 \leq i \neq j \leq k$ and $\left(y_{1}, \ldots, y_{k}\right) \in X^{k}$ with $y_{i} \neq y_{j}$ for $1 \leq i \neq j \leq k$, there exists an element $g \in G$ such that $\vartheta(g)\left(x_{i}\right)=y_{i}$ for every $1 \leq i \leq k$. 1-transitive is same as transitive (see N11.3-(1)).
a). Let $k \in \mathbb{N}^{+}$. If $\operatorname{card}(X)<k$ then X is k-transitive vacuously. If $\operatorname{card}(X) \geq k$ and X is k-transitive then X is r-transitive for every $1 \leq r \leq k$.
b). For $n \in \mathbb{N}^{+}$, any subgroup of \mathfrak{S}_{n} acts naturally on the set $\{1, \ldots, n\}$, in fact, the action homomorphism is tha natural inclusion $\iota: G \rightarrow \mathfrak{S}_{n}$. This natural action of the permutation group \mathfrak{S}_{n} (respectively, the alternating group \mathfrak{A}_{n}) on the set $\{1, \ldots, n\}$ is n-transtive (respectively, $(n-2)$-transitive but not ($n-1$)-transitive).
c). The subset $X^{(n)}:=\left\{\left(x_{1}, \ldots, x_{n}\right) \mid x_{i} \in X, x_{i} \neq x_{j}, 1 \leq i \neq j \leq n\right\},\left(n \in \mathbb{N}^{+}\right)$of X^{n} is a G-subset of the diagonal action (see N11.5-b)) of G on X^{n}. Then G acts n-transitively on X if and only if G-acts transitively on $X^{(n)}$.
d). The isotropy subgroup $G_{x}, x \in X$ acts on $X \backslash\{x\}$ in a natural way. If G acts transtively on X, then G acts 2-transitively on X if and only if G_{x} transitively on $X \backslash\{x\}$ for every $x \in X$.
e). If G is a finite group, G acts 2-transitively on X and $\left[G: G_{x}\right]=n$ for $x \in X$, then $(n-1) n$ divides $\operatorname{ord}(G)$. (Hint: Use N11.3-g).)

N11.8. (Left coset G-sets) Let G be any group and let H be a subgroup of G. Let $X:=G / H=\{x H \mid$ $x \in G\}$ be the set of all left cosets of H in G and let $\vartheta: G \rightarrow \mathfrak{S}(G / H)$ be defined by $\vartheta(g):=\tilde{g}: G / H \rightarrow G / H$, $x H \mapsto g x H$ for $x H \in G / H$. Then $X=G / H$ is a G-set with the action homomorphism ϑ. This G-set is called the left coset G-set of H in G.
a). G acts transitively on G / H and the isotropy group at H is $G_{H}=H$. In particular, the isotropy subgroups are $g \mathrm{Hg}^{-1}, g \in G$ and so $N=\cap_{g \in G} g \mathrm{Hg}^{-1}$ is the kernel of the action of G on G / H. Therefore G / N acts faithfully on G / H with the induced action homomorphism $\bar{\vartheta}: G / N \rightarrow \mathfrak{S}(G / H)$. Further, N is the biggest normal subgroup of G contained in H and the quotient group G / N is isomorphic to a subgroup of the permutation group of G / H. (Hint: Let F be a normal subgroup of G with $F \subseteq H$. Then $F=g F g^{-1} \subseteq g H g^{-1}$ for every $g \in G$. Therefore $F \subseteq \cap_{g \in G} g H^{-1}=N$)
b). If $[G: H]$ is finite then so is $[G: N]$ and $[G: N]$ divides $[G: H]$!. (Hint: Follows from part a) that $\bar{\vartheta}: G / N \rightarrow \mathfrak{S}(G / H)$ is injective.)

N11.9. (G-homomorphisms) Let G be a group and let X, Y be two G-sets with the operation maps $\varphi_{X}: G \times X \rightarrow X$ and $\varphi_{Y}: G \times Y \rightarrow Y$ respectively. A map $f: X \rightarrow Y$ is called a G-homomorphism if $f(g x)=g f(x)$ for every $g \in G$ and $x \in X$, i.e. the diagram

is commutative. A G-homomorphism $f: X \rightarrow Y$ is called a G-isomorphism if there exists a G homomorphism $f^{\prime}: Y \rightarrow X$ such that $f^{\prime} \circ f=\mathrm{id}_{X}$ and $f \circ f^{\prime}=\mathrm{id}_{Y}$.
Let $f: X \rightarrow Y$ be a G-homomorphism. Then
a). The orbit $G x$ is mapped onto the orbit $G f(x)$ for every $x \in X$; in particular, induces a map $\bar{f}: X \backslash G \rightarrow Y \backslash G$ on the quotient spaces such that the diagramm

is commutative, where $X \rightarrow X / G$ and $Y \rightarrow Y / G$ are the cannonical projection maps.
b). $f\left(\operatorname{Fix}_{G}(X)\right) \subseteq \operatorname{Fix}_{G}(Y)$. In particular, f induces a mapping $\operatorname{Fix}_{G}(X) \rightarrow \operatorname{Fix}_{G}(Y)$.
c). For $x \in X$, the isotropy subgroup G_{x} is a subgroup of $G_{f(x)}$.
d). f is a G-isomorphism if and only if f is bijective. Moreover, in this case, the diagram

of groups and group homomorphisms is commutative, where $\vartheta_{X}, \vartheta_{Y}$ are action homomorphisms of X, Y respectively and $\Phi_{f}: \mathfrak{S}(X) \rightarrow \mathfrak{S}(Y)$ is the group homomorphism defined by $\Phi_{f}(\sigma):=f \circ \sigma \circ f^{-1}$ for $\sigma \in \mathfrak{S}(X)$.
e). Moregenerally, let $\varphi: G \rightarrow H$ be a homomorphism of groups. Suppose that G and H operates on the sets X and Y respectively. A map $f: X \rightarrow Y$ is called φ-invariant map if for all $g \in G$ and for all $x \in X$, we have $: f(g x)=\varphi(g) f(x)$, i.e. if the canonical diagramm

is commutative. A map $f: X \rightarrow Y \varphi$-invariant if and only if f is a G-invariant map, where the H-operation on Y via φ defines a G-operation on Y, i.e. $g y:=\varphi(g) y, g \in G, y \in Y$.

N11.10. (Semi-direct Product - Holomorph of a group) Let N and H be groups. Suppose that H operates on N by automorphisms (see N11.6), i.e. the action homomorphism is $\vartheta: H \rightarrow$ Aut $N \subseteq \subseteq(N)$. We shall construct a group G such that H is a subgroup of G and N is a normal subgoup of G and the given operation of H on N is the conjugation of H on N. Let $G:=N \times H$ and define the multiplication in G by $(n, h)\left(n^{\prime}, h^{\prime}\right):=\left(n \vartheta_{h}\left(n^{\prime}\right), h h^{\prime}\right)$. (Hint: The group axioms for G can be easily verified; the element $\left(e_{N}, e_{H}\right)$ is the identity element and the inverse of (n, h) is $\left(\vartheta_{h^{-1}}\left(n^{-1}\right), h^{-1}\right)$. The group N can be identified with the normal subgroup $N \times\left\{e_{H}\right\}$ of G and the group H can be identified with the subgroup $\left\{e_{N}\right\} \times H$ of G. With this identification the pair (n, h) is the product $n h=\left(n, e_{H}\right)\left(e_{N}, h\right)$.) This group G is called the semi-direct product of the groups N and H with respect to the operation ϑ of H on N. The semi-direct product of N and H with respt to $\vartheta: H \rightarrow$ Aut N is denoted by $N \rtimes H=N \rtimes_{\vartheta} H$.
a). The operation ϑ of H on N is trivial if and only if $G=N \rtimes H$ is the product group. This can also be characterised by the condition that H is normal in G.
b). Suppose that $H=$ Aut N and ϑ is the natural action (see N11.6-a)) on N. Then the corresponding semi-direct product is called the full holomorph of N and is denoted by $\operatorname{Hol} N$. In the case $H \subseteq$ Aut N is a subgroup, the semi-direct product is called a holomorph of N.
c). The full holomorph (and hence every holomorph) of N can be canonically embedded in the permutation group $\mathfrak{S}(N)$ of N, where the normal subgroup N of $\operatorname{Hol}(N)$ is identified with the group of left-translations of N using the Cayley's representation and Aut N is embedded canonically in $\mathfrak{S}(N)$, i.e. the map $(n, \sigma) \mapsto \lambda_{n} \sigma$, $n \in N, \sigma \in$ Aut N is an injective group homomorphism of $\operatorname{Hol}(N)$ into the permutation group $\mathfrak{S}(N)$, where λ_{n} for $n \in N$ denote the left-translation by n.
d). The subgroup $\operatorname{Hol}(N)$ of $\mathfrak{S}(N)$ is generated by the left-translations and the automorphisms of N. Further, since $\rho_{n}=\lambda_{n} \circ \kappa_{n^{-1}}=\kappa_{n^{-1}} \circ \lambda_{n}$ for $n \in N$, the subgroup $\operatorname{Hol}(N)$ also contain right-translationen.

N11.11. (Dihedral groups) Let N be an (additive) abelian group. The cyclic group $\mathbb{Z}^{\times}=\{1,-1\}$ of order 2 operates on N by automorphisms (see N11.6), where -1 operates as the inverse map $x \mapsto-x$ of the group N. The corresponding semi-direct product is called the dihedral group of N and is denoted by $\mathbf{D}(N)$. The binary operation in $\mathbf{D}(N)$ is given by $(n, \varepsilon)\left(n^{\prime}, \varepsilon^{\prime}\right)=\left(n+\varepsilon n^{\prime}, \varepsilon \varepsilon^{\prime}\right), n, n^{\prime} \in N, \varepsilon, \varepsilon^{\prime} \in \mathbb{Z}^{\times}$.
a). The dihedral group $\mathbf{D}(N)$ is the direct product of N and \mathbb{Z}^{\times}, i.e. is an abelain group if and only if the inverse map of N is trivial, i.e. every element of N is its inverse in $N .{ }^{2}$)
b). If $N=\mathbf{Z}_{n}=\mathbb{Z} / \mathbb{Z} n$ is the cyclic group of order $n>0$, then for $\mathbf{D}(N)$ we simply write \mathbf{D}_{n}; its order is Ord $\mathbf{D}_{n}=2 n$. The infinite dihedral group $\mathbf{D}_{0}:=\mathbf{D}(\mathbb{Z})$ is the full holomorph of the additive group \mathbb{Z}. Therefore we have a sequence $\mathbf{D}_{n}, n \in \mathbb{N}$, of the dihedral groups. (Remark: We shall show that the dihedral $\operatorname{group} \mathbf{D}(\mathbb{R})$ is isomorphic to the group of motions of an affine Euclidean line and the dihedral group $\mathbf{D}(\mathbb{R} / \mathbb{Z})$ is isomorphic to the group of isometries of an (oriented) two-dimensional Euclidean vector space. The group $\mathbf{D}(\mathbb{R} / \mathbb{Z})$ (and occasionally the group $\mathbf{D}(\mathbb{Q} / \mathbb{Z})$) is also denoted by \mathbf{D}_{∞}.
N11.12. Let G be a finite group of order n. Then G acts on the power set $\mathfrak{P}(G)$ of G by the left-multiplication, i.e. the action homomorphism is $\vartheta: G \rightarrow \mathfrak{S}(\mathfrak{P}(G))$ given by $g \mapsto \vartheta(g)$, where $\vartheta(g): \mathfrak{P}(G) \rightarrow \mathfrak{P}(G)$ is defined by $A \mapsto g A:=\{g a \mid a \in A\}$.
a). For every fixed positive integer $r \leq n$, the subset $\mathfrak{P}_{r}(G):=\{A \in \mathfrak{P}(G) \mid \operatorname{card}(A)=r\}$ of a G-set $\mathfrak{P}(G)$ is invariant under the above G-action.
b). Each orbit of $\mathfrak{P}(G)$ under the above G-action contains either exactly one subgroup of G or contains no subgroup of G.
(Proof Let H and H^{\prime} be subgroups of G belonging to the same orbit of $\mathfrak{P}(G)$. Then there exists $A \in \mathfrak{P}(G)$ such that $H \sim_{G} A$ and $H^{\prime} \sim_{G} A$. Therefore, since \sim_{G} is an equivalence relation on $\mathfrak{P}(G)$, it follows that $H \sim_{G} H^{\prime}$ and so there exists $g \in G$ such that $H^{\prime}=g H$. If $g \notin H$ then $g^{-1} \notin H^{-1}$, so that $e=g g^{-1} \notin g H=H^{\prime}$. This contradicts the fact that H^{\prime} is a subgroup of G. Therefore $g \in H$ and so $H^{\prime}=g H=H$.)
c). Let p be a prime with $n=p^{\alpha} q$ and $\operatorname{gcd}(p, q)=1$, where $\alpha:=v_{p}(\operatorname{ord}(G))$. Let β be a positive integer with $0 \leq \beta \leq \alpha$. Let $X \subseteq \mathfrak{P}_{p^{\beta}}(G)$ be a orbit of an element $A \in \mathfrak{P}_{p^{\beta}}(G)$ the above G-action. Then the following statments are equivalent:
(i) $v_{p}(\operatorname{card}(X)) \leq \alpha-\beta=: \gamma$. (ii) $\operatorname{card}(X)=p^{\alpha-\beta}$. (iii) X contains exactly one subgroup H (of order p^{β}). (Proof Let $A \in \mathfrak{P}_{p^{\beta}}(G)$ be such that the orbit of $A=: X$. By the orbit-stabiliser theorem (N11.2-d))

$$
\begin{array}{ll}
\text { (c.1) } & \operatorname{card}\left(G_{A}\right) \operatorname{card}(X)=\operatorname{card}(G)=p^{\alpha} q \tag{c.1}\\
\text { (c.2) } & \alpha=v_{p}(\operatorname{card}(G))=v_{p}\left(\operatorname{card}\left(G_{A}\right)\right)+v_{p}(\operatorname{card}(X)) .
\end{array}
$$

Since $G_{A}=\{g \in G \mid g A=A\}$, we have $g a \in A$ for every $g \in G_{A}$ and $a \in A$. Therefore, for any $a \in A$, there is a natural inclusion $G_{A} \cdot a \hookrightarrow A$. In particular, $\operatorname{card}\left(G_{A}\right)=\operatorname{card}\left(G_{A} \cdot a\right) \leq \operatorname{card}(A)=p^{\beta}$ and so $v_{p}\left(\operatorname{card}\left(G_{A}\right)\right) \leq \beta$. (i) \Rightarrow (ii) : If $v_{p}(\operatorname{card}(X)) \leq \gamma$ then $v_{p}\left(\operatorname{card}\left(G_{A}\right)\right)=\beta$ by $(\mathrm{c} .2)$ above and so $\operatorname{card}\left(G_{A}\right)=p^{\beta}$. Therefore $\operatorname{card}(X)=p^{\gamma} q$ by (c.1) above. (ii) \Rightarrow (iii) : Since $\operatorname{card}(X)=p^{\gamma} q$, we have $v_{p}(\operatorname{card}(X))=\gamma$ and so $v_{p}\left(\operatorname{card}\left(G_{A}\right)\right)=\beta$ by (c.2) above. Therefore $\left.\operatorname{card}\left(G_{A} \cdot a\right)\right)=\operatorname{card}\left(G_{A}\right)=p^{\beta}$ and so $G_{A} \cdot a=A$ for every $a \in A$. Now, by N11.2-e) $G_{a^{-1} A}=a^{-1} \cdot G_{A} \cdot a=a^{-1} A \in$ the orbit of $A=X$. Therefore X contains a subgroup namely, $G_{a^{-1} A}$ and by the part b) this subgroup is unique. (iii) \Rightarrow (i) : Let H be a subgroup of G such that $H \in X$. Then X is the orbit of $H=G / H=\{g H \mid g \in G\}$. Therefore $\operatorname{card}(X)=[G: H]=p^{\alpha} q / p^{\beta}=p^{\gamma} q$ and so $\left.v_{p}(\operatorname{card}(X))=\gamma.\right)$
d). With the notation as in the part c) above, there exists a natural number t such that

$$
\binom{p^{\alpha} q}{p^{\beta}}=\mathrm{d}_{G}(p, \beta) p^{\gamma} q+t p^{\gamma+1}
$$

where $\mathrm{d}_{G}(p, \beta)$ is the number of subgroups of order p^{β} and $\gamma=\alpha-\beta$. (Proof The action of G on $\mathfrak{P}_{p^{\beta}}(G)$ gives a decomposition $\mathfrak{P}_{p^{\beta}}(G)=\bigcup\left\{\right.$ orbits with cardinality $\left.=p^{\gamma} q\right\} \cup \bigcup\left\{\right.$ orbits with cardinality $\left.\neq p^{\gamma} q\right\}$. Since the orbits with cardinality $=p^{\gamma} q$ are precisely the orbits which contains exactly one subgroup of G of order p^{β} (by the equivalence (i) \Longleftrightarrow (ii) of (c)) and the orbits with cardinality $\neq p^{\gamma} q$ are precisely the orbits whose cardinality is divisible by $p^{\gamma+1}$ (by the equivalence (i) \Longleftrightarrow (iii) of (c)), there exists a natural number t such that $\binom{p^{\alpha} q}{p^{\beta}}=\operatorname{card}\left(\mathfrak{P}_{p^{\beta}}(G)\right)=d p^{\gamma} q+t p^{\gamma+1}$.)

[^1]e). In particular, if G is cyclic in the part d) above then there exists a natural number s such that $\binom{p^{\alpha} q}{p^{\beta}}=$ $p^{\gamma} q+s p^{\gamma+1}$, where $\gamma:=\alpha-\beta$. (Proof Since $\operatorname{card}\left(\mathfrak{P}_{p^{\beta}}(G)\right)$ does not depend the group, the assertion follows from (5) by taking G to be the cyclic group.)
N11.13. (Sylow theorems ${ }^{3}$)) Let G be a finite group of order n and let p be a prime divisor of n with $n=p^{\alpha} q$ and $\operatorname{gcd}(p, q)=1$, where $\alpha=v_{p}(\operatorname{Ord} G)$. Let β be a non-negative integer with $0 \leq \beta \leq \alpha$ and let $\mathrm{d}_{G}(p, \beta)$ be the number f subgroups of G of order p^{β}. Then
a). $\mathrm{d}_{G}(p, \beta) \equiv 1(\bmod p)$. In particular, G has a subgroup of order p^{α}.
(Proof It follows from $\mathrm{N} 11.12-\mathrm{d})$ and e) that there exist natural numbers s and t such that $p^{\gamma} q+s p^{\gamma+1}=\binom{p^{\alpha} q}{p^{\beta}}=\mathrm{d}_{G}(p, \beta) p^{\gamma} q+t p^{\gamma+1}$, where $\gamma:=\alpha-\beta$. Therefore $\mathrm{d}_{G}(p, \beta) q=q+(s-t) p \equiv q(\bmod p)$ and so $\mathrm{d}_{G}(p, \beta) \equiv(\bmod p)$, since $\operatorname{gcd}(p, q)=1$.)
b). If H is a subgroup of order p^{α} and H^{\prime} is a subgroup of order p^{β}, then there exist an element $g \in G$ such that $H^{\prime} \subseteq g \mathrm{Hg}^{-1}$. In particular, any two subgroups of order p^{α} are conjugates in G. (Proof Restrict the operation (see N11.8) of G on the set of left-cosets G / H of H in G to the subgroup H^{\prime}. The class equation for this action is $($ see N11.4-c) $\left.) q=|G / H| \equiv\left|\operatorname{Fix}_{H^{\prime}}(G / H)\right| \bmod p\right)$ and hence $\operatorname{Fix}_{H^{\prime}}(G / H) \neq 0$, i.e. there exists a left-coset $g H, g \in G$ of H in G which is invariant under all left-translations of the elements from H^{\prime}, i.e. $H^{\prime} \subseteq g \mathrm{Hg}^{-1}$. restriction of the left-coset
c). $\mathrm{d}_{G}(p, \alpha)$ divides q and so it divides n. (Proof By a) there is a subgroup H of G of order p^{α} and by b) all subgroups of order p^{α} are conjuagtes in G. But by T11.6-d) the number of conjugate subgroups of H in G is the index $\left[G: \mathrm{N}_{G}(H)\right]$ of the normaliser $\mathrm{N}_{G}(H)$ of H in G and $\left[G: \mathrm{N}_{G}(H)\right]$ divides $[G: H]=q$.

Test-Exercises

T11.1. Let V be a n-dimensional vector space over a field $K, n \in \mathbb{N}^{+}$and let $G:=\operatorname{Aut}_{K}(V)=G L_{K}(V)$ be the automorphism group of V. In each of the following examples show that G acts on the set X with the action homomorphism $\vartheta: G \rightarrow \mathfrak{S}(X)$. For $x \in X$, describe the orbit $G x$ of x under G geometrically (whenever possible) and find the isotropy subgroup G_{x} at x.
a). Let $X=V \backslash\{0\}$ and let $\vartheta: G \rightarrow \mathfrak{S}(V)$ be defined by $\vartheta(f)(v):=f(v)$ for $f \in G$ and $v \in V \backslash\{0\}$.
b). Let $X=\mathcal{B}:=\left\{\left(v_{1}, \ldots, v_{n}\right) \in V^{n} \mid v_{1}, \ldots, v_{n}\right.$ is a basis of $\left.V\right\}$ and let $\vartheta: G \rightarrow \mathfrak{S}(\mathcal{B})$ be defined by $\vartheta(f)\left(\left(v_{1}, \ldots, v_{n}\right)\right):=\left(f\left(v_{1}\right), \ldots, f\left(v_{n}\right)\right)$ for $f \in G$ and $\left(v_{1}, \ldots, v_{n}\right) \in \mathcal{B}$.
c). Let $r \in \mathbb{N}, r \leq n$ and let $\mathrm{G}_{r}(V)$ be the set of r-dimensional subspaces of V. Let $X=\mathrm{G}_{r}(V)$ and let $\vartheta: G \rightarrow \mathfrak{S}\left(\mathrm{G}_{r}(V)\right)$ be defined by $\vartheta(g)(W):=g(W)$ for $g \in G$ and $W \in \mathrm{G}_{r}(V)$.
d). Let \mathcal{F} be the set of all flags $\left\{\left(0=V_{0} \subset V_{1} \subset \cdots \subset V_{n}=V\right)\right\}$, where V_{i} is a subspace of V, for $0 \leq i \leq n$. Let $X=\mathcal{F}$ and let $\vartheta: G \rightarrow \mathfrak{S}(\mathcal{F})$ be defined by $\left(V_{0} \subset V_{1} \subset \cdots \subset V_{n}\right) \mapsto\left(g\left(V_{0}\right) \subset g\left(V_{1}\right) \subset \cdots \subset g\left(V_{n}\right)\right)$ for $g \in G$ and $\left(V_{0} \subset V_{1} \subset \cdots \subset V_{n}\right) \in \mathcal{F}$.
e). Let $X=V^{*}:=\operatorname{Hom}(V, K)$ and let $\vartheta: G \rightarrow \mathfrak{S}\left(V^{*}\right)$ be defined by $\vartheta(g):=\left(g^{-1}\right)^{*}=\left(g^{*}\right)^{-1}$ for $g \in G$.

T11.2. Let G be a group acting on a set X with the corresponding group homorphism $\vartheta: G \rightarrow \mathfrak{S}(X)$. This homomorphism induces many other operations, in a natural way. For example:
a). If $\psi: G^{\prime} \rightarrow G$ is a homomorphism of groups, then the group G^{\prime} operates on X by $g^{\prime} x:=\psi\left(g^{\prime}\right) x, g^{\prime} \in G^{\prime}$, $x \in X$. The corresponding group homomorphism of G^{\prime} in $\mathfrak{S}(X)$ is $\vartheta \psi$.
b). If $\varphi: G \rightarrow G^{\prime \prime}$ is a surjective group homomorphism such that the kernel $\operatorname{Ker} \varphi \subseteq \operatorname{Ker} \vartheta$, then the group $G^{\prime \prime}$ operates on X by $g^{\prime \prime} x:=g x$, where $g \in \varphi^{-1}\left(g^{\prime \prime}\right)$ ia arbitrary. The corresponding group homomorphism $G^{\prime \prime} \rightarrow \mathfrak{S}(X)$ is induced by $\vartheta: G \rightarrow \mathfrak{S}(X)$.
c). If $X^{\prime} \subseteq X$ is a G-invariant subset of X, i.e. for every $x \in X^{\prime}$, the orbit $G x$ of x is contained in X^{\prime}, then G operates on X^{\prime} by restriction. In particular, G operates on each orbit and in fact transitively.
d). A map $f: X \rightarrow Y$ is said to be compatible with the operation of G on X if for all $x, x^{\prime} \in X$, the equality $f(x)=f\left(x^{\prime}\right)$ implies the equality $f(g x)=f\left(g x^{\prime}\right)$ for all $g \in G$. Moreover, if f is surjective, then

[^2]the operation of G on X induces an operation of G on Y by $g y:=f(g x)$, where $x \in f^{-1}(y)$ is arbitrary. This mean that the map f is a G-map. Further, in this case $f\left(\operatorname{Fix}_{G}(X)\right) \subseteq \operatorname{Fix}_{G}(Y)$. Give an example to show that this inclusion can be strict. (Hint: Let G be the multiplicative cyclic group $\{-1,1\}$ of order $2, X:=\mathbb{Z}$ and $Y:=\mathbb{Z}_{2}=\{0,1\}$. Then G acts on X (resp. on Y) by the action homomorphism $\vartheta: G \rightarrow$ Aut \mathbb{Z} (resp. $\vartheta: G \rightarrow$ Aut $_{\mathbb{Z}_{2}}$, $\vartheta(1)=\mathrm{id}_{\mathbb{Z}}$ and $\vartheta(-1): \mathbb{Z} \rightarrow \mathbb{Z}, n \mapsto-n\left(\right.$ resp. $\vartheta(1)=\mathrm{id}_{\mathbb{Z}_{2}}$ and $\vartheta(-1): \mathbb{Z}_{2} \rightarrow \mathbb{Z}_{2}$, $n \mapsto-n)$. Further, let $f: \mathbb{Z} \rightarrow \mathbb{Z}_{2}$ be the canonical surjective map. Then $\operatorname{Fix}_{G}(X)=0$ and $\operatorname{Fix}_{G}(Y)=Y$.)
e). Let Y be an another set. Then G operates on the set of all maps X^{Y} by $(g \tilde{f})(y):=g(\tilde{f}(y)), g \in G, \tilde{f} \in X^{Y}$ and $y \in Y$. The action homomorphism of the G-set X^{Y} is $\lambda_{X}^{Y} \circ \vartheta: G \rightarrow \mathfrak{S}(X) \rightarrow \mathfrak{S}\left(X^{Y}\right)$, where λ_{X}^{Y} is defined in the footnote ${ }^{4}$) and the fixed set $\operatorname{Fix}_{G}\left(X^{Y}\right)=\left\{f \in X^{Y} \mid \operatorname{im}(f) \subseteq \operatorname{Fix}_{G}(X)\right\}$. The map $c: X \rightarrow X^{Y}$ defined by $x \mapsto c_{x}: Y \rightarrow X=$ the constant map $y \mapsto x$, is a G-homomorphism.
f). Let Y be an another set. Then G operates on the set of all maps Y^{X} by $(g f)(x):=f\left(g^{-1} \cdot x\right), g \in G, f \in Y^{X}$ and $x \in X$. The action homomorphism of the G-set Y^{X} is $\rho_{X}^{Y} \circ \vartheta: G \rightarrow \mathfrak{S}(X) \rightarrow \mathfrak{S}\left(Y^{X}\right)$, where ρ_{X}^{Y} is defined in the footnote ${ }^{4)}$ and the fixed set $\operatorname{Fix}_{G}\left(Y^{X}\right)=\left\{f \in X^{Y} \mid f\right.$ is constant on the G-orbits of $\left.X\right\}$.
g). Let H be an another group and let Y be a H-set. Then the product group $H \times G$ operates on the set Y^{X} by $((h, g) f)(x):=h \cdot f\left(g^{-1} \cdot x\right),(h, g) \in H \times G, f \in Y^{X}$ and $x \in X$. The action homomorphism of the $H \times G$-set Y^{X} is $\vartheta_{Y} \times \vartheta_{X} \circ \mu_{Y X}: H \times G \rightarrow \mathfrak{S}(Y) \times \mathfrak{S}(X) \rightarrow \mathfrak{S}\left(Y^{X}\right)$, where $\mu_{Y X}$ is defined in the footnote ${ }^{4)}$. In particular, if $H=G$ and if Y is a G-set then the set Y^{X} is a $G \times G$-set and so G acts on Y^{X} via the diagonal homomorphism $G \rightarrow G \times G, g \mapsto(g, g), g \in G$. the fixed set $\operatorname{Fix}_{G}\left(Y^{X}\right)=\operatorname{Hom}_{G}(X, Y)=$ $\left\{f \in Y^{X} \mid f\right.$ is a G-homomorphism $\}$.

T11.3. Let G be a group and let H be a subgroup of G.
a). If H is of finite index in G, then H contains a normal subgroup N of finite index such that [$G: N$] divides [$G: H]$!.
b). If G is simple and $H \neq G$, then G isomorphic to a subgroup of $\mathfrak{S}(G / H)$. In particular, if G is simple and H is a subgroup of G of finte index $n>1$, then G is finite, moreover, order of G divides $n!$. (Hint: Look at the kernel of the action of the left-coset G-set G / H (see N11.8).)
c). H is normal in G if and only if the orbits of the restriction action of H on the left-coset G - set G / H are singleton.
d). (Yang) If G is finite and H is a subgroup of prime index p, where p is the smallest prime divisor of Ord G, then H is normal in G. In particular, if every subgroup of a group G of order $p^{n}, n \in \mathbb{N}^{+}$of index p is normal in G.
e). Suppose that G is finite and $\operatorname{ord}(G)=m n, \operatorname{ord}(H)=n$.
(1) Let N be the kernel of the action of the left coset G-set G / H. Then $[H: N] \operatorname{divides} \operatorname{gcd}(n,(m-1)!)$.
(2) (Frobenius) If n has no prime factor less than m then H is normal in G. (Hint: Use (1) above.)
(3) If $\operatorname{ord}(G)=2^{r} \cdot 3$ with $r \in \mathbb{N}^{+}$, then G has a normal subgroup of order 2^{r} or 2^{r-1}. In particular, if $r \geq 2$ then G is not simple. (Hint: Apply (1) above to the 2-Sylow subgroup H of G.)
f). If H is normal in G then the orbits of the restriction of any transitive G-action to H have the same cardinality. (Hint: Let X be a transitive G-set. For $g \in G$ and $x \in X$, the maps $H x \rightarrow g^{-1} H g x, h x \mapsto g^{-1} h g x$ and $g^{-1} H g x \rightarrow H g x, g^{-1} h g x \mapsto h g x$ are bijective.)
g). The product group $H \times H$ acts on G with the action homomorphism $\vartheta: H \times H \rightarrow G$ defined by $\vartheta\left(h^{\prime}, h\right)(x)=$ $h^{\prime} x h^{-1}$, for $\left(h^{\prime}, h\right) \in H \times H$ and $x \in G$. Then H is normal in G if and only if every orbit of the action defined by ϑ has the cardinality $=\operatorname{card}(H)$.

T11.4. Let p be a prime number. Then
${ }^{4}$) Set Theoretic Results Let X and Y be two sets. For $\sigma \in \mathfrak{S}(X)$, let $\lambda_{\sigma}: X^{Y} \rightarrow X^{Y}$ (resp. $\rho_{\sigma}: Y^{X} \rightarrow Y^{X}$) be defined by $f \mapsto \sigma \circ f$ for $f \in X^{Y}$ (resp. $f \mapsto f \circ \sigma$ for $f \in Y^{X}$). For $(\tau, \sigma) \in \mathfrak{S}(Y) \times \mathfrak{S}(X)$, let $\mu_{(\tau, \sigma)}: Y^{X} \rightarrow Y^{X}$ be defined by $f \mapsto \tau \circ f \circ \sigma$ for $f \in Y^{X}$. Show that the maps
(i) $\lambda_{X}^{Y}: \mathfrak{S}(X) \rightarrow \mathfrak{S}\left(X^{Y}\right)$ defined by $\sigma \mapsto \lambda_{\sigma}$
(ii) $\rho_{X}^{Y}: \mathfrak{S}(X) \rightarrow \mathfrak{S}\left(Y^{X}\right)$ defined by $\sigma \mapsto \rho_{\sigma}$
(iii) $\mu_{Y X}: \mathfrak{S}(Y) \times \mathfrak{S}(X) \rightarrow \mathfrak{S}\left(Y^{X}\right)$ defined by $(\tau, \sigma) \mapsto \mu_{(\tau, \sigma)}$
are group homomorphisms.
a). Every group of order p^{2} is abelian and in fact either a cyclic or isomorphic to a product of two cyclic groups of order p. (Hint: Use N11.4-c).)
b). Every group of order $2 p$ is either cyclic or isomorphic to the Dihedral group D_{p}. (Remark: The case $p=2$ is a special case. - For a generalisation see exercise set 12 on affine maps)
c). Let G be a non-abelian group of order p^{3}. Show that the derived subgroup (the subgroup of G generated by the set of all commutators $\left.\left\{[a, b]\left|a b a^{-1} b^{-1}\right| a, b \in G\right\}\right)=[G, G]=\mathrm{Z}(G)$ and the class number of G is $p^{2}+p-1$. (Hint: G acts transitively on $G \backslash\{e\}$ by the conjugation action. Then use N11.3-h). Remark There exists infinite groups of class number 2.)
T11.5. Let G be a finite group of odd order and let $x \in G, x \neq e$. Show that $\mathrm{C}_{G}(x) \neq \mathrm{C}_{G}\left(x^{-1}\right)$, i.e. x and x^{-1} belongs to different conjugacy classes. (Hint: If $\mathrm{C}_{G}(x)=\mathrm{C}_{G}\left(x^{-1}\right)$, then show that $\operatorname{card}\left(\mathrm{C}_{G}(x)\right)$ is even. But by N11.4-b) $\operatorname{card}\left(\mathrm{C}_{G}(x)\right)$ divides the order ord (G) of G a contradiction.)

T11.6. Let G be a group. Then G operates on the power-set $\mathfrak{P}(G)$ of G by conjugation. For a subset A of G the isotropy group G_{A} with respect to this operation is called the normaliser of A in G and is denoted by $\mathrm{N}_{G}(A)$.
a). The subgroup $\mathrm{N}_{G}(A)$ is the biggest subgroup of G, which operates on A by conjugation.
b). The kernel of this operation of $\mathrm{N}_{G}(A)$ on A is the centraliser $\mathrm{C}_{G}(A)=\bigcap_{a \in A} \mathrm{C}_{G}(a)$ of A. In particular, $\mathrm{C}_{G}(A)$ is normal in $\mathrm{N}_{G}(A)$.
c). If H is a subgroup of G, then $\mathrm{N}_{G}(H)$ is the biggest subgroup of G in which H is normal.
d). The index [$G: \mathrm{N}_{G}(H)$] is the number of conjugate subgroups of H in G and if $[G: H$] is finite, then $\left[G: \mathrm{N}_{G}(H)\right]$ divides $[G: H]$.

T11.7. Let G and H be finite groups. Then
a). The order of G is a power of a prime number p if and only if order of every element of G is a power of p. (Hint: Use Cauchy's theorem (N11.4-d)(1)). -Remark: A group in which order of every element G is a power of a prime number p, is called a p-group.)
b). Every subgroup of the product group $G \times H$ is of the form $G^{\prime} \times H^{\prime}$, where G^{\prime} is a subgroup of G and H^{\prime} is a subgroup of H if and only if the orders of G and H are relatively prime. (Hint: Use Cauchy's theorem (N11.4-d)(1)).)

T11.8. Let X be a G-set. A subset Y of X is called a G-subset if $g y \in Y$ for every $g \in G$ and $y \in Y$. If $Y \subseteq X$ is a G-subset of X then the natural inclusion map $Y \hookrightarrow X$ is a G-homomorphism. Each orbit of X under G is a transitive G-subset of X.
a). Every subset Y of a G-set X is a G-subset if and only if it is a union of orbits of X under G. Moreover, if Y is transitive G-subset of X then Y must be an orbit of $x \in X$ under G.
b). Let $\left\{X_{i} \mid i \in I\right\}$ be a collection of G-sets.
(1) If X_{i} are disjoint, that is, $X_{i} \cap X_{j}=\emptyset$ for every $i, j \in I$ with $i \neq j$ then show that $\cup_{i \in I} X_{i}$ is a G-set in a natural way.
(2) If X_{i} are not necessarily disjoint then $X_{i}^{\prime}:=\left\{(x, i) \mid x \in X_{i}, i \in I\right\}$ are disjoint and each X_{i}^{\prime} is a G-set in a natural way. Further the maps $X_{i} \rightarrow X_{i}^{\prime}$ defined by $x \mapsto(x, i)$ are G-isomorphisms.
c). Suppose that X is a transitive G-set and Let $x_{0} \in X$ and let Y be the left coset G-set of the isotropy subgroup $G_{x_{0}}$, i.e. $Y=G / G_{x_{0}}$ with the natural (see N11.8) G-action on Y. Show that there exists a G-isomorphism $f: X \rightarrow Y$. (Hint: For $x \in X$, let $g \in G$ with $g x_{0}=x_{0}$ and put $f(x):=g G_{x_{0}}$.)
d). Every G-set X is isomorphic to the disjoint union of left coset G-sets. (Hint: X is the disjoint union of its orbits which are transitive G-subsets of X. Now use the parts c) and b)-1) above.)

T11.9. Let G be a finitely generated group and let $n \in \mathbb{N}^{+}$.
a). The set of all subgroups of index n in G is finite. (Hint: Using left coset G-sets reduce the problem to that of normal subgroups and these are nothing but kernels of the group homomorphisms $G \rightarrow \mathfrak{S}_{n}$ which are finitely many. Why?)
b). Let $\varphi: G \rightarrow G$ be a surjective endomorphism of G. Show that the mapping $H \mapsto \varphi^{-1}(H)$ is a bijection on the set of all subgroups of index n in G.
(Hint: Use the part a) above.)

[^0]: ${ }^{1}$) It is enough to assume that on H^{\prime} it is surjective and on $\operatorname{im} f^{\prime}=\operatorname{Ker} f$ it is injective.

[^1]: ${ }^{2}$) Such a group N is called an elementary (abelian) 2-group. They are precisely the additive groups of the vector spaces over the field \mathbf{K}_{2} with 2 elements.

[^2]: ${ }^{3}$) These theorems were first proved by the Norwegian mathematician LUDWIG SyLOW (1832-1918) in 1872
 [Sylow, L., Theoremes sur groups de substitutions, Math. Ann. V(1872), p.584.]. We have given the proofs using elegant arguments due to Wielandt, H., which is a great improvement over the older method of double cosets, see [Wielandt, H., Ein Beweis für die Exitenz der Sylowgruppes, Archiv der Mathematik, vol. 10(1959), p. 402-403.].

