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MA-219 L inear Algebra
12. Affine maps

Let K denote either the field R of real numbers or the field C of complex numbers.

12.1. (A f f i n e h y p e r p l a n e s ) Let V be a non-zero K-vector space and let vi, i ∈ I , be a
basis of V . The map h �→ h−1(1) is a bijective map from the set of all non-zero K-linear forms
h : V → K onto the set of all affine hyperplanes in V which do not pass through the 0. For a
hyperplane H in V with 0 �∈ H the corresponding linear form is denoted by hH . Then by definition
H = h−1

H (1) .

a). Two hyperplanes H, H ′ in V , which donot pass through 0 are parallel if and only if the
corresponding linear forms hH resp. hH ′ differ by a factor λ ∈ K×. The hyperplane passing
through 0 and parallel to H is Kern hH = h−1

H (0) . The hyperplane directionsin V correspond to
the unique one dimensional K-subspaces in the dual space V ∗.

b). The map V ∗ → KI defined by h �→ (h(vi))i∈I is a vector space isomorphism. For an
affine hyperplane H in V with 0 �∈ H the values ai := hH (vi) , i ∈ I , are called (particularly
in the Crystallography) the M i l l e r ’s i n d i c e s of H and the tuple (ai) ∈ KI is called the
(hype rp l ane -) symbo l of H with respect to the basis vi , i ∈ I . If I is finite then hH = ∑

i aiv
∗
i

if (ai) is the symbol of H . Two affine hyperplanes which donot pass through 0, are parallel if and
only if their symbols differ by a factor λ ∈ K×. If (ai) ∈ KI is the symbol of the hyperplane H ,
then the i-th coordinate axis Kvi , i ∈ I intersects with the hyperplane H if and only if ai �= 0. In
this case a−1

i vi is the point of intersection of H with Kvi . (The Miller’s indicesai , i ∈ I , of H
are therefore the inverses of the intercepts ofH on the coordinate axes. Such an intercept is equal
to 0 (= 1/∞), in the case H donot intersect with axis, i.e. H is parallel to this axis.

12.2. (A f f i n e f u n c t i o n s ) Let E be an affine space over the K-vector space V .

a). The set of all affine functions E → K is a K-subspace of the vector space of all K- valued
functions on E. If E is finite dimensional, then the dimension of the space of affine functions on E

is equal to 1 + Dim E.

b). If H is a hyperplane in E, then there exists a non-constant affine function f : E → K with
H = f −1(0) . Further, f is uniquely determined by H , upto a factor λ ∈ K×. (Remark : Therefore
the hyperplanes in E can be identified with a uniquely determined non-constant affine functions E → K ,
where two such functions are identified if they differ by a factor λ ∈ K×.)

c). Let vi , i ∈ I be a basis of V and let E = V . For an affine hyperplane H in V with 0 �∈ H , let
f :V → K be an affine function with H = f −1(0) . Further, let f0 :V → K be the linear part of f

and b := f (0) (�= 0) . Then H = h−1
H (1) with hH := −b−1f0 , see exercise T10.??. The Miller’s

indices of H with respect to the basis vi , i ∈ I are the numbers −b−1f0(vi) , i ∈ I .

12.3. ( H a l f - s p a c e s ) Let E be an real affine space over the non-zero R-vector space V and
let H be an affine hyperplane in E. Suppose that H = f −1(0) , where F is a non-constant affine
function on E, see exercise T10.??. Then the sets

{P ∈ E | f (P ) ≤ 0} resp. {P ∈ E | f (P ) ≥ 0}
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are called the c l o s e d and the sets

{P ∈ E | f (P ) < 0} resp. {P ∈ E | f (P ) > 0}
are called the o p e n a f f i n e h a l f - s p a c e s o f E w i t h r e s p e c t t o H . The half-space with
respect to the affine hyperplane H ⊆ E are convex subsets of E. Two points P, Q ∈ E belong to
the same open half-space with respect to the hyperplane H if and only if the line-segment [P, Q]
donot intersect with the hyperplane H .

12.4. ( P a r a l l e l p r o j e c t i o n s ) Let E be an affine space over the vector space V . An affine
map p :E → E is called the ( ( d i a g o n a l ) p a r a l l e l -) p r o j e c t i o n if p2 = p. The linear part
of a projection of E is a (linear) projection of V . Let p be a projection of E with linear part p0 .

a). For every point Q ∈ im p, Q is the only point of intersection of the image im p of p with the
fiber p−1(Q) of p over Q, i.e. im p∩p−1(Q) = {Q} and E is the join-space of im p and p−1(Q) ,
i.e. E = im p ∨ p−1(Q) . If R ∈ E is an arbitrary point, then p(R) is the point of intersection of
im p and the fibre parallel to p−1(Q) through R.

b). Conversely, given two affine subspaces D and F of E such that they intersect in exactly one
point and their join-space is the whole E, then there exist a unique parallel projection PD,F such that
its image is D and the fibres are parallel to F . Such a projection PD,F is also called the p ro j ec t i on
o n t o D a l o n g F . – For which translations t :E → E of E, the affine maps t ◦ p resp. p ◦ t are
projections of E ?

12.5. ( R e f l e c t i o n s and G l i d e - r e f l e c t i o n s ) Let E be an affine space over the K- vector
space V . Suppose that 2 = 1K + 1K �= 0 in K , i.e. Char K �= 2. An affine map f : E → E is
called an a f f i n e i n v o l u t i o n or r e f l e c t i o n of E if f 2 = idE . The linear part f0 of an
affine involution f is a linear involution and therefore there is the corresponding decomposition
V = V + ⊕ V − of V in the sense of exercise ???. Let f :E → E be an affine involution.

a). The subspace F of the fixed points of f is non-empty. (Hint : In fact for every point P ∈ E the
midpoint 1

2 P + 1
2 f (P ) of P and f (P ) is a fixed point of f . Further, F = V + + P for every point P ∈ F .

This affine subspace F is called the m i r r o r of f .)

b). The map f induces a point-reflection (see exercise T10.??) on every affine subspace D of E

which is parallel to the subspace V − and the (unique) point of intersections of D and F is the center
of this point-reflection.

c). Conversely, suppose that D and F are two affine subspaces of E which intersect in exactly one
point and the join-space of D and F is E. Then there exists an unique affine involution of E such
that its fixed point set is F and on every affine subspace of E which is parallel to D, the map f

induces a point-reflection. (Remark : This involution is called the ( d i a g o n a l ) r e f l e c t i o n o n F

a l o n g D .)
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d). In the situation of c), let D = U + O and F = W + O. Further, let F be a hyperplane and
hence D a line, therefore U = Kx with a vector x ∈ V \ W . If h is the linear form on V with
Ker h = W and h(x) = 1, then the reflecion SF,D on F along D can be described by the equation

SF,D(P ) = −2 h(
−→
OP) x + P .

e). For which translations t : E → E, the affine map t ◦ f resp. f ◦ t is an affine involution?
(Hint : Since f is an affine involution, it has a fixed point O ∈ E . We may choose O as origin in E (see
the commuttative diagramm in the hint of T12.7) and assume that E = V and f = f0. )

f). The affinity f : E → E is called a (diagonal) g l i d e r e f l e c t i o n if its linear part f0 : V → V

is an involution. Every reflection is a glide reflection. Let f : E → E be a glide reflection and
V = V + ⊕ V − is the decomposition of V with respect to f0 as above. Then f = f̃0 ◦ t = t ◦ f̃

with a uniquely determined reflection f̃ and a uniquely determined translation t in the direction
V +.

12.6. ( S h e a r i n g s and D i l a t a t i o n s ) Let E be an affine space over the K-vector space V of
dimension ≥ 2. An affinity f :E → E is called a p s e u d o - r e f l e c t i o n if the fixed point set of
f is an affine hyperplane in E.

a). The affinity f : E → E is a pseudo-reflection if and only if it has a fixed point and its linear
part f0 has the property that Rank (f0 − idV ) = 1. The hyperplane of the fixed points is called the
r e f l e c t i o n p l a n e of f .

Now, let f be a pseudo-reflection of E with reflection-plane H .

b). For two points P, Q ∈ E \ H , the line-segments P f (P ) and Q f (Q) are parallel. (Remark :

The direction of this line is called the r e f l e c t i o n - d i r e c t i o n . If the reflection-direction and the
reflection-plane are parallel, then f is called a s h e a r i n g or t r a n s v e c t i o n , otherwise f is called a
d i l a t a t i o n . Reflection on hyperplanes in the sense of exercise 10.?? are examples of dilatations. )

c). Let f be a dilatation. For a point P ∈ E \ H , let p (P ) be the point of intersection of the
line-segment P f (P ) with the hyperplane H . Then the ratio

(
p (P ), f (P )

)
:
(
p (P ), P

)
has the

same value for all P ∈ E \ H . This value is called the m a g n i f i c a t i o n r a t i o of the dilatation
and is denoted by λ(f ). On every line parallel to the reflection-direction f induces a magnification
(see exercise T10.??) with magnification ratio λ(f ) .

d). The transvections with reflection-hyperplane H together with the identity form a subgroup of
A(E) , which is isomorphic to the group of translations of H . (Hint : In fact an isomprphism is given

by f �→ −−−−−→
P0f (P0), where P0 ∈ E \ H is fixed. )

e). The dilatations with fixed reflection-hyperplane and a fixed reflection-direction together with
the identity form a subgroup of A (E), which is isomorphic to the multiplicative group K× of K .
(Hint : In fact an isomorphism is given by f �→ λ(f ), where λ(id) := 1. )

f). For which translations t :E → E of E, the affine map t ◦ f resp. f ◦ t is a pseudo-reflection?
(Hint : Since f is a pseudo-reflection, it has a fixed point O ∈ E . We may choose O as origin in E (see
the commuttative diagramm in the hint of T12.7) and assume that E = V and f = f0. )
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12.7. Let E be an n-dimensional affine space. Then every affinity g of E is a product of a dilatation
d with at most 2n shearings. (Hint : If the dimension of the fixed point set of g is k ∈ {−1, 0, . . . , n− 2},
then there exists (see T12.8) an affinity h :E → E, which is a shearing or the product of two shearings such
that the dimension of the fixed point set of h ◦ g is at least k + 1. – The magnification ratio of the dialatation
d in the above representation of g is uniquely determined and is equal to the determinant of the linear part
of g. Further, the dilatation is not necessary if and only if this determinant is 1. – An another proof of this
assertion is a consequence of the representation of matrices by elementary matrices, see ???.)

12.8. Let A be a finite subset of m points in an affine space E over the K-vector space V . Assume
that m · 1K �= 0. For every affinity of E, which maps A onto itself, the center of mass S of the
points of A is a fixed point. The group of affinities of E, which maps A onto itself is therefore a
subgroup of the group of affinities AS(E) (∼= GL(V ) ) of E with fixed point S. (Hint : See exercise
T12.??)

12.9. Let E be a K-affine space over V and G be a finite subgroup of the affine group of E with
n elements.

a). If n · 1K �= 0, then there exists a point O ∈ E with g(O) = O for all g ∈ G. (Hint : For
O one can take the point

∑
g∈G

1
n
g(P ), where P is an arbitrary point in E. – G is therefore a subgroup of

AO(E) ∼= GL(V ) .)

b). Assume that the field K has at least n elements. Then there exists a point P ∈ E, such that the
orbit G(P ) = {g(P ) | g ∈ G} of P contain n elements. (Hint : For P choose an arbitrary element in
E, which is not in the union of the fix point sets of g ∈ G, g �= id. The union of at most n − 1 proper affine
subspace of E cannot be the whole E. See exercise 2.2. )

12.10. Let E be an affine space over the K-vector space V .

a). Let U ⊆ V be a K-subspace of V . The set E/U of all affine subspaces U + P , P ∈ E, of E

which are parallel to U is an affine space over the quotient space V/U with respect to the operation

(x + U) + (U + P) = U + (x + P) ,

x + U ∈ V/U , U + P ∈ E/U . The natural projection E → E/U is an affine map and its linear
part is the natural projection of V → V/U .

b). Let W be another K-vector space. The set of all affine maps E → W form a K-subspace of the
vector space WE and is isomorphic to th vector space W × HomK(V, W). (Hint : f �→ (

f (O) , f0
)

with a fixed point O ∈ E is an isomorphism.)

c). Let F be affine space over the K-vector space W . The set of all affine maps f : E → F form
an affine space over the K-vector space of the affine maps g : E → W (see the part b) above) with
the operation (g, f ) �−→ g +f , where the sum g +f is defined by (g +f )(P ) := g(P )+f (P ) .

On the other side one can see (simple) test-exercises ; their solutions need not be submitted.
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Test-Exercises

T12.1. a). Construct 1) the image point f (P ) of the point P under the affinity f , which maps the affine
basis P0, P1, P2 onto the points Q0, Q1, Q2.

b). Injective affine maps preserves ratios.

c). The bijective map (z1, z2) �−→ (z1, z2) of A2(C) = C2 onto itself is a collineation, which is not an
affine collineation.

d). The bijective map (z1, z2) �−→ (z1, z2) of A2(C) onto itself is not a collineation.

e). Let E be an affine space over the C-Vektorraum V of dimension ≥ 1 and h : V → V be a bijective

C-anti-linear map from V onto itself. If P0, Q0 are points in E, then the map f with f (P ) := h
(−−→
P0P

)+Q0 ,
P ∈ E, is a collineation of E, which is not affine. (Remark : The part c) is a special case of this
construction.)

T12.2. ( D e s c r i p t i o n o f t h e a f f i n e g r o u p ) Let V be a K-vector space and consider V as affine space
over itself. The affine maps of V into self are exactly the maps of the form x �→ v + h(x) , x ∈ V , where
h is an endomorphism of V and v ∈ V is a fixed vector (corresponding to the affine map). This affine map
is usually denoted by (v, h) . Then the composition of (v, h) and (u, g) is (v, h) ◦ (u, g) = (v + h(u), hg) .

The linear map corresponding to the affine map (v, h) is h. Therefore (v, h) is an affinity if and only
if h ∈ GL(V ) ; and in this case the inverse map of (v, h) is (v, h)−1 = (−h−1(v) , h−1) . Therefore the
affine group A(V ) of V (in particular, the affine group An(K) of Kn = An(K) ) can be described by
using the additive group of V and the automorphism group GL(V ) of the K-vector space V . The affine
group A(V ) is the semi-direct product V � GL(V ) , where GL(V ) operates on V in a natural way. This
group is the subgroup of the permutation group S(V ) of V , generated by the translations and the K-linear
automorphisms of V . See T11.????.

The affine groupA(V ) has a natural embedding in the automorphism groupGL(V ⊕ K) . The affinity
(v, h) ∈ A(V ) , v ∈ V , h ∈ GL(V ) , will corresponds to the automorphism

(
x

a

) �−→ (
hx+av

a

)
, x ∈ V, a ∈

K of V ⊕ K . This (in analogy with matrix notation) will be denoted by
(

h v

0 1

)
. (Remark :

For an arbitrary A-module V over an arbitrary ring A, the semi-direct product V � AutA(V ) is called
the affine group A(V ) = AA(V ) of V and is identified with a subgroup of S(V ) . In particular, we put
An(A) = A (An) = A

(
An(A)

)
for every n ∈ N and every ring A. )

T12.3. ( M a g n i f i c a t i o n s and p o i n t - r e f l e c t i o n s ) Let E be an affine spaceover the K-vector
space. An affinity f of E is called a ( c e n t r i c ) m a g n i f i c a t i o n or a h o m o t h e c y of E if the linear
part f0 is a homothecy of V . If a ∈ K× is the magnification ratioof f0 , i.e. if f0 = a idV , then a is called
the m a g n i f i c a t i o n r a t i o of f .

a). The magnifications of E with magnification ratio 1 are the translations of E.

b). If the magnification ratio a of the magnification f is different from 1, then f has exactly one fixed

point Z. This fixed point is Z = (1 − a)−1−−→OO ′ + O and is called the c e n t e r of the magnification f .

(Hint : Let O ∈ E and let O ′ := f (O). For an arbitrary point P ∈ E, we have f (P ) = a
−→
OP + O ′ =

a
−→
OP + −−→

PO ′ + P . Therefore P is a fixed point of f if and only if 0 = a
−→
OP + −−→

PO ′ = (a − 1)
−→
OP + −−→

OO ′

and so
−→
OP = (1 − a)−1−−→OO ′. This fixed point is equal to Z = (1 − a)−1−−→OO ′ + O .

1) For this construction one is allowed to use only line-segments and parallel lines through the constructed
points.
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)

c). A centric magnification of E with magnification factor −1 is called a p o i n t - r e f l e c t i o n of E (if
−1 �= 1 in K , i.e. CharK �= 2) .

d). The centric magnifications of the affine space E form a subgroup (in fact a normal subgroup) of the
affine group A(E) of E.

e). Product of two magnifications with magnification ratio a and b respectively, is a magnification with
magnification ratio ab. Moreover, if the centers of the given magnifications are distinct then the center of
the product lies on the line passing through these centers.

f). The magnifications with a fixed magnification factor along with the identity form a subgroup of all
magnifications and this subgroup is isomorphic to the multiplicative group K× of K .

g). An affinity f is a magnification if and only if the image of a line is a line parallel to it. (Hint : consider
the tow cases whether or not f has a fixed point.)

h). Let P, Q, P ′, Q′ be points in E with P �= Q and P ′ �= Q′. If the line-segments PQ and P ′Q′ are
parallel, then there exists a unique magnification with P �→ P ′ and Q �→ Q′. Construct the center of this
magnification in the following cases examples:

i). Suppose that 1 + 1 �= 0 in K , i.e. Char K �= 2. Then the product of two point- reflections of an K-affine
space is a translation. Conversely, every translation of an K-affine space is a product of two point reflection.

T12.4. Let E and F be K-affine spaces. The set of all those points in E at which the two affine maps from
E into F are equal is an affine subspace of E. For example:

(1) The set of all fixed points of a affine maps from E into itself is an affine subspace of E.
(2) If two affine maps from E in F are equal on an affine generating system of E, then they are equal.

T12.5. Let E be an affine space over the K-vector space V .

a). If f is an affinity of E and if t = tx is the translation of E by the vector x ∈ V , then f ◦ tx ◦f −1 = tf0(x) .
In particular, f commute with the translation tx if and only if x is a fixed point of the linear part f0 of f .

b). Let xi , i ∈ I , be a generating system of V . An affinity of E which commute with all the translations
defined by the vectors xi , i ∈ I , is itself a translation.

T12.6. Let E be a finite dimensional affine space over the K-vector space V and let h be a K-endomorphism
of V . Then the following statements are equivalent:

(1) Every affine map from E into itself with linear part h has exactly one fixed point.
(2) Every affine map from E into itself with linear part h has at least one fixed point.
(3) Every affine map from E into itself with linear part h has at most one fixed point.
(3′) There exists an affine map from E into itself with linear part h and exactly one fixed point.
(4) h − idV is an automorphism of V .

(Remark : (In the infinite dimensional case (1) and (4) are still equivalent. The condition (4) will be used to
formulate : 1 is not a Spectral value off .)

T12.7. Let E be an affine space over the K-vector space V and let f : E → E be an afine map. Then f

is an affine involution (resp. pseudo-reflection) (see 12.5 and 12.6) if and only if f has a fixed point and the
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linear part f0 of f is an affine involution (resp. pseudo-reflection). (Hint : Let O ∈ E be a fixed point of
f . Then the diagramm

E −−−−−−−−−−−−−f−−−−−−−−−−−−−−� F

g � g�

V −−−−−−−−−−−−−
f0−−−−−−−−−−−−−−� W

is commutative, where g : V → E is the affine isomorphism defined by x �→ x + O. )

T12.8. Every affine subspace of the codimension m of Kn is the solution space of a linear system over K

with consisting of m equations and n unknowns (this will necessarily have rank m) , vgl. 5.E, Aufg 13.

a). Give a system of linear equations over R with the solution space is the affine subspace U + (1, 1, 1, 1) ⊆
R4, where U is generated by the vectors (1, 0, 1, 1) and (0, −1, 2, 0).

b). Give a system of linear equations over C with the solution space is the affine hull of the points
(1, 1 − i, 0) , (−i, 0, 2 − i) and (0, −i, 1) im C3.

T12.9. Let f :E → F be an affine map, Pi , i ∈ I be a family of points in E and (ai) ∈ K(I) be a family of
weights with

∑
ai �= 0. Then the image of the center of mass of the points Pi , i ∈ I with weights ai , i ∈ I

under f is the center of mass of the points f (Pi) , i ∈ I with weights ai , i ∈ I .

T12.10. Let g : E → E be an affinity of an n-dimensional affine space over a K-vector space V and let
F := Fix g := {P ∈ E | g(P ) = P } be the fixed point set of g. This is an affine subspace of E (see ????).

a). If F := Fix g = ∅ i.e. g has no fixed point, then there exists a shearing s : E → E of E such that
sg has a fixed point, i.e. Fix (sg) �= ∅ . (Proof : Let P0 ∈ E and let P1 := g(P0) . Then P − 1 �= P0

(since g has no fixed point), i.e. v1 := −−→
P0P1 �= 0 . Extend v1 to a basis v1, . . . , vn of V . Then

P0, P1, Pi := P0 + vi , i = 2, . . . , n form an affine basis of E. Put P ′
0 := P2 + v1 . Then P ′

0, P1, . . . , Pn

form an affine basis of E (since the four points P0, P2, P
′
0, P1 form a paralleogramm ;

−−→
P ′

0P2 = −v1 and
−−→
P ′

0P1 = −−→
P ′

0P2 + −−→
P2P1 = −−−→

P0P1 + −−→
P2P1 = −−→

P0P2 = −v2 .) Now, define s : E → E by s(P ′
0) = P ′

0 ,
s(P1) = P0 and s(Pi) = Pi for i = 2, . . . , n . The fixed point set of s is the hyperplane Hs spanned by the

points P ′
0, P2, . . . , Pn and the vector

−−−−→
P1s(P1) = −−→

P1P
′
0 = −v1 = −−→

P ′
0P2 is parallel to Hs , i.e. belongs to the

vector space corresponding to Hs . Therefore s is a shearing and by construction, the point P0 ∈ Fix (sg) .)

b). Suppose that Dim (Fix g) = k ∈ {0, 1, . . . , n − 2} and P0, . . . , Pk ∈ F is an affine basis of F and
Pk+1 �∈ F . Let F ′ be the affine subspace of E generated by P0, . . . , Pk, Pk+1 . Then

(1) Dim F ′ = k + 1 , g(Pk+1) �∈ F and P0, . . . , Pk, g(Pk+1) are affinely independent.

(2) if g(Pk+1) �∈ F ′ , then there exists a shearing s : E → E of E such that F ′ ⊆ Fix (sg) .
(Proof : Since g(Pk+1) �∈ F ′, P0, . . . , Pk+1, Pk+2 := g(Pk+1) are affinely independent and so extend to an

affine basis P0, . . . , Pk+2, Pk+3, . . . , Pn E. Define P ′
k+1 := P0 + −−−−−→

Pk+1Pk+2 (note k ≤ n − 2). Then, the
points P0, . . . Pk, P

′
k+1, Pk+2, . . . , Pn form an affine basis of E (since the points P0, P

′
k+1, Pk+2, Pk+1 form

a parallelogram and by definition, we have
−−−−→
P0P

′
k+1 = −−−−−→

Pk+1Pk+2, and
−−−−−→
P ′

k+1Pk+2 = −−−−→
P0Pk+1.) Now, define

s : E → E by s(Pk+2) = Pk+1 , s(P ′
k+1) = P ′

k+1 and s(Pi) = Pi for i = 0, . . . , k, k +3, . . . , n . The fixed
point set of s is the hyperplane Hs spanned by the points P0, . . . , Pk , P ′

k+1, Pk+3, . . . , Pn and the vector
−−−−−−−→
Pk+2s(Pk+2) = −−−−−→

P ′
k+1P0 is parallel to Hs , i.e. belongs to the vector space corresponding to Hs . Therefore

s is a shearing and by construction, the points P0, . . . , Pk, Pk+1 ∈ Fix (sg) .)

(3) if g(Pk+1 ∈ F ′ , then there exist shearings s : E → E and s ′ : E → E of E such that F ′ ⊆ Fix (s ′sg) .
(Proof : Extend P0, . . . , Pk, g(Pk+1) to an affine basis P0, . . . , Pk, g(Pk+1), Pk+2, . . . , Pn of E and define

Q := g(Pk+1) + −−−−→
P0Pk+2 . Then, since

−−−−→
P0Pk+1 �∈ ∑k

i=1 K
−−→
P0Pi , we have P0, . . . , Pk, Q, Pk+2, . . . , Pn is an

affine basis of E. Now, define s1 : E → E by s1(Pi) = Pi for i = 0, . . . , k, k+2, . . . , n and s1(g(Pk+1)) =
Q . Then the fixed set Fix s1 of s1 is the hyperplane Hs generated by P0, . . . , Pk, Pk+2, . . . , Pn and the

vector
−−−−−−→
g(Pk+1)Q = −−−−→

P0Pk+2 is parallel to Hs , i.e. belongs to the vector space corresponding to Hs .
Therefore s1 is a shearing and by construction, the points P0, . . . , Pk, Pk+1 ∈ Fix (s1g) .

Now, construct a second shearing s2 : E → E as in the part (2) by replacing g(Pk+1) by Q . Since
s1(g(Pk+1)) = Q and s2(Q) = Pk+1) and both fix P0, . . . , Pk , all the points P0, . . . , Pk and Pk+1 are fixed
by s2s1g .)
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T12.11. Let K be a finite field with q elements.

a). The automorphism group of an n-dimensional K-vector space V has the order

(qn − 1)(qn − q) · · · (qn − qn−1) = q
1
2 n(n−1) (qn − 1)(qn−1 − 1) · · · (q − 1) .

(Hint : The number of automorphisms of V is equal to the number of bases (v1, . . . , vn) of V . To compuet
this numebr use (for example) the following c o m b i n a t o r i c s p r i n c i p l e .)

Deduce that : The number of m-dimensional K-subspaces of V is

(qn − 1)(qn−1 − 1) · · · (qn−m+1 − 1)

(qm − 1)(qm−1 − 1) · · · (q − 1)
.

(Remark : This number is the value of the Gauss polynomialG[n]
m at the place q.)

b). The affine group of an n-dimensional K-affine space has the order

q
1
2 n(n+1) (qn − 1)(qn−1 − 1) · · · (q − 1) .

(Remark : We shall illustrate this with a simple example. Let K = K2 be the field with two elements and
n = 2. The group GL(K2

2) has the order (4−1)(4−2) = 6 and it isomorphic to a subgroup of S
(
K2

2 −{0}) 2)

Therefore GL(K2
2)

∼= S3 . the affine group A(K2
2) has the order 4 · 6 = 24 and isomorphic to the subgroup

A(K2
2)

∼= S4 of S(K2
2). Further, A(K2

2) contain the additive group of K2
2 as a normal subgroup and the

GL(K2
2) is the factor group. Prove that this in the only normal subgroup of order 4 in A(K2

2). (The image of
such a normal subgroup in GL(K2

2)
∼= S3 is necessarily trivial.) Therefore : The groupS4 contain exactly

one normal subgroupV4 of order4. Further,V4 ∼= Z/Z2 ×Z/Z2 andS4/V4 ∼= S3 . The group V4 ⊆ S4

is called the K l e i n ’s 4 - g r o u p . This group contain (other than identity) the permutations
(1 2 3 4

2 1 4 3

)
,(1 2 3 4

3 4 1 2

)
,
(1 2 3 4

4 3 2 1

)
.)

T12.12. Let K be either the field K0 := Q or the finite field Kp := Z/Zp, p prime number. Then for every
K-vector space V the group AutKV of all is equal the group of all automorphisms of the additive group of
V . The affine group AK(V ) of V is the full-holomorph Hol (V ) of the additive group of V . 3) (Remark :
Similarly, the affine group of an arbitrary abelian group G, considered as Z-module, is the full-holomorph
Hol (G) of G, see. Beispiel 6.E.9. As an example we consider the full-holomorph of the cyclic group Z/Zp

of order p, which is the group A1(Kp) = Kp �K×
p , where the multiplicative group K×

p acts by multiplication
on (the additive group) Kp = Z/Zp. Since K×

p is cyclic and so for every divisor t of |K×
p | = p − 1 has a

unique (cyclic) subgroup Upt of order t . The subgroup

Fpt := Kp � Upt ⊆ Kp � K×
p = A1(Kp)

and every group which is isomorphic to this group is called a F r o b e n i u s - g r o u p . A Frobenius-group
is uniquely determined 4) upto isomorphism by its order pt .

A group G is isomorphic to a Frobenius-group if and only if it has a nomal subgroup N of prime order and
the centraliser of N in G is N itself. (proof! 5))

2) f �→ f |(K2
2 − {0}) is a canonical embedding of GL(K2

2) in S
(
K2

2 − {0}) .

3) The additive groups of the vector spaces over Z/Zp, p prime, are precisely the e l e m e n t a r y a b e l i a n
p - g r o u p s , and these are abelian groups H with Ord x = p for all non-zero elements x ∈ H , i.e. with
px = 0 for all x ∈ H .

4) The Frobenius group Fpt is clearly determined by the prime p which is the biggest prime factor of its
order and has the normal subgroup Kp of Fpt and by the divisor t of p−1. As the cyclic group K×

p has exactly
one subgroup of order t . Its action via multiplication on Kp determines therefore the resulting semidirect
product.

5) Suppose that G is a group with a normal subgroup N of prime order (we may assume that (Kp, +) for
some p) and such that the centralizer of N in G is N . Then, by definition of the centralizer of a normal
subgroup, N is the kernel of κ : G → Aut N the conjugate action of G on N . Therefore G/N is isomorphic
to the subgroup im κ = H ′ of the group of automorphisms Aut N(∼= K×

p ) of N . Now, since K×
p is a

cyclic group of order p − 1, the subgroup H ′ is also cyclic of order t (a divisor of p − 1) generated by
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Now, let G be an arbitrary group of order pq, where q < p are prime numbers. Then G has a subgroup
N of order p and a subgroup H of order q. The group N is uniquely determined (otherwise G has at least
p2 elements) and in particular, N is normal in G. Further, since N ∩ H = {e}, the group G is a semi-direct
product of N and H . For the operation (by conjugation) of H on N , the follwoing two casses are possible:

(1) The operation is trivial. Then G is commutative and so cyclic of the order pq.

(2) The operation is not trivial. Then it must be faithful, since H is cyclic of prime order and so q = |H | is
a divisor of |Aut N | = p − 1 and then G is isomorphic to the Frobenius-group Fpq .

We have proved that : A group of orderpq, p, q prime numbers withq < p is either cyclic or (in the case
q is a divisor ofp − 1) isomorphic to a Frobenius-groupFpq . – For example, a group of order 15 is cyclic
and a group of order 21 is either cyclic or isomorphic to a Frobenius-group F21 .)

T12.13. ( C l a s s i c a l s p a c e - t i m e - w o r l d ) Perhaps the greatest obstacle to understand the theories of
specialand general relativity6) arises from the difficulty in realising that a number of previosuly held basic
assumptions about the nature of space and time are wrong. We therefore spell-out some key assumptions
about space and time. We can consider space and time (≡ space-time 7)) to be a continuum composed of
e v e n t s , where each event can be thought as a point of space at an instant of time.

Up to now we have only considered the universeS over the vector space VS of translations, and time was
ignored. Classically, time is a real affine line T . The corresponding vector space is denoted by VT ; for
the measurement of time, we choose a basis τ of VT , pointing into the “future”, i.e. for given moments t1

and t2 in T , we say that “t1 comes before t2” if the vector −→
t1t2 has a representation aτ with a positive real

number a ( a r r o w i n t h e d i r e c t i o n o f t i m e ) . The motion of a free particle on a line in the universe
gives an isomorphism of this line onto T . The most naive description of the space-time-world as a whole
is done through the four-dimensional product space S × T which is, in a natural way, an affine space over
the R-vector space VS × VT . Both the projections of S × T onto S and T are affine maps. They associate
to every w o r l d - p o i n t in S × T its position resp. its time. The fibres of these projections are the points
with the same position resp. time.

It has been known from early times – at least from the time of Aristotle – that it does not make sense to talk
about two events taking place at different times at the same place. Description of position is only possible
relative to a frame of reference; one cannot distinguish any one of these frames of reference as a fixed frame
of reference. On the other hand, in the area of classical physics one has the concept of simultaneousness:
Two distinct world-points are n o t s i m u l t a n e o u s if and only if (at least in the mental experiment) the
same mass-point can occupy both these world-points.

Therefore one describes the classical space-time-world as a four dimensional real affine space E with an
affine (non-constant) map z :E → T from E onto the time T . For an event P ∈ E, we call z(P ) the t i m e
at which the event P takes place. The fibres of the affine map z define the space-directions. Our universe,
which we have handled so far, was always such a fibre. All these fibres are parallel to the three-dimensional
subspace VS of the vector space VE corresponding to E.

Two world-points P and Q in E differ from each other by the vector
−→
PQ. P and Q are simultaneous if

and only if
−→
PQ ∈ VS . Therefore the vectors in VS are called s p a c e - l i k e vectors. Every vector in VE ,

a′ ∈ H ′. Let a ∈ κ−1(a′) ⊆ G be a preimage of a′. Then the residue class of at in G/N is zero, i.e. at

is contained in N . Therefore (ap)t = apt = (at )p = eG and so the order of ap in G is a divisor of t and
κ(ap) = κ(a)p = (a′)p As p and p −1 have no common divisor, a′ and (a′)p have the same order in K×

p and
so (a′)p also generate H ′. Therefore the subgroup H of G generated by ap has order t and is canonically
isomorphic to H ′ ∼= G/N ⊆ K×

p and hence by definition of a semidirect product, this yields G ∼= Fpt .
6) The general theory of relativity is one of the greatest intellectual achievements of all time. Its originality
and unorthodox approach exceed that of special relativity. And for so more than special relativity, it was
almost completely the work of a single man, Albert Einstein (1879-1955). The philosophic impact of
relativity theory on the thinking of man has been profound and the vistas of science opened by it are literally
endless.
7) Hermann Minkowski (1864-1909) referred to space-time as t h e w o r l d , hence events are w o r l d -
p o i n t s and a collection of events giving history of a particle is a w o r l d - l i n e . Physical laws on the
interaction of particles can be thought of as the geometric relation between the world-lines. In this sense
Minkowski maty be said to have geometrizedphysics.
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which is not a space-like vector, is called t i m e - l i k e . The world-points representing the motion of a free
particle m1 (which is not subject to any outer forces), form an affine line g1 = Rv1 + P1 in E, the so called
w o r l d - l i n e of these mass-points. It is parallel to the line Rv1 in VE generated by some time-like vector
v1 ( G a l i l e a n l a w o f i n e r t i a ) . Then the line g1 representing the time and the affine subspace VS +P1
give a decomposition of E into space and time (as above) . After normalising the vector v1 by the condition
z0(v1) = τ , where z0 is the linear part of z, this vector v1 is called the a b s o l u t e or f o u r - v e l o c i t y of
the mass-point under consideration.

If m2 is another mass-point with the absolute velocity v2 (moving freely without being subject to outer
forces) , then v2 − v1 ∈ VS is a space-like vector. It is called the r e l a t i v e v e l o c i t y o f m2 w i t h
r e s p e c t t o m1.

The simultanousness as defined above requires arbitrary large relative velocities. Since observations suggest
that arbitrary large velocities cannot occur, one tries to abandon the notion of simultanousness. A first step
in this direction is the special theory of relativity.

As automorphisms of the classical space-time-world E described above we shall consider the affinities f

of E, which are compatible with the time map z : E → T . By this we mean that there exists an affinity
fT :T → T (which is necessarily uniquely determined) such that z ◦ f = fT ◦ z :

E −−−−−−−−−−−−−f−−−−−−−−−−−−−−� E

z

�
z

�
T −−−−−−−−−−−−−fT−−−−−−−−−−−−−−� T

These automorphisms f of E form a subgroup G of the affine group A(E) of E. This subgroup G is called
the a f f i n e G a l i l e a n g r o u p . An affinity f in A(E) belongs to G if and only if its linear part maps
the vector space VS of the spacelike vectors into itself. By G0 we denote the subgroup of automorphisms h

of VE with h(VS) ⊆ VS . Then the map G → G0 defined by f �→ f0 is a surjective group homomorphism,
and its kernel is the group T(E) of all translations of E. In particular, G/T(E) ∼= G0 .

Sometimes the subgroup of all f ∈ G such that the time-part fT is the identity, is also called the affine
Galilean group.

T12.14. ( C o l l i n e a t i o n s ) Let E and F be affine spaces (not necessarily over the same field). A
bijective map f : E → F is called an i s o m o r p h i s m of E onto F if the map E′ �→ f (E′) is a bijective
map from the set of all affine subspaces of E onto the set of all affine subspaces of F . An isomorphism of
E onto itself is called a c o l l i n e a t i o n of E. The group of all collineations of E is denoted by K(E). (If
Dim E = 1, then K(E) = S(E).)

Let f : E → F be a bijective map of the K–affine space E onto the L–affine space F . Then

a). If f is an isomorphism and Pi, i ∈ I is an affine basis of the affine subspace E′ of E, then f (Pi), i ∈ I

is an affine basis of f (E′). In particular, Dim f (E′) = Dim E′ for every affine subspace E′ of E. (Proof :
Let F ′ be the affine subspace of F gereated by f (Pi), i ∈ I . Then F ′ ⊆ f (E′). Since Pi ∈ f −1(F ′) for
all i ∈ I , E′ ⊆ f −1(F ′) or f (E′) ⊆ F ′. Therefore f (E′) = F ′ and f (Pi), i ∈ I , is an affine generating
system for f (E′). Suppose that f (Pi), i ∈ I ′, with I ′ ⊆ I is an affine basis of f (E′). Then by the above
proof Pi, i ∈ I ′ is an affine generating system of f −1(f (E′)) = E′ and hence I ′ = I . Therefore the family
f (Pi), i ∈ I is also affinely independent and so an affine basis of f (E′).)

b). If |K| > 2, then f is an isomorphism if and only if the f –image of every affine line in E is an affine
line in F . (Proof : In view of a) above and 43.3, it is enough to prove that : f induces a bijective map
between the set of all lines in E resp. in F , if the f –image of every line in E is a line in F . Further, it is
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enough to prove that every line g′ in F is the image of a line in E. For this, let P ′, Q′ be two distinct points
on g′ and P, Q be the preimages of P ′, Q′ in E. Let g be the line generated by P and Q in E. Then f (g)

is a line in F with P ′, Q′ ∈ f (g) and hence f (g) = g′. )

c). If |K| = 2, then f is an isomorphism if and only if the f –image of every affine plane in E is an affine
palne in F . (Proof : Similar to that of the part b) above with the following – Remark : A subset of a
K2-affine space is an affine subspace if and only if for every theree affinely independent points, the fourth
one is also contained in the affine plane generated by them.)

T12.15. ( F u n d a m e n t a l t h e o r e m o f a f f i n e g e o m e t r y ) Let f : E → F be a bijective map
from theK–affine spaceE overV onto theL–affine spaceF overW . Suppose thatDim E ≥ 2. Thenf is
an isomorphism if and only if there exist an isomorphismϕ : K → L of fields and a bijectiveϕ–linear map
f : V → W such that the canonical diagramm

V × E −−−−−−−−−−−−−−−−−−−−−−−−−−−−−� E

f ×f �
f

�
W × F −−−−−−−−−−−−−−−−−−−−−−−−−−−−−� F

is commutative.

(Proof : If there exist ϕ and f as given in the theorem, then f is an isomorphism, since f induces a bijective
map of the set of all K–subspaces of V onto the set of all L–subspaces of W .

Conversely, suppose that f is an isomorphism. Let O ∈ E be a fixed point. It is enough to show that the

map f : V → W defined by x �→ −−−−−−−−−−→
f (O)f (x + O) is a bijective and ϕ–linear for a suitable isomorphism

ϕ : K → L of fields. The diagramm
E −−−−−−−−−−−−−f−−−−−−−−−−−−−−� F

g1 � g2�

V −−−−−−−−−−−−−f−−−−−−−−−−−−−−� W

is commutative, where g1 resp. g2 are affine isomorphisms defined by x �→ x + O resp. y �→ y + f (O).
Therefore f is also an isomorphism of the affine spaces V and W . We may therefore assume that f = f .

Then f (0) = 0. Further, f maps parallel lines onto parallel lines, since two distinct lines are parallel if
and only if they lie in a plane and donot intersect, vgl. Aufgabe 7. Therefore it follows that f (Kx + y) =
Lf (x) + f (y) for arbitrary x, y ∈ V ; For, if x �= 0, then the lines f (Kx) = Lf (x) and f (Kx + y) are
parallel and since f (y) ∈ f (Kx +y), we necessarily have f (Kx +y) = Lf (x)+f (y). Finally, we remark
that the image under f of any two linearly independent vectors x, y ∈ V are linearly independent in W ,
since f (y) does not belong to f (Kx) = Lf (x), see also 43.8(1).

(1) f is additive: Let x, y ∈ V . If either x = 0 or y = 0, then clearly f (x + y) = f (x) + f (y).

(1.a) Case : x, y are linearly independent: Then x + y (resp. f (x) + f (y)) is the point of intersections
of the lines Kx + y and Ky + x. (resp. Lf (x) + f (y) and Lf (y) + f (x)) and so {f (x) + f (y)} =
(Lf (x) + f (y)) ∩ (Lf (y) + f (x)) = f (Kx + y) ∩ f (Ky + x) = f ((Kx + y) ∩ (Ky + x)) = {f (x + y)}
as required.

(1.b) Case : x, y are linearly dependent: Since both x, y are non-zero, there exists (since DimK V ≥ 2) a
vector z ∈ V such that x, z are linearly independent. Then x, y + z and y, z are also linearly independent.
If x + y �= 0, then x + y, z are linearly independent and so (by the earlier proof) f (x + y) + f (z) =
f ((x +y)+z) = f (x + (y +z)) = f (x)+f (y +z) = f (x)+f (y)+f (z) , i.e. f (x +y) = f (x)+f (y).
If x + y = 0, then (by the earlier proof) f (z) = f (x + (y + z)) = f (x)+f (y + z) = f (x)+f (y)+f (z) ,

i.e. f (x + y) = f (x) + f (y) = 0.

(2) Definition ofϕ : Let x ∈ V, x �= 0 be fixed and define ϕ : L → K by the equation f (ax) = ϕ(a)f (x).
Since f (Kx) = Lf (x), it follows that ϕ bijective.

(3) f isϕ-semi-linear: i.e.f (ay) = ϕ(a)f (y) for all a ∈ K and ally ∈ V . This is clear if a = 0 or y = 0.

(3.a) Case : x, y are linearly independent: Then ay (resp. ϕ(a)f (y)) is the point of intersection of the
lines Ky and K(y − x) + ax (resp. Lf (y) and L(f (y) − f (x)) + ϕ(a)f (x)). Therefore {ϕ(a)f (y)} =
Lf (y) ∩ (L(f (y − x)) + ϕ(a)f (x)) = f (Ky ∩ (K(y − x) + ax)) = {f (ay)}.
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(3.b) Case : x, y are linearly dependent: Let z ∈ V be as in (1.b). Then by the additivity of f and the
earlier case (3.a), we have f (ay) = f (a(y +z)−az) = f (a(y +z))−f (az) = ϕ(a)f (y +z)−ϕ(a)f (z) =
ϕ(a)f (y) + ϕ(a)f (z) − ϕ(a)f (z) = ϕ(a)f (y).

f (az) = ϕ(a)f (z) and f (a(y + z)) = ϕ(a)f (y + z) = ϕ(a)f (y) + ϕ(a)f (z).

(4) ϕ is an isomorphism of fields: Let a, b ∈ K and let x ∈ V , x �=. Then by the definition of ϕ and
the addivity of f , we have : ϕ(a + b)f (x) = f ((a + b)x) = f (ax) + f (bx) = ϕ(a)f (x) + ϕ(b)f (x) =
(ϕ(a) + ϕ(b)) f (x) and so ϕ(a + b) = ϕ(a) + ϕ(b) . Similarly, we have : ϕ(ab)f (x) = f ((ab)x) =
ϕ(a)f (bx) = ϕ(a)ϕ(b)f (x) and so ϕ(ab) = ϕ(a)ϕ(b) . Finally, from f (x) = f (1 · x) = ϕ(1)f (x), we
have ϕ(1) = 1 . This proves that ϕ is an isomorphism of fields. )

More generally, a bijective map of E onto itself is called a c o l l i n e a t i o n of E if the image of every affine
line in E under f is again an affine line in E. If E itself is a line, then naturally every bijective map of E

onto itself is a collineation.

If Dim E ≥ 2, then the fundamental theorem of affine geometry gives a closed relation between collineations
of E and affine maps of E. The fields Q , R and Zp p prime number have no non-trivial automorphisms
and so

Corollary : For affine spaces of dimensions≥ 2 over fields Q , R and Zp p prime number, every
collineation is an affinity. (Remark : The special case for the universe(the three dimensional real affine
space) goes back to Euler. )
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