Prof. D. P.Patil, Department of Mathematics, Indian Institute of Science, Bangalore August-December 2003

MA-219 Linear Algebra
12. Affine maps

Let K denote either the field R of real numbers or the field C of complex numbers.

12.1. (Affine hyperplanes) Let V be anon-zero K-vector space and let v;, i € I, bea
basis of V. The map h — h~%(1) is a bijective map from the set of all non-zero K -linear forms
h:V — K onto the set of al affine hyperplanesin V which do not pass through the 0. For a
hyperplane H in V with0 ¢ H the corresponding linear formisdenoted by /5 . Then by definition
H=h;1).

a). Two hyperplanes H, H' in V, which donot pass through O are paralel if and only if the
corresponding linear forms hy resp. hy differ by a factor A € K*. The hyperplane passing
through O and parallel to H isKernhy = h;,l(O) . The hyperplane directionsin V correspond to
the unigue one dimensional K -subspaces in the dual space V*.

b). The map V* — K! defined by 1 — (h(v;))ic; iS @ vector space isomorphism. For an
affine hyperplane H in V with 0 ¢ H thevauesa; := hy(v;), i € I, are caled (particularly
in the Crystallography the Miller’s indices of H and the tuple (a;) € K' is caled the
(hyperplane-) symbol of H withrespecttothebasisv; ,i € I. If I isfinitethenhy =), a;v’
if (a;) isthe symbol of H. Two affine hyperplanes which donot pass through 0, are parallel if and
only if their symbols differ by afactor » € K*. If (¢;) € K! isthe symbol of the hyperplane H,
then the i-th coordinate axis Kv;, i € I intersects with the hyperplane H if and only if a; # 0. In
this caseal.‘lv,- is the point of intersection of H with Kv; . (The Miller's indicesa; ,i € I, of H
are therefore the inverses of the interceptgf6n the coordinate axessuch an intercept is equal
to 0 (= 1/00), inthe case H donot intersect with axis, i.e. H isparalel to this axis.

12.2. (Affine functions) Let E be an affine space over the K -vector space V.

a). The set of al affine functions E — K is a K-subspace of the vector space of all K- valued
functionson E. If E isfinite dimensional, then the dimension of the space of affinefunctionson E
isequal to1+ DIimE.

b). If H isahyperplanein E, then there exists a non-constant affine function f: E — K with
H = f~1(0). Further, f isuniquely determined by H, upto afactor A € K*. (Remark: Therefore
the hyperplanesin E can be identified with a uniquely determined non-constant affine functions £ — K,
where two such functions are identified if they differ by afactor A € K*.)

c). Letv;,i € I beabasisof V andlet E = V. For an affine hyperplane H in V with0 ¢ H, let
f:V — K beanaffinefunctionwith H = f~1(0). Further, let fo:V — K bethelinear part of f
andb = f(0O)(#0). ThenH = h;l(l) with iy := —b71 fy, see exercise T10.22. The Miller’s
indices of H with respect to the basisv; , i € I arethe numbers —b= fo(v;),i € 1.

12.3. (Half-spaces) Let E be an rea affine space over the non-zero R-vector space V and
let H be an affine hyperplanein E. Supposethat H = f~1(0), where F is a non-constant affine
function on E, see exercise T10.7?. Then the sets

{PeE]| f(P)=0} resp. {PeE]f(P) =0
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12.2 MA-219 Linear Algebra/August-December 2003 12. Affine maps

are caled the cl osed and the sets
(PeE| f(P)<0) resp. (PeE| f(P)>0)

arecaledthe open affine half-spaces of E with respect to H. Thehaf-spacewith
respect to the affine hyperplane H C E are convex subsets of E. Two points P, Q € E belong to
the same open half-space with respect to the hyperplane H if and only if the line-segment [ P, Q]
donot intersect with the hyperplane H.

H=/"1(0)

12.4. (Parallel projections) Let E be an affine space over the vector space V. An &ffine
map p:E — E iscaledthe ((diagonal) parallel-)projection if p? = p. Thelinear part
of aprojection of E isa(linear) projection of V. Let p be aprojection of E with linear part po .

a). For every point Q € im p, Q isthe only point of intersection of theimageim p of p with the
fiber p~1(Q) of p over Q,i.e. impNp~1(Q) = {Q} and E isthejoin-spaceof im p and p~1(Q),
i.e. E=impvVv p~1(Q).If R € E isan arbitrary point, then p(R) is the point of intersection of
im p and the fibre parallel to p~1(Q) through R.

b). Conversely, given two affine subspaces D and F of E such that they intersect in exactly one
point and their join-spaceisthewhole E, then there exist aunique parallel projection Pp_r such that
itsimageis D and thefibresareparallel to F'. Suchaprojection Pp risasocaledthe projection
onto D along F.—Forwhichtrandationst: E — E of E, theaffinemapsz o presp. pot are
projections of E ?

12.5. (Reflections and Glide-reflections) Let E bean affine space over the K - vector
gpace V. Supposethat 2 = 1x + 1x # O0in K, i.e. Char K # 2. Anaffinemap f: E — E is
called an affine involution or reflection of E if f2 = idg. The linear part f; of an
affine involution f is alinear involution and therefore there is the corresponding decomposition
V =Vt @ V™ of Vinthesense of exercise ???. Let f: E — E bean affine involution.

a). Thesubspace F of the fixed points of f isnon-empty. (Hint: Infact for every point P € E the
midpoint %P + %f(P) of P and f(P) isafixed point of f. Further, F = V* + P for every point P € F.
This affine subspace F iscalled the mirror of f.)

b). The map f induces a point-reflection (see exercise T10.7?) on every affine subspace D of E

whichisparallel to the subspace vV~ and the (unique) point of intersectionsof D and F isthe center
of this point-reflection.

c). Conversely, supposethat D and F are two affine subspaces of E which intersect in exactly one
point and the join-space of D and F is E. Then there exists an unique affine involution of E such
that its fixed point set is F and on every affine subspace of £ which is paradlel to D, the map f
induces a point-reflection. (Remark: Thisinvolutioniscaledthe(diagonal) reflection on F

along D))
D=V_+0 P
s
0, X+ o F=V++O

—x Fol)=X 4 —X_

Y 1(P)
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d). Inthesituationof ¢),let D = U + O and F = W + O. Further, let F be a hyperplane and
hence D aline, therefore U = Kx with avector x € V \ W. If h isthelinear form on V with
Kerh = W and h(x) = 1, then thereflecion Sg p on F aong D can be described by the equation

Skp(P) = —2h(OP)x + P.

e). For which trandationst : E — E, the affinemap ¢t o f resp. f ot is an affine involution?
(Hint: Since f isan affine involution, it hasafixed point O € E . We may choose O asoriginin E (see
the commuttative diagramm in the hint of T12.7) and assumethat £ = V and f = fo. )

f). Theaffinity f: E — E iscaleda(diagonal) glide reflectionifitslinear part fo:V — V
is an involution. Every reflection is a glide reflection. Let f: E — E be aglide reflection and
V = V* @ V- isthe decomposition of V with respectto f, asabove. Then f = footr =to f
with a uniquely determined reflection f and a uniquely determined translation ¢ in the direction
V.

12.6. (Shearings and Dilatations) Let E be an affine space over the K -vector space V of
dimension > 2. An affinity f:E — E iscaleda pseudo-reflection if the fixed point set of
f isan affine hyperplanein E.

a). Thedffinity f: E — E isapseudo-reflection if and only if it has afixed point and its linear
part fo hasthe property that Rank ( fo —idy) = 1. The hyperplane of the fixed pointsis called the
reflection plane of f.

Now, let f be a pseudo-reflection of E with reflection-plane H.

b). Fortwo points P, Q € E \ H, theline-segments P f(P) and Q f(Q) are parallel. (Remark:
The direction of this line is called the reflection-direction. If the reflection-direction and the
reflection-plane are parallel, then f iscalled a shearing or transvection, otherwise f iscalled a
dilatation. Reflection on hyperplanesin the sense of exercise10.?? are examples of dilatations. )

P—— S (P) P
----- /(P
.ﬁ " o
/() 0
Shearing Dilatation with A(f)<0 Dilatation with A(f)>0

c). Let f beadilatation. For apoint P € E \ H, let p (P) be the point of intersection of the
line-segment P f(P) with the hyperplane H. Thentheratio (p (P), f (P)):(p (P), P) hasthe
samevaueforal P € E\ H. Thisvalueiscaledthe magnification ratio of thedilatation
andisdenoted by A(f). Onevery line paralel to thereflection-direction f induces amagnification
(see exercise T10.??) with magnification ratio A(f) .

d). The transvections with reflection-hyperplane H together with the identity form a subgroup of
A(E) , which isisomorphic to the group of trandlationsof H. (Hint: Infact anisomprphismisgiven

by f — Pof(Po), where Py € E \ H isfixed. )
e). The dilatations with fixed reflection-hyperplane and a fixed reflection-direction together with

the identity form a subgroup of A (E), which isisomorphic to the multiplicative group K* of K.
(Hint: Infact anisomorphismisgivenby f — A(f), where A(id) :=1.)

f). For whichtrandationst: E — E of E, theaffinemap o f resp. f ot isa pseudo-reflection?
(Hint: Since f is apseudo-reflection, it has afixed point O € E. We may choose O asoriginin E (see
the commuittative diagramm in the hint of T12.7) and assumethat £ = V and f = fo. )
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12.7. Let E beann-dimensional affine space. Thenevery affinity g of E isaproduct of adilatation
d with at most 2n shearings. (Hint: If thedimension of thefixed point set of gisk € {—1,0,...,n—2},
then there exists (see T12.8) an affinity #: E — E, which isashearing or the product of two shearings such
that the dimension of the fixed point set of 2 o g isat least k + 1. — The magnification ratio of the dialatation
d in the above representation of g is uniquely determined and is equal to the determinant of the linear part
of g. Further, the dilatation is not necessary if and only if this determinant is 1. — An another proof of this
assertion is a consequence of the representation of matrices by elementary matrices, see 77?.)

12.8. Let A beafinitesubset of m pointsin an affine space E over the K -vector space V. Assume
that m - 1x # 0. For every affinity of E, which maps A onto itself, the center of mass S of the
points of A isafixed point. The group of affinities of £, which maps A onto itself is therefore a
subgroup of the group of affinitiesAg(E) (= GL(V)) of E withfixed point S. (Hint: Seeexercise
T12.7?)

12.9. Let E be a K-affine space over V and G be afinite subgroup of the affine group of E with
n elements.

a). Ifn-1g # 0, then thereexistsapoint O € E with g(0) = O foral g € G. (Hint: For
O one can take the point > _; %g(P), where P isan arbitrary pointin E. — G istherefore a subgroup of
Ao(E) = GL(V))

b). Assumethat thefield K has at least n elements. Then thereexistsapoint P € E, such that the
orbit G(P) = {g(P) | g € G} of P containn elements. (Hint: For P choose an arbitrary element in
E, whichisnot in the union of thefix point setsof g € G, g # id. The union of at most » — 1 proper affine
subspace of E cannot be the whole E. See exercise 2.2.)

12.10. Let E be an affine space over the K -vector space V.

a). LetU C V beaK-subspaceof V. Theset E/U of al affine subspacesU + P, P € E,of E
which areparallel to U isan affine space over the quotient space V /U with respect to the operation

x+U)+U+P)=U+(x+P),

x+UeV/U,U+ P e E/U. Thenatura projection E — E/U isan affine map and its linear
part isthe natural projectionof V. — V/U.

b). Let W beanother K -vector space. Theset of all affinemaps E — W form a K -subspace of the
vector space W% and isisomorphic to th vector space W x Homg (V, W). (Hint: f = (£(0), fo)
with afixed point O € E isanisomorphism.)

c). Let F be affine space over the K -vector space W. The set of all affinemaps f : E — F form
an affine space over the K -vector space of the affinemaps g : E — W (see the part b) above) with
the operation (g, f) — g+ f , wherethesum g + f isdefined by (g + f)(P) := g(P)+ f(P).

On the other side one can see (simple) test-exercises; their solutions need not be submitted.
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Test-Exercises

T12.1. a). Construct 1) theimage point f(P) of the point P under the affinity f, which maps the affine
basis Py, P1, P2 onto the points Qo, Q1, Q2.

b). Injective affine maps preserves ratios.

c). The bijective map (z1, z2) —> (Z1,Z2) of A%(C) = C? onto itself is a collineation, which is not an
affine collineation.

d). The bijective map (z1, z2) —> (z1, Z2) of A%(C) onto itself is not a collineation.
e). Let E be an affine space over the C-Vektorraum V of dimension > 1and #: V — V be a bijective

C-anti-linear map from V ontoitself. If Py, Qg arepointsin E, thenthemap f with f(P) := h(ﬁ)JrQo,
P € E, isacollineation of E, which is not affine. (Remark: The part c) is a special case of this
construction.)

T12.2. (Description of the affine group) Let V beaK -vector spaceand consider V asaffinespace
over itself. The affine maps of V into self are exactly the maps of theform x — v + h(x), x € V, where
h isan endomorphism of V and v € V isafixed vector (corresponding to the affine map). This affine map
isusualy denoted by (v, ) . Then the composition of (v, ) and (u, g) is (v, h) o (u, g) = (v + h(u), hg) .
The linear map corresponding to the affine map (v, 4) is h. Therefore (v, k) is an affinity if and only
if h € GL(V) ; and in this case the inverse map of (v, h) is (v, h)™t = (—h~1(v), h~1). Therefore the
affine group A(V) of V (inparticular, the affine group A,(K) of K" = A"(K)) can be described by
using the additive group of vV and the automorphism group GL (V) of the K-vector space V. The &ffine
group A(V) isthe semi-direct product V x GL(V), where GL (V) operateson V in anatural way. This
group is the subgroup of the permutation group &(V) of V, generated by the trandlations and the K -linear
automorphisms of V. See T11.7?7?2.

The affine groupA(V) has a natural embedding in the automorphism grdBp(V & K). The dfinity
(v,h) € A(V),v eV, heGL(V),will correspondsto the automorphism () —> (’“‘Z“”), xeV, ae

K of V@& K. This(in analogy with matrix notation) will be denoted by (g ;) . (Remark:

For an arbitrary A-module V over an arbitrary ring A, the semi-direct product V x Aut, (V) is caled
the affine group A(V) = A,(V) of V and isidentified with a subgroup of &(V). Inparticular, we put
A,(A) = A (A") = A(A"(A)) forevery n € N and every ring A. )

T12.3. (Magnifications and point-reflections) Let E be an affine spaceover the K -vector
gpace. An affinity f of E iscalleda(centric) magnification or ahomothecy of E if thelinear
part fo isahomothecy of V. If a € K* isthe magnification ratioof fp,i.e.if fo = aidy,thenaiscaled
the magnification ratio of f.

a). The magnifications of E with magnification ratio 1 are the translations of E.

b). If the magnification ratio a of the magnification f is different from 1, then f has exactly one fixed
point Z. Thisfixed pointis Z = (1 —a)"t00’ 4+ O andis called the center of the magnification f.
(Hint: Let O € Eandlet O’ := f(0). For an arbitrary point P € E, we have f(P) = aOP + 0 =
aOP+ PO+ P. Therefore P isafixed pointof f ifandonlyif0=a OP+ PO ' =(a—-1)0OP+ 00’
andso OP = (1—a)"100’. Thisfixed pointisequa to Z = (1—a) 100"+ 0.

1) For this construction oneis allowed to use only line-segments and parallel lines through the constructed
points.
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)

c). A centric magnification of E with magnification factor —1iscalled a point-reflection of E (if
—1#1inkK,i.e Chak # 2).

d). The centric magnifications of the affine space E form a subgroup (in fact a normal subgroup) of the
affinegroup A(E) of E.

e). Product of two magnifications with magnification ratio « and b respectively, is a magnification with
magnification ratio ab. Moreover, if the centers of the given magnifications are distinct then the center of
the product lies on the line passing through these centers.

f). The magnifications with a fixed magnification factor along with the identity form a subgroup of al
magnifications and this subgroup is isomorphic to the multiplicative group K * of K.

g). Andffinity f isamagnification if and only if theimage of alineisaline parallel toit. (Hint: consider
the tow cases whether or not f has afixed point.)

h). Let P, Q, P, Q' bepointsin E with P £ Q and P’ # Q’. If the line-segments PQ and P’'Q’ are
paralel, then there exists a unique magnification with P — P’ and Q — Q’. Construct the center of this
magnification in the following cases examples:

g P

PP ¢ 0

P 0 :

i). Supposethatl+1+#0inK,i.e. Char K # 2. Then the product of two point- reflections of an K -affine
spaceisatransglation. Conversely, every trandation of an K -affine spaceisaproduct of two point reflection.

T12.4. Let E and F be K -affine spaces. The set of all those pointsin E at which the two affine maps from
E into F are equal is an affine subspace of E. For example:

(1) The set of al fixed points of a affine maps from E into itself is an affine subspace of E.
(2) If two affine mapsfrom E in F are equal on an affine generating system of E, then they are equal.

T12.5. Let E be an affine space over the K -vector space V.

a). If fisanaffinity of E andif = 1, isthetranslation of E by thevector x € V,then fort, o f~1 =1/ .
Inparticular, f commute with the trandation z, if and only if x isafixed point of the linear part fo of f.

b). Letx;,i € I, beagenerating system of V. An affinity of £ which commute with al the translations
defined by the vectors x; , i € I, isitself atrangdlation.

T12.6. Let E beafinitedimensional affine space over the K -vector space V andlet 4 bea K -endomorphism
of V. Then the following statements are equivalent:

(1) Every affine map from E into itself with linear part # has exactly one fixed point.

(2) Every affine map from E into itself with linear part 4 has at least one fixed point.

(3) Every affine map from E into itself with linear part 2 has at most one fixed point.

(3) There exists an affine map from E into itself with linear part 4 and exactly one fixed point.
(4) h —idy isan automorphism of V.

(Remark: (Intheinfinite dimensional case (1) and (4) are still equivalent. The condition (4) will be used to
formulate : 1is not a Spectral value of.)

T12.7. Let E be an affine space over the K-vector space V andlet f : E — E bean afinemap. Then f
isan affineinvolution (resp. pseudo-reflection) (see 12.5 and 12.6) if and only if f hasafixed point and the
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linear part fo of f isan affine involution (resp. pseudo-reflection). (Hint: Let O € E be afixed point of

f. Then the diagramm 7
E F

4

V —— W

iscommutative, where g : V — E isthe affineisomorphism defined by x > x + 0. )

T12.8. Every affine subspace of the codimension m of K" isthe solution space of alinear system over K
with consisting of m equations and n unknowns (this will necessarily have rank m), vgl. 5.E, Aufg 13.

a). Giveasystem of linear equations over R with the solution spaceisthe affinesubspace U +(1,1,1,1) C
R*, where U is generated by the vectors (1, 0, 1, 1) and (0, —1, 2, 0).

b). Give a system of linear equations over C with the solution space is the affine hull of the points
(1,1-1i,0), (—i,0,2—1i)and (0, —i, 1) im C3,

T12.9. Let f:E — F beanaffinemap, P;,i € I beafamily of pointsin E and (a;) € K© be afamily of
weightswith ) a; # 0. Then the image of the center of mass of the points P, , i € I withweightsa; ,i € I
under f isthe center of mass of the points f(P;),i € I withweightsa; ,i € I.

T12.10. Letg: E — E bean dfinity of an n-dimensional affine space over a K -vector space V and let
F :=Fixg:={P € E | g(P) = P} bethefixed point set of g. Thisisan affine subspace of E (see 7?7?).
a). If F :=Fixg = @ i.e. g hasno fixed point, then there exists a shearing s : £ — E of E such that
sg hasafixed point,i.e. Fix(sg) #@. (Proof: Let Pp € E andlet P; ;= g(Po). Then P —1+# Py
(since g has no fixed point), i.e. wv1 = PoP; # 0. Extend v1 to abasis vy,...,v, of V. Then
Py, Py, P, :=Po+v;, i =2,...,n formanaffinebasisof E. Put Py:= P, +v1. Then P}, Py, ..., P,
form an affine basis of E (since the four points Po, P2, P, P1 form a paralleogramm; PP, = —v1 and
_ —_— —> .

PyP1 = PyP2 + PoP1 = —PoP1 + PoPp = PoP> = —vp.) Now, define s : E — E by s(Py = Py,
s(P1) = Pyand s(P;) =P, fori =2,...,n. Thefixed point set of s isthehyperplane H, spanned by the
points P, P, ..., P, andthevector P1s(P1) = PPy = —v1 = PyP, isparallel to H,,i.e. belongsto the
vector space correspondingto H, . Therefore s isashearing and by construction, thepoint Py € Fix (sg).)

b). Suppose that Dim (Fixg) = k € {0,1,...,n — 2} and Py, ..., P, € F isan affine basis of F and
P11 € F. Let F’ bethe affine subspace of E generated by Py, ..., Py, Pry1. Then

(1) DmF =k+1, g(Piy1) € F and Py, ..., P, g(P..1) areaffinely independent.

(2) if g(Pri1) € F’,thenthereexistsashearing s : E — E of E suchthat F' C Fix (sg) .
(Proof: Since g(Py1) € F', Po, ..., Piy1, Piio i= g(Py1) are affinely independent and so extend to an

affine basis Po, ..., Piy2, Piy3s ..., Py E. Define P/, = Po+ Piy1Pi2 (notek < n — 2). Then, the
points Po, ... Px, P4, Piy2, ..., P, forman affine basis of E (sincethe points Po, P 4, Pii2, Piy1 form

e _ e E—— _
a parallelogram and by definition, we have PoP/ ; = Py 1Pii2, and P, 1 P2 = PoPiy1.) Now, define
s E— E by s(Pi2) = Piya, s(Py) =P, ands(P)=P fori=0,...,k,k+3,...,n. Thefixed
point set of s isthe hyperplane H, spanned by the points Po, ..., P, P 4, Pii3, - .., P, and the vector

Pii2s(Pr2) = — P Poispardlel to Hy , i.e. belongsto the vector space correspondingto H, . Therefore
s isashearing and by construction, the points Po, ..., Py, Pi 1 € FiX(sg).)

(3)if g(Piy1 € F',thenthereexistshearingss : E — E and s’ : E — E of E suchthat F’ C Fix (s'sg) .

(Proof: Extend Py, ..., P, g(Pr11) toanaffinebasis Py, ..., Py, g(Pii1), Pryo, ..., P, Of E and define
0 = g(Pry1) + PoPryo. Then, since PoPii1 & ZleKﬁ@,- ,wehave Py, ..., P, O, Piy2, ..., P, isan
affinebasisof E. Now, defines1 : E — E by s1(P) = Pifori =0,...,k, k+2,...,n and 5s1(g(Pi+1)) =
Q. Then the fixed set Fixs; of s1 isthe hyperplane H, generated by Py, ..., P, Piyo, ..., P, and the
vector g(P,.1)Q = PoPi,2 is pardle to H;, i.e. belongs to the vector space corresponding to H, .
Therefore s1 isashearing and by construction, the points P, ..., Py, Piri1 € FiX (s1g) .

Now, construct a second shearing s : E — E asin the part (2) by replacing g(P+1) by Q. Since
51(g(Pry1)) = Q and s2(Q) = Pry1) andbothfix Py, ..., P, al thepoints Py, ..., P, and P, 1 arefixed
by s2s1g.)
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T12.11. Let K beafinitefield with ¢ elements.
a). The automorphism group of an rn-dimensional K -vector space V has the order

@ =D@" =)@ — gD =gV (" D" 1) (g — D).

(Hint: The number of automorphisms of V isequal to the number of bases (vq, ..., v,) of V. To compuet
this numebr use (for example) the following combinatorics principle.)

Deduce that : The number of m-dimensiona K -subspaces of V' is
(qn _ 1)(qn71 _ 1) . (qnferl _ 1)
@"=D@"t=D---(¢g-1
(Remark: This number isthe value of the Gauss polynomiat;"] at the place ¢.)

b). The affine group of an n-dimensiona K -affine space has the order

g2 (" — (@t = D) (g - D).

(Remark : We shall illustrate this with a simple example. Let K = K be the field with two elements and
n = 2. Thegroup GL (K 3) hastheorder (4—1)(4—2) = 6and itisomorphicto asubgroup of & (K3 —{0}) )
Therefore GL(K2) = &3. the affine group A(K 3) hasthe order 4 - 6 = 24 and isomorphic to the subgroup
A(K2) = &4 of G(K3). Further, A(K3) contain the additive group of K3 as anormal subgroup and the
GL (K%) isthe factor group. Prove that thisin the only normal subgroup of order 4in A(K%). (Theimage of

such anormal subgroup in GL(K%) = &3 isnecessarily trivial.) Therefore: The groupS4 contain exactly
one normal subgroufi, of order4. Further, Uy = Z/72 x 7./7Z.2 andG4/V4 = S3. Thegroup U, C G4

iscalledthe Klein's 4 -group. Thisgroup contain (other than identity) the permutations (ﬁf‘g)
1234y (1234
(3312 (G321

T12.12. Let K beeither thefield Ko := Q or thefinitefield K, := Z/Zp, p prime number. Then for every
K -vector space V the group Autk V of al isequal the group of all automorphisms of the additive group of
V. The affine group Ak (V) of V isthe full-holomorph Hol (V) of the additive group of V.3)  (Remark:
Similarly, the affine group of an arbitrary abelian group G, considered as Z-module, is the full-holomorph
Hol (G) of G, see. Beispiel 6.E.9. Asan example we consider the full-holomorph of the cyclic group Z/Z p
of order p, whichisthegroupA1(K,) = K, x K, wherethemultiplicativegroup K  acts by multiplication
on (the additive group) K, = Z/Zp. Since K ; is cyclic and so for every divisor ¢ of |[K | = p —1hasa
unique (cyclic) subgroup U, of order ¢. The subgroup

Fp = K, x Uy SK, KX = Ay(K,)

and every group which isisomorphic to thisgroup iscalled a Frobenius-group. A Frobenius-group
isuniquely determined #) upto isomorphism by its order pt.

A group G isisomorphic to a Frobenius-group if and only if it has a nomal subgroup N of prime order and
the centraliser of N in G is N itself. (proof! °))

2) f fI(K3—{0}) isacanonical embedding of GL(K3) in &(K3 — {0}).

3) The additive groups of the vector spacesover Z/Zp, p prime, are precisely the elementary abelian
p -groups, and these are abelian groups H with Ordx = p for all non-zero elements x € H, i.e. with
px =0foralx e H.

4) The Frobenius group F,. is clearly determined by the prime p which is the biggest prime factor of its
order and hasthe normal subgroupK , of F,, and by thedivisor ¢ of p —1. Asthecyclicgroup K  hasexactly
one subgroup of order ¢. Its action via multiplication on K, determines therefore the resulting semidirect
product.

5) Suppose that G is a group with a normal subgroup N of prime order (we may assume that (K »» ) for
some p) and such that the centralizer of N in G is N. Then, by definition of the centralizer of a normal
subgroup, N isthekernel of « : G — Aut N theconjugateaction of G on N. Therefore G/N isisomorphic
to the subgroup im « = H’ of the group of automorphisms Aut N(= K)) of N. Now, since KX is a
cyclic group of order p — 1, the subgroup H’ is aso cyclic of order ¢ (adivisor of p — 1) generated by
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Now, let G be an arbitrary group of order pg, where g < p are prime numbers. Then G has a subgroup
N of order p and asubgroup H of order ¢g. The group N is uniquely determined (otherwise G has at least
p? dlements) and inparticular, N isnormal in G. Further, since N N H = {e}, the group G is asemi-direct
product of N and H. For the operation (by conjugation) of H on N, the follwoing two casses are possible:

(1) The operationistrivial. Then G is commutative and so cyclic of the order pg.

(2) The operationis not trivial. Then it must be faithful, since H iscyclic of primeorder andsog = |H]| is
adivisor of |[Aut N| = p — 1 and then G isisomorphic to the Frobenius-group F,,, .

We have proved that : A group of orderpg, p, g prime numbers witly < p is either cyclic or (in the case
g is a divisor ofp — 1) isomorphic to a Frobenius-grou,, . — For example, agroup of order 15 iscyclic
and agroup of order 21 is either cyclic or isomorphic to a Frobenius-group F»; .)

T12.13. (Classical space-time-world) Perhapsthe greatest obstacle to understand the theories of
specialand general relativity®) arises from the difficulty in realising that a number of previosuly held basic
assumptions about the nature of space and time are wrong. We therefore spell-out some key assumptions
about space and time. We can consider space and time (= space-time 7)) to be a continuum composed of
events, where each event can be thought as a point of space at an instant of time.

Up to now we have only considered the universesS over the vector space Vs of trandations, and time was
ignored. Classically, timeis ared affine line T. The corresponding vector space is denoted by V;; for
the measurement of time, we choose a basis t of Vr, pointing into the “future”, i.e. for given moments r1

and rp in T, we say that “#1 comes before 7" if the vector tl_tE has a representation et with a positive real
numbera (arrow in the direction of time).Themotionof afreeparticleonalineintheuniverse
gives an isomorphism of thisline onto 7. The most naive description of the space-time-world as a whole
is done through the four-dimensional product space S x T which is, in anatura way, an affine space over
the R-vector space Vs x Vr. Both the projectionsof S x T onto S and 7 are affine maps. They associate
toevery world-pointinS x T itsposition resp. itstime. The fibres of these projections are the points
with the same position resp. time.

It has been known from early times — at |east from the time of Aristotle —that it does not make senseto talk
about two events taking place at different times at the same place. Description of position is only possible
relative to aframe of reference; one cannot distinguish any one of these frames of reference as afixed frame
of reference. On the other hand, in the area of classical physics one has the concept of simultaneousness:
Two distinct world-pointsare not simultaneous if and only if (at least in the mental experiment) the
same mass-point can occupy both these world-points.

Therefore one describes the classical space-time-world as a four dimensional real affine space E with an
affine (non-constant) map z: E — T from E onto thetime T'. For anevent P € E, wecdl z(P) the time
at which the event P takes place. The fibres of the affine map z define the space-directions. Our universe,
which we have handled so far, was always such afibre. All thesefibres are parallel to the three-dimensiona
subspace Vs of the vector space Vi corresponding to E.

Two world-points P and Q in E differ from each other by the vector P_Q). P and Q are simultaneous if
and only if P_>Q € Vs. Therefore the vectorsin Vs are caled space-1like vectors. Every vector in Vg,

a € H. Leta € k1(a’) € G beapreimage of «’. Then the residue class of ¢’ in G/N is zero, i.e. a'
iscontained in N. Therefore (a?)! = a” = (a')? = e and so the order of a” in G isadivisor of r and
k(a?) = k(a)? = (a’)? As p and p — 1 have no common divisor, a’ and (a’)? havethe same order in K * and
s0 (a’)? aso generate H'. Therefore the subgroup H of G generated by a? has order ¢ and is canonically
isomorphicto H' = G/N < K and hence by definition of asemidirect product, thisyields G = F,,.

6) The general theory of relativity is one of the greatest intellectual achievements of all time. Itsoriginality
and unorthodox approach exceed that of special relativity. And for so more than special relativity, it was
amost completely the work of asingleman, ALBERT EINSTEIN (1879-1955). The philosophic impact of
relativity theory on the thinking of man has been profound and the vistas of science opened by it areliterally
endless.

7y HERMANN MINKOWSKI (1864-1909) referred to space-timeas the worl d, henceeventsare worl d-
points and a collection of events giving history of a particleisa world-line. Physica laws on the
interaction of particles can be thought of as the geometric relation between the world-lines. In this sense
Minkowski maty be said to have geometrizegbhysics.
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which is not a space-like vector, iscalled ti me-|ike. The world-points representing the motion of afree
particle m1 (which is not subject to any outer forces), form an affineline g1 = Rv1 + Py in E, the so called
world-line of these mass-points. It isparalel to theline Rvy in Vi generated by some time-like vector
v1 (Galilean law of inertia). Thentheline g1 representing the time and the affine subspace Vg + Py
give adecomposition of E into space and time (as above) . After normalising the vector v1 by the condition
zo(v1) = t, where zg isthelinear part of z, thisvector v, iscalled the absolute or four-velocity of
the mass-point under consideration.

If mo is another mass-point with the absolute velocity v, (moving freely without being subject to outer
forces), then v, — v, € Vs isaspace-like vector. Itiscaledthe relative velocity of mo with

respect to mj.
»,/

g 2/ R

U D—0y

]
R

/ T

< Ti=zR)=2(R) r=2(P)=2(F)

The simultanousness as defined above requires arbitrary largerelative vel ocities. Since observations suggest
that arbitrary large velocities cannot occur, one tries to abandon the notion of simultanousness. A first step
in this direction is the special theory of relativity.

As automorphisms of the classical space-time-world E described above we shall consider the affinities f
of E, which are compatible with thetime map z : E — T. By this we mean that there exists an affinity
fr:T — T (whichis necessarily uniquely determined) suchthat zo f = froz:

f

fr

N —
N m

These automorphisms f of E form asubgroup G of the affine group A(E) of E. Thissubgroup G iscalled
the affine Galilean group. Anaffinity f in A(E) belongsto G if and only if its linear part maps
the vector space Vs of the spacelike vectorsinto itself. By G we denote the subgroup of automorphisms 4
of Vi with (V) C V5. Thenthemap G — Go defined by f +— fo is asurjective group homomorphism,
and itskernel isthe group T(E) of al trandationsof E. In particular, G/T(E) = Go.

Sometimes the subgroup of all f € G such that the time-part fr is the identity, is aso called the affine
Galilean group.

T12.14. (Collineations) Let E and F be affine spaces (not necessarily over the same field). A
bijectivemap f : E — F iscaledan isomorphism of E onto F if themap E’ — f(E’) isabijective
map from the set of all affine subspaces of E onto the set of all affine subspaces of F. Anisomorphism of
E ontoitself iscalleda collineation of E. Thegroup of all collineations of E isdenoted by K(E). (If
DimE = 1,thenK(E) = &(E).)

Let f : E — F beabijective map of the K—affine space E onto the L—affine space F. Then

a). If fisanisomorphismand P;, i € I isan affine basis of the affine subspace E’ of E, then f(P;), i € I
isan affinebasisof f(E"). Inparticular, Dim f(E’) = Dim E’ for every affine subspace E’ of E.  (Proof:
Let F’ be the affine subspace of F gereated by f(P;), i € I. Then F' C f(E’). Since P, € f~L(F’) for
aliel, E C f~Y(F)or f(E') C F'. Therefore f(E') = F’ and f(P,), i € I, isan affine generating
system for f(E’). Supposethat f(P;), i € I’,with I’ C I isan affine basis of f(E’). Then by the above
proof P, i € I’ isan affine generating system of f~1(f(E’)) = E’ and hence I’ = I. Therefore the family
f(P), i €I isaso affinely independent and so an affine basisof f(E’).)

b). If |[K| > 2, then f isanisomorphism if and only if the f—image of every affinelinein E is an affine
linein F. (Proof: Inview of a) above and 43.3, it is enough to prove that: f induces a bijective map
between the set of all linesin E resp. in F, if the f—image of every linein E isalinein F. Further, itis
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enough to provethat every line g’ in F istheimage of alinein E. For this, let P’, Q' betwo distinct points
ong’ and P, Q bethepreimagesof P’, Q'in E. Let g bethelinegenerated by P and Q in E. Then f(g)
isalinein F with P’, Q' € f(g) andhence f(g) =¢'.)

c). If |[K| = 2, then f isan isomorphism if and only if the f—image of every affine planein E is an affine
panein F. (Proof: Similar to that of the part b) above with the following — Remark: A subset of a
K »-affine space is an affine subspace if and only if for every theree affinely independent points, the fourth
oneis also contained in the affine plane generated by them.)

T12.15. (Fundamental theorem of affine geometry) Letf : E — F be a bijective map
from theK —affine spacé& overV onto theL—affine spacd over W. Suppose thdDim E > 2. Thenf is
an isomorphism if and only if there exist an isomorphismk — L of fields and a bijective—linear map
f : V. — W such that the canonical diagramm

V x E

E
7><fl lf
F

WxF ———

is commutative.

(Proof: If thereexist ¢ and f asgiveninthetheorem, then f isanisomorphism, since f induces abijective
map of the set of all K—subspaces of V onto the set of al L—subspaces of W.

Conversely, suppose that f is anisomorphism. Let O € E be afixed point. It is enough to show that the

map f : V — W defined by x — f(O) f(x + O) isabijective and p—linear for a suitable isomorphism
¢ 1 K — L of fields. The diagramm 7
E F

ST

Vv— W

is commutative, where g1 resp. g are affine isomorphisms defined by x > x + O resp. y = y + f(0).
Therefore f is also anisomorphism of the affine spaces V and W. We may therefore assumethat f = f.

Then f(0) = 0. Further, f maps parallel lines onto parallel lines, since two distinct lines are parallel if
and only if they lie in a plane and donot intersect, vgl. Aufgabe7. Thereforeit followsthat f(Kx + y) =
Lf(x) + f(y) for arbitrary x, y € V; For, if x # 0O, thenthelines f(Kx) = Lf(x) and f(Kx + y) are
paralel andsince f(y) € f(Kx +y), wenecessarily have f(Kx +y) = Lf(x) + f(y). Finaly, weremark
that the image under f of any two linearly independent vectors x, y € V are linearly independent in W,
since f(y) doesnot belongto f(Kx) = Lf(x), seeaso 43.8(1).

(1) f is additive: Letx,y e V. If eitherx =0ory =0, thenclearly f(x +y) = f(x) + f(y).

(1.8) Case: x, y are linearly independentThen x + y (resp. f(x) + f(y)) isthe point of intersections
of thelines Kx + y and Ky + x. (resp. Lf(x) + f(y) and Lf(y) + f(x)) and so {f(x) + f(y)} =
(Lf(x)_+edf(y)) NLfY)+ fx) = f(Kx+y)N f(Ky+x)=f((Kx+y)N(Ky+x) ={f(x+y)}
as required.

(1.b) Case: x, y are linearly dependentSince both x, y are non-zero, there exists (since Dimg V > 2) a
vector z € V suchthat x, z arelinearly independent. Then x, y + z and y, z are aso linearly independent.
If x +y # 0, then x + y, z are linearly independent and so (by the earlier proof) f(x + y) + f(z) =
f(x+»)+)=fx+O+2))=fO)+f+2)=fO)+fO+f@), e flx+y) = fx)+ ().

If x +y = 0, then (by the earlier proof) f(z) = f(x+(+2) = fO)+fO+2)=fO)+ )+ f(2),
e fx+y) =f&x)+ f(y)=0.

(2) Definition ofp : Let x € V, x # 0 befixed and define ¢ : L — K by the equation f(ax) = ¢(a) f (x).
Since f(Kx) = Lf (x), it followsthat ¢ bijective.

(3) f isp-semi-linear: i.e.f(ay) = ¢(a)f(y)foralla e K andally € V. Thisisclearifa =0o0ry =0.

(3.8) Case: x, y are linearly independent Then ay (resp. ¢(a) f(y)) isthe point of intersection of the
lines Ky and K (y — x) +ax (resp. Lf(y) and L(f(y) — f(x)) + ¢(a) f(x)). Therefore {p(a) f(y)} =
L) N(L(f(y—x)+ ) f(x) = f(KyN(K(y —x) +ax)) ={f(ay)}

D. P. Patil / Exercise Set 12 la03-e012 ; October 15, 2003 ; 10:34 a.m. 56



12.12 MA-219 Linear Algebra/August-December 2003 12. Affine maps

(3.b) Case: x, y are linearly dependent Let z € V beasin (1.b). Then by the additivity of f and the
earlier case (3.a), wehave f(ay) = f(a(y+z)—az) = fa(y+2))— f(az) = p@ f(y+2) —¢(a) f(2) =
@) f(y) + ) f(2) — ) f(z) =) f(y).

flaz) = p(a) f(z) and f(a(y +2)) = ¢(a@) f(y + 2) = ¢(a) f () + ¢(a) f (2).

(4) ¢ is an isomorphism of fieldsLet a,b € K and let x € V, x #. Then by the definition of ¢ and
the addivity of f, wehave: ¢(a + b) f(x) = f((a + b)x) = f(ax) + f(bx) = ¢(a) f(x) + o) f(x) =
(p(@) + (b)) f(x) and S0 p(a + b) = ¢(a) + ¢(b). Similarly, we have : ¢(ab) f(x) = f((ab)x) =
p(a) f (bx) = p(a)p(b) f(x) and S0 ¢(ab) = p(a)p(b). Findly, from f(x) = f(1-x) = (D f(x), we
have ¢(1) = 1. Thisprovesthat ¢ isan isomorphism of fields. )

More generally, abijectivemap of E ontoitself iscalleda collineation of E if theimage of every affine

linein E under f isagain an affinelinein E. If E itself isaline, then naturally every bijective map of E
onto itself isa collineation.

If Dim E > 2, thenthefundamental theorem of affine geometry givesaclosed relation between collineations
of E and affinemapsof E. Thefields Q, R and Z, p prime number have no non-trivial automorphisms
and so

Corollary: For affine spaces of dimensions 2 over fieldsQ, R and Z, p prime number, every
collineation is an affinity. (Remark: The specia case for the universe(the three dimensional real affine
space) goes back to EULER. )
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