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MA-219 L inear Algebra
14. Determinants – Permutations, Multi-linear and alternating maps

October 28, 2003 ; Submit solutions before 11:00 AM ;November 03, 2003.

14.1. Let T be a set of transpositions in the groupSn , n ≥ 1. We associate the graph1) �T to
T as follows: the vertices of�T are the numbers 1, . . . , n and two verticesi andj with i �= j are
joined by a edge if and only if the transposition〈i, j〉 = 〈j, i〉 belong toT . Let �1, . . . , �r be the
connected components of�T .

a). The transpositions inT generate the groupSn if and only if �T is connected, i.e. if any two
vertices of�T can be joined by the sequence of edges in�T . The subgroup ofSn generated byT
is the productS(�1) × · · · × S(�r) ⊆ Sn .

b). If T is a generating system for the groupSn , thenT has at leastn − 1 elements. (Hint :

Let τ1, . . . , τm be the elements ofT (may be with repeatations) withτ1 · · · τm = id . Thenm is even and
m ≥ 2

∑r

ρ=1( |�ρ | − 1) . )

c). Every generating system ofSn consisting of transpositions contain a (minimal) generating
system ofSn with n − 1 elements. (The graphs corresponding to such a minimal generating
systems are calledt r e e s . Everyconnected graph has a generating system which is a tree. –There
are exactlynn−2 generating systems consistingn−1 transpositions.(Hint : Prove this by descending
inductionk; induction starts atk = n − 1: the number of trees in which the number 1 belongs to exactlyk

edges, is(n − 1)n−k−1
(
n−2
k−1

)
and add.)

d). The transpositions〈1, 2〉 , 〈2, 3〉 , . . . , 〈n − 1, n〉 (resp. 〈1, 2〉 , 〈1, 3〉 , . . . , 〈1, n〉) form a
minimal generating system ofSn . (Hint : If a, b, c are three distinct elements, then
〈a b〉〈a c〉〈a b〉 = 〈b c〉.)

14.2. a). Let vj , j ∈ J be a basis of theK-vector spaceV and letw(ji), (ji) ∈ J I be a family
of elements of theK-vector spaceW , whereI is a finite indexed set. Then there exists a unique
K-multilinear mapf :V I → W such that f

(
(vji

)i∈I

) = w(ji) , (ji) ∈ J I . If V andW are finite
dimensional, then theK-vector space of the multilinear maps fromV I into W has the dimension
(DimK V )|I | · DimK W .

b). A multilinear mapf : V n → W of K-vector spaces is alternating iff (x1, . . . , xn) = 0 for
everyn-tuple (x1, . . . , xn) in which two consecutive components are equal.

14.3. Let V andW beK-vector spaces.

a). Let I be a finite indexed set withn elements. Suppose that inK the elementn! = n! · 1K

is non-zero, i.e. CharK = 0 or CharK > n . Then the mapsf �→ 1
n! Af and f �→ 1

n! Sf

1) Simplicial Complexes and Graphs. A s i m p l i c i a l c o m p l e x K is a setV(K) called thev e r t e x
s e t (ofK) and a family of subsets ofV(K) , called s i m p le x e s (inK ) such that
(i) for eachv ∈ V(K), the singleton set{v} is a simplex inK.

(ii) if s is a simplex inK then so is every subset ofs.

A simplex s in K is called a q - s i m p l e x if card(s) = q + 1 and say thats has d i m e n s i o nq. For
a simplicial complexK , we write dim(K) := sup{q | there exists aq − simplex inK} and is called the
d i m e n s i o n ofK . A simplicial complex of dimension≤ 1 is called ag r a p h .

An e d g e inK is an ordered pair(v0, v1) of vertices such that{v0, v1} is a simplex inK . If e = (v0, v1)

is an edge inK the vertexv0 (respectivelyv1) is called the o r i g i n (respectivelye n d ) ofe and usually
denoted by orig(e) (respectively end(e)).

A p a t h α in K of lengthn is a sequencee1e2 · · · en of edges inK with end(ei ) = orig(ei+1) for every
1 ≤ i ≤ n − 1. For a pathα = e1e2 · · · en we put orig(α) = orig(e1) and end(α) := end(en) and say thatα
is a path from orig(α) to end(α).

A simplicial complexK is called c o n n e c t e d if for everypair (v0, v1) of vertices inK there exists a
pathα in K such that orig(α) = v0 and end(α) = v1.

D. P. Patil / Exercise Set 14 la03-e014 ; October 28, 2003 ; 12:08 p.m. 72



14.2MA-219 Linear Algebra / August-December 2003 14. Determinants – Permutations, Multi-linear and alternating maps

are projections of theK-vector space of the multilinear mapsV I → W onto the subspace of the
alternating resp. the symmetricI -linear maps.

b). Suppose that CharK �= 2 . The space of the bilinear mapsV × V → W is the direct sum
of the subspace of the alternating (i.e. skew-symmetric) and the subspace the symmetric bilinear
maps. The corresponding projections are1

2A resp.1
2S. (Remark : A bilinear mapf :V × V → W

can be decomposed into itss k e w - s y m m e t r i c p a r t12Af and its s y m m e t r i c p a r t12Sf . )

14.4. Let K be a field and letV , W be vector spaces overK.

a). Let f : V n → K be an alternating multilinear form onV and letg : V → W be aK-linear
map. Then (x0, . . . , xn) �−→ ∑n

i=0(−1)i f (x0, . . . , xi−1 , xi+1 , . . . , xn) g(xi) is an alternating
K-multilinear mapV n+1 → W .

b). (C ramer ’s Fo rmu la )Suppose thatV is an-dimensionalK-vector space. Then for every
determinant function� : V n → K and for arbitraryx0, . . . , xn ∈ V , prove that∑n

i=0 (−1)i �(x0, . . . , xi−1 , xi+1 , . . . xn) xi = 0 . (Hint : Use the part a) above. )

On the other side one can see (simple) test-exercises ; their solutions need not be submitted.
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Test-Exercises

T14.1. a). Give an element of biggest posible order in the groupS5.

b). Forn ≥ 4, the groupAn is not abelian.

T14.2. For the following permutations compute the number of variations and the sign.

a). The permutationi �→ n − i + 1 in Sn.

b).

(
1 2 . . . n n + 1 . . . 2n

1 3 . . . 2n − 1 2 . . . 2n

)
∈ S2n .

c).

(
1 2 . . . n n + 1 . . . 2n

2 4 . . . 2n 1 . . . 2n − 1

)
∈ S2n .

d).

(
1 . . . n − r + 1 n − r + 2 . . . n

r . . . n 1 . . . r − 1

)
∈ Sn, 1 ≤ r ≤ n . (Ans : (−1)(r−1)(n+1).)

e).

(
1 2 3 4 5 6 . . . 2n

1 2n 3 2(n − 1) 5 2(n − 2) . . . 2

)
∈ S2n .

f). For a subsetJ ⊆ {1, . . . , n} with J = {j1, . . . , jm} , j1 < · · · < jm , let σJ be the permutation

σJ =
(

1 . . . m m + 1 . . . n

j1 . . . jm i1 . . . in−m

)
∈ Sn ,

where the numbersi1 < · · · < in−m are the elements of the complement ofJ in {1, . . . , n}. (Hint : The

number of variations ofσJ is F(σJ ) =
(∑m

k=1 jk

)
− (

m+1
2

)
and hence Sign(σJ ) = (−1)F(σJ ) . )

g). Let σ resp. τ be permutations of the finite setsI resp.J . Compute the sign of the permutation
σ × τ : (i, j) �→ (σ i, τ j) of I × J (in terms of Signσ, Signτ andm := |I |, n := |J |).
T14.3. Let n ∈ N

+ . Then

a). A subgroup of the permutation groupSn which contain an odd permutation contains equal number of
even and odd permutations.

b). A permutationσ ∈ Sn which is of odd order is an even permutation.

c). The squareσ 2 of a permutationσ ∈ Sn is an even permutation.

d). Let σ = 〈i0, . . . , ik−1〉 be a cycle of lengthk ≥ 2. What is the inverse ofσ ? For whichm ∈ Z, σm is a
cycle of lengthk ?

e). Let σ ∈ Sn andm ∈ Z. Every orbit ofσ of lengthk decomposes into ggT(k, m) orbits of the length
k/ ggT(k, m) of σm.

f). Let I be a finite set. The inverseσ−1 of a permutationσ ∈ S(I ) has the same orbits and same sign as
those ofσ .

g). Let m = p
α1
1 · · · pαr

r be the canonical prime factorisation ofm ∈ N
∗. Then the permutation groupSn

contain an element of orderm if and only if n ≥ p
α1
1 + · · · + pαr

r . For whichn ∈ N there exists an element
of order 3000 (resp. 3001) in the groupSn?

T14.4. a). If σ ∈ Sn, n ∈ N
+ hass orbits, thenσ can be represented as a product ofn− s transpositions

and cannot be represented as a product of less thann − s transpositions.

b). Let σ ∈ Sn , n ∈ N
+ be a permutation of type(ν1, . . . , νn) . Then the number of permuations inSn

which commute withσ is ν1! · · · νn! 1ν1 · · · nνn . (Hint : These permutations form the centraliser CSn
(σ )

of σ .)

T14.5. a). The cycles〈1, 2〉 , 〈2, . . . , n〉 generate the groupSn , n ≥ 2. (Hint : Use 14.1-d) )

b). The cycles〈1, 2〉 , 〈1, 2, . . . , n〉 generate the groupSn , n ≥ 2. (Hint : Use 14.1-d) )

c). 〈1, n〉, 〈1, . . . , n〉 generate the groupSn, n ≥ 2. (Hint : Use 14.1-d) )

T14.6. Let n ∈ N
+ .

a). For n ≥ 2 , Sign : Sn → {−1, 1} is the only non-trivial group homomorphism. (Hint :
〈a b〉 and 〈c d〉 be two transpositionsSn . If σ ∈ Sn be an arbitrary permutation witha �→ c, b �→ d ,
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then σ 〈a b〉σ−1 = 〈c d〉 and so every homomorphismϕ : Sn → {1, −1} have the same value on all
transpositions. If this value is 1, thenϕ; if it si −1, thenϕ = Sign. )

b). An is the commutatorSn.

c). Using the simplicity of the groupAn, n ≥ 5, prove that the groupAn is the only non-trivial normal
subgroup in the groupSn for n ≥ 5.

d). The groupsA4 andV4 are the only non-trivial normal subgroups inS4.

e). The groupV4 is the only non-trivial normal subgroup inA4.

T14.7. Let I be a finite set and letσ ∈ S(I ) be a permutation ofI of prime power orderpm, p prime.
Then the number of fixed points ofσ and the number ofn := |I | of elements ofI are congruent modulop.
In particular,
(1) If n is not divisible byp, thenσ has at least one fixed point.
(2) If n is divisible byp, then the number of fixed points ofσ is also divisible byp. (Remark : This is a
special case of the assertion ??? )

T14.8. Let G be a finite group of ordern and letλ :G → S(G) be the corresponding Cayley’s homomor-
phism.

a). For everyg ∈ G, the permutationλg has exactlyn/ordg orbits of lengths ordg. In particular,
Signλg = (−1)n−(n/ordg) = (−1)[G:H(g)]+|G| , where H(g ) is the cyclic subgroup ofG generated byg.

b). If G := Sn andn ≥ 4, thenλ(G) = λ(Sn) ⊆ A(Sn). (Hint : Compute Sign(λτ ), whereτ ∈ Sn is a
transposition.)

c). λ(G) �⊆ A(G) if and only if n is even andG has an element of order 2α, where 2α is the biggest power
of 2 which dividen. (i.e. if and only if the 2–Sylow subgroup ofG is cyclic and is non-trivial). Moreover,
in this caseG has a normal subgroup of index 2.

d). If |G| = 2m, m is odd, thenG has a normal subgroup of index 2. (Hint : G has an elementg of order
2. Compute the Sign(λg). )

e). The order of a finite simple non-abelian group is divisible by 4. (Hint : Use d) and the theorem of
F e i t – T h o m p s o nEvery finite non-abelian simple group has even order. The proof of this theorem is
not easy. See [Feit,W. andThompson, J. : Solvability of groups of odd order,Pacific Journal of Mathematics,
pp-775-1029, (1963).] )

T14.9. Every finite subgroup is isomorphic to a subgroup of an alternating groupAm. (Hint : Use ??-b)
or the following remark : Forn ∈ N, let f be the bijectioni �→ n + i of {1, . . . , n} onto {n + 1, . . . , 2n}.
The mapσ �→ σ ′, which maps every permutationσ ∈ Sn to the permutationσ ′ ∈ S2n whereσ ′ = σ on
{1, . . . , n} andσ ′ = f σf −1 on {n + 1, . . . , 2n}, is a homomorphism fromSn into A2n.)

T14.10. a). Compute the class number of the groupSn for n ≤ 6. (Hint : Use 44.9.)

b). Forn ≥ 3, the center Z(Sn) = {id}. (Hint : Forσ ∈ Sn, n ≥ 3, σ �= id, find a transposition〈ab〉 with
σ 〈ab〉σ−1 = 〈σ(a)σ (b)〉 �= 〈ab〉.)

T14.11. Let G be a subgroup ofSn, n ≥ 2. Suppose that the natural operation ofG on {1, . . . , n} is
transitive.

a). If G contain a transposition and a cycle of ordern − 1, thenG = Sn. (Hint : Use T14.5-a). )

b). If G contain a transposition and a cycle of prime orderp with n

2 < p < n, thenG = Sn.

T14.12. Let p be a prime number.

a). If the subgroupG of Sp contain a transposition and ifp divides the order ofG, thenG = Sp. (Hint :
G contain an element of orderp. This must be a cycle. Now use T14.5-c). —Remark : Show that the
condition “p | |G|” is equivalent with “the natural opeartion ofG on {1, . . . , p} is transitive”.)

b). Let G be the subgroup ofSp+1. Suppose thatG has the following properties:
(1) The natural opeartion ofG on {1, . . . , p + 1} is transitive.
(2) p divides the order ofG.
(3) G contains a transposition.
ThenG = Sp+1. (Hint : Use T14.11-a).)
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T14.13. The quaternion groupQ can be embedded in the groupSn, n ∈ N, if and only if n ≥ 8. (Hint :
Study the elements of the order 4.)

T14.14. Let V andW beK-vector spaces,I be a finite indexed set andf : V I → W be a multilineare
map. Letg : U → V andh : W → X beK-vector space homomorphisms. Thenh ◦ f ◦ gI : UI → X

is a multilineare map, wheregI is defined bygI
(
(ui)

)
:= (

g(ui)
)

, (ui) ∈ UI . If f is symmetric resp.
skew-symmetric resp. alternating, then so ish ◦ f ◦ gI .

T14.15. ( F u n c t o r i a l i t y ) LetV ′ , V , V ′′ , W ′ , W , W ′′ be K-vector spaces andI be a finite indexed
set. Letf ′ : V ′ → V , f : V → V ′′ , g′ : W ′ → W and g : W → W ′′ beK-linear maps. Then

a). The map MultK(I, f ′; W) : MultK(I, V , W) → MultK(I, V ′, W) defined by 
 �→ 
 ◦ f I is
K-linear. Moreover, MultK(I, idV ; W) = idMultK(I,V ;W) and MultK(I, f ′′ ◦ f ′; W) = MultK(I, f ′; W) ◦
MultK(I, f ′′; W) .

b). The map MultK(I, V ; g′) : MultK(I, V , W ′) → MultK(I, V , W) defined by 
 �→ g′ ◦ 
 is
K-linear. Moreover, MultK(I, V ; idW ) = idMultK(I,V ;W) and MultK(I, V ; g ◦ g′) = MultK(I, V ; g) ◦
MultK(I, V ; g′) .

c). The map AltK(I, f ′; W) : Alt K(I, V , W) → Alt K(I, V ′, W) defined by 
 �→ 
◦f I isK-linear.
Moreover, AltK(I, idV ; W) = idAlt K(I,V ;W) and AltK(I, f ′′ ◦ f ′; W) = Alt K(I, f ′; W) ◦ Alt K(I, f ′′; W) .

d). The map AltK(I, V ; g′) : Alt K(I, V , W ′) → Alt K(I, V , W) defined by 
 �→ g′ ◦ 
 is K-linear.
Moreover, AltK(I, V ; idW ) = idAlt K(I,V ;W) and AltK(I, V ; g ◦ g′) = Alt K(I, V ; g) ◦ Alt K(I, V ; g′) .

(Remark : This mean that the part a) and c) (resp. b) and d) ) for a fixedK-vector spaceW (resp.
V ) the assignmentV �→ MultK(I, V ; W) and V �→ Alt K(I, V ; W) (resp. W �→ MultK(I, V ; W) and
W �→ Alt K(I, V ; W) ) arecontravariant andcovariant functors from thecategory VK of K-vector spaces
to itself, respectively.)—In particular, the assignmentV �→ Alt K(I, V ) is acontravariant functor from the
category VK of K-vector spaces to itself.)

T14.16. Let A be a commutative ring,V be anA–module,I , J := I ∪ {k} be finite index sets
with k �∈ I and let
 ∈ Alt A(I, V ; A). Then the map


′ : V J → V defined by (vi)i∈J �→ 
((vi)i∈I )vk

is multi-linear, i.e. 
′ ∈ MultA(J, V ; V ) and the map
′′ := 
′ − ∑
i∈I 〈ik〉
′ is alternating,

i.e. 
′′ ∈ Alt A(J, V ; V ) . (Remark : The map
′′ is obtained from
′ by the process
similar to that of anti-symmetrisation by using the transpositions〈ik〉 ∈ S(J ) ; the factor−1 appears in
the sum as a common Sign of the transpositions〈ik〉 . — Note the formula for
′′ in the specail case
I = {1, . . . , n}, J = {1, . . . , n, n + 1} .)

T14.17. ( D e t e r m i n a n t s o v e r a c o m m u t a t i v e r i n g ) LetA be a commutative ring.

a). Let V be a finite freeA–module with a basisxi, i ∈ I . Then the mapϕ : Alt A(I, V ) ∼= A

defined by .
 �→ 
((xi)i∈I ) is anA–isomorphism.

b). Let V andW be arbitrary modules overA and letf : V → W be anA–linear map. Then for
every finite indexed setI , f induces a naturalA–linear map

Alt A(I, f ) = Alt (I, f ) : Alt A(I, W) → Alt A(I, V )

defined by
 �→ 
◦f I , where the mapf I : V I → WI , is defined by(vi) �→ (f (vi)). Moreover,
if g : W → X is anotherA–linear map ofA–modules, then

Alt (I, gf ) = Alt (I, f ) ◦ Alt (I, g) ,

c). Let V be a freeA–module of finite rankn and I be an indexed set withn elements. Then
Alt (I, f ) is an endomorphism of Alt(I, V ) ∼= A and hence Alt(I, f ) is the multiplication by
a uniquely determined elementa ∈ A, and so is a homothecyϑa. The element a ∈ A with
Alt (I, f ) = ϑa is independent of the choice of the indexed set I . (Proof : Let J be another
set withn elements and Alt(J, f ) = ϑb. there exists a bijectionκ : I → J . Then(vj )j∈J �→ (v

κi )i∈I is
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anA–isomorphismη : V J → V I and hence
 �→ 
η is a bijection from Alt(I, V ) onto Alt(J, V ). For an
arbitrary
 ∈ Alt (I, V ) we have :

a · (
η) = (a
)η = (Alt (I, f ) 
)η = (
f I )η = 
(f Iη) = 
(ηf J )

= (
η)f J = Alt (J, f ) (
η) = b · (
η) .

and hencea = b.)

d). Let V be a finite freeA–module with a basis consisting ofn elements and letf ∈ EndA V .
Then the uniquely determined elementa ∈ A with Alt (n, f ) = ϑa is called thed e t e r m i n a n t
of f (overA) and is denoted by Detf . The d e t e r m i n a n t m a pf �→ Detf ide denoted by
Det : EndA V → A. (Remark : In the definition of determinant instead of the standard indexed set
{1, . . . , n}, we may choose any other indexed setI with n elements (see part c). For a finite freeA–module
V of rankn the elements of Alt(n, V ) are also called d e t e r m in a n t f u n c t i o n s (onV or onV n.)

e). Let V be a finite freeA–module with basisxi, i ∈ I and letf ∈ EndA V .

(1) For everyI -linear form 
 ∈ Alt A(I, V ) and for everyI–tuple (vi) ∈ V I :


((f (vi))i∈I ) = (Alt (I, f )
)((vi)i∈I ) = Detf · 
((vi)i∈I ) .

(2) For an alternatingI -linear form � on V I with �((xi)i∈I ) = 1 : Detf = �((f (xi))i∈I ) .

(Proof : By part a)� is a basis of AltA(I, V ) and by definition Alt(I, f )(�) = (Detf ) · � . Taking the
image of(xi)i∈I ∈ V I on both sides, we get�((f (xi))i∈I ) = Detf · �((xi)i∈I ) = Detf . )

f). Let V be a finite freeA–module with a basis consistingn elements. Then the determinant map

Det : EndA V → A

have the following properties:

(1) Det(idV ) = 1.
(2) Det(fg) = (Detf )(Detg) for all f, g ∈ EndA V .
(3) Det(af ) = anDetf for all a ∈ A and all f ∈ EndA V .

T14.18. Let A be a commutative ring and letV be a finite freeA–module andf ∈ EndA V .
Show that : There exists ag ∈ EndA V such that(Detf ) · idV = fg = gf . (Hint : Let x1, . . . , xn

be a basis ofV , � ∈ AutA(n, V ) be such that�(x1, . . . , xn) = 1 and
 = Alt (n, f )(�) = Detf ·� . Let
gi, i = 1, . . . , n be the linear form onV defined byv �→ �(f (x1), . . . , f (xi−1), v, f (xi+1), . . . , f (xn))

and let g : V → V be the map defined byv �→ ∑n

i=1 gi(v)xi . The equationgf = (Detf ) · idV can be
verified directly from definitions. For the proof offg = (Detf ) · idV apply the exercise T14.16 to
 and
construct(n + 1)–linear map
′ : (v1, . . . , vn, vn+1) �→ 
(v1, . . . , vn)vn+1 = �(f (v1), . . . , f (vn))vn+1
and hence the alternating(n + 1)–linear map
′′ : V n+1 → V is the zero map. Deduce that :(Detf )V ⊆
im f . Further, this shows that Detf is a unit inA if and only if f is bijective. If Detf is a non-zero
divisor inA, thenf injective.

T14.19. Let A be a commutative ring and let V be a non-zero finite free A–module. The determinant map
Det : EndA V → A is a surjective monoid homomorphism of the multiplicative monoid of EndA V onto
the multiplicative monoid of A. Further, it maps the unit group (EndA V )× = AutA V onto the unit group
A× and Det−1(A×) = AutA V . This mean that : an operator f ∈ EndA V is an automorphism if and only
if Detf is a unit in A. (Proof : It follows from T14.17(1) and (2) that Det is a homomorphism. Further,
by the commutativity ofA we have

Det(fg) = (Detf )(Detg) = (Detg)(Detf ) = Det(gf ) .

By restricting we get a group homomorphism Det : AutAV → A× . In particular, we have

Det(f −1) = (Detf )−1

for f ∈ AutA V . The surjectivity of Det follows easily : Leta ∈ A be given and letx1, . . . , xn be
a basis vonV . Thenn ≥ 1. For the endomorphismf1 with x �→ ax1 and xi �→ xi for i ≥ 2, the
determinant Detf1 = �(ax1, x2, . . . , xn) = a�(x1, . . . , xn) = a, where� is a basis element of AltA(n, V )

with �(x1, . . . , xn) = 1. If a ∈ A×, thenf1 ∈ AutA V , this also proves the surjectivity of the restriction
Det : AutA V → A×. Now, it remains to prove that : If Detf is a unit inA, thenf is an automorphism.

77 la03-e014 ; October 28, 2003 ; 12:08 p.m. D. P. Patil / Exercise Set 14



MA-219 Linear Algebra / August-December 2003 14. Determinants – Permutations, Multi-linear and alternating maps 14.7

The proof of this asserrtion is not that easy One has to use either the expansion of the determinants or one
can also give a direct proof using T14.18.We also note here the simple proof in the special case when A

is a field, i.e. in the case when V is a vector space: We use the ir benutzen eine Basisx1, . . . , xn von V

and the alternatingn–linear form� on V n with �(x1, . . . , xn) = 1. Then Detf = �(f (x1), . . . , f (xn)).
By hypothesis Detf �= 0. Then the vectorsf (x1), . . . , f (xn) are linearly independent and sof is an
isomorphism. )

T14.20. Let A, V andxi, i ∈ I be as in T14.17-a). For everyA–moduleW , the map
 �→ 
((xi)i∈I )

defines an isomorphism Alt(I, V ; W) → W .

T14.21. Let x1, . . . , xn be a basis of the free moduleV over a commutative ringA. For a subsetH ⊆
{1, . . . , n}, H = {i1, . . . , ir}, i1 < · · · < ir , let xH denote ther–tuple(xi1, . . . xir ) ∈ V r . Then for every
r ∈ N, the map


 �→ (
(xH ))|H |=r

defines anA–isomorphism Alt(r, V ) → APr (n) , wherePr (n) is the set of subsets of{1, . . . , n} of cardinality
r. In particular, Alt(r, V ) is a free module of rank

(
n

r

)
. (Hint : The standardbasis–elementeH , H as above,

of APr (n) define anr-alternating function�H := Alt (r, πH )(�′
H ), whereπH : V → VH := ∑

i∈H Axi is
the projection withxi �→ xi , if i ∈ H , andxi �→ 0, if i �∈ H and�′

H : V r
H → A is the determinant function

with �′
H (xi1, . . . , xir ) = 1, see T14.17-a). )

T14.22. Let m, n ∈ N andm ≤ n. For arbitrary matricesA = (aij ) ∈ Mm,n(A) andB = (bji) ∈ Mn,m(A)

over a commutative ringA :

Det(AB) =
∑

1≤j1<···<jm≤n

∣∣∣∣∣∣∣
a1j1 · · · a1jm

...
. . .

...

amj1 · · · amjm

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣
bj11 · · · bj1m

...
. . .

...

bjm1 · · · bjmm

∣∣∣∣∣∣∣
.

(Hint : Let f : An → Am andg : Am → An be theA–linear maps with the matricesA resp.B with respect to
the standard bases. Then compute the composition Alt(m, fg) = Alt (m, g) ◦ Alt (m, f ) by using the basis
�H , H ∈ Pm(n) of Alt (m, An) see the exercise T14.21, wherex1, . . . , xn is the standard basis ofAn.)

T14.23. Let A be a non-zero commutative ring and letV , W be finite freeA–modules with bases
x1, . . . , xn resp. y1, . . . , ym. Further, letf : V → W be anA–homomorphism with the matrix
A = (aij ) ∈ Mm,n(A) with respect to the given bases. Then

a). Cokerf is annihilated by all minors ofA of orderm. – In particular, ifW = V , then Detf ) ·
Kerf = 0 and Detf ) · Cokerf = 0 .

b). The following statements are equivalent :

(1) f is surjective. (2) The minors ofA of orderm generate the unit-ideal inA. (Hint : For
(1) ⇒ (2) consider a homomorphismg : W → V with fg = idW and the matrixB. FromAB = Em and
the exercise T14.22 the assertion (2) follows. For(2) ⇒ (1) use the part a). )

T14.24. Let A be a non-zero commutative ring and letV be a finite freeA–module with a basis
consisting ofn elements,n ≥ 2 . Then the determinant map Det : EndA V → A is not additive.

T14.25. LetA be a commutative ring and letV be anA–module. Suppose thatA = (aij ) ∈ Mn(A)

and the elementsx1, . . . , xn of V satisfy the equations

a11x1 + · · · + a1nxn = 0
. . . . . . . . . . . . . . . . . . . . . . . .

an1x1 + · · · + annxn = 0
.

Then (DetA)xj = 0 for every j = 1, . . . , n . (Hint : Use the Cramer’s rule.)

T14.26. ( D e d e k i n d ’s l e m m a )Let V be a finitely gebnerated module over a commutative
ring A and let a ⊆ A be an ideal in A. Suppose that V = aV . Then there exists an element a ∈ a
such that (1 − a)V = 0 . (Proof : Let x1, . . . , xn be a generating system forV . Sincexi ∈ aV , there
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exist elementsaij ∈ a such thatxi = ∑n

j=1 aij xj , i.e.
∑n

j=1 (δij − aij )xj = 0 . From T14.22 it follows that
Det(E − A)xj = 0, j = 1, . . . , n, i.e. Det(E − A) · V = 0 , weherA := (aij ) . The matrixE − A is the
unit matrix moduloa , we have Det(E − A) ≡ DetE = 1 moduloa . and so Det(E − A) = 1− a with an
elementa ∈ a . )

T14.27. If f is a surjective endomorphism of a finitely generated module V over a commutative
ring A, then f is an automorphismus. (Proof : We considerV as a module over the commutative
subalgebraA[f ] of EndA V generated byf , wheref x := f (x) for x ∈ V . Then the surjectivity off mean
V = f V . The Dedekind’s Lemma assures the existence of an endomorphismgf ∈ A[f ] · f, g ∈ A[f ]
such that(1 − gf )V = 0. This mean :(1 − gf )x = 0 orx = gf x = g(f (x)) for all x ∈ V , i.e.gf = idV .
Sinceg ∈ A[f ], we havefg = gf and sof is invertible andg = f −1. — This proof show more :Under
the above hypothesis the inverse f −1 belong to A[f ] and hence is a polynomial f over A.)
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