MA-219 Linear Algebra

14. Determinants – Permutations, Multi-linear and alternating maps
October 28, 2003 ; Submit solutions before 11:00 AM ; November 03, 2003.

14.1. Let *T* be a set of transpositions in the group \mathfrak{S}_n , $n \ge 1$. We associate the graph ¹) Γ_T to *T* as follows: the vertices of Γ_T are the numbers $1, \ldots, n$ and two vertices *i* and *j* with $i \ne j$ are joined by a edge if and only if the transposition $\langle i, j \rangle = \langle j, i \rangle$ belong to *T*. Let $\Gamma_1, \ldots, \Gamma_r$ be the connected components of Γ_T .

a). The transpositions in *T* generate the group \mathfrak{S}_n if and only if Γ_T is connected, i.e. if any two vertices of Γ_T can be joined by the sequence of edges in Γ_T . The subgroup of \mathfrak{S}_n generated by *T* is the product $\mathfrak{S}(\Gamma_1) \times \cdots \times \mathfrak{S}(\Gamma_r) \subseteq \mathfrak{S}_n$.

b). If *T* is a generating system for the group \mathfrak{S}_n , then *T* has at least n - 1 elements. (Hint: Let τ_1, \ldots, τ_m be the elements of *T* (may be with repeatations) with $\tau_1 \cdots \tau_m = \text{id}$. Then *m* is even and $m \ge 2\sum_{\rho=1}^r (|\Gamma_{\rho}| - 1)$.)

c). Every generating system of \mathfrak{S}_n consisting of transpositions contain a (minimal) generating system of \mathfrak{S}_n with n - 1 elements. (The graphs corresponding to such a minimal generating systems are called trees. Every connected graph has a generating system which is a tree. –There are exactly n^{n-2} generating systems consisting n - 1 transpositions. (Hint: Prove this by descending induction k; induction starts at k = n - 1: the number of trees in which the number 1 belongs to exactly k edges, is $(n - 1)^{n-k-1} \binom{n-2}{k-1}$ and add.)

d). The transpositions $\langle 1, 2 \rangle$, $\langle 2, 3 \rangle$, ..., $\langle n - 1, n \rangle$ (resp. $\langle 1, 2 \rangle$, $\langle 1, 3 \rangle$, ..., $\langle 1, n \rangle$) form a minimal generating system of \mathfrak{S}_n . (Hint: If a, b, c are three distinct elements, then $\langle a b \rangle \langle a c \rangle \langle a b \rangle = \langle b c \rangle$.)

14.2. a). Let v_j , $j \in J$ be a basis of the *K*-vector space *V* and let $w_{(j_i)}$, $(j_i) \in J^I$ be a family of elements of the *K*-vector space *W*, where *I* is a finite indexed set. Then there exists a unique *K*-multilinear map $f: V^I \to W$ such that $f((v_{j_i})_{i \in I}) = w_{(j_i)}$, $(j_i) \in J^I$. If *V* and *W* are finite dimensional, then the *K*-vector space of the multilinear maps from V^I into *W* has the dimension $(\text{Dim}_K V)^{|I|} \cdot \text{Dim}_K W$.

b). A multilinear map $f: V^n \to W$ of *K*-vector spaces is alternating if $f(x_1, \ldots, x_n) = 0$ for every *n*-tuple (x_1, \ldots, x_n) in which two *consecutive* components are equal.

14.3. Let *V* and *W* be *K*-vector spaces.

a). Let *I* be a finite indexed set with *n* elements. Suppose that in *K* the element $n! = n! \cdot 1_K$ is non-zero, i.e. Char K = 0 or Char K > n. Then the maps $f \mapsto \frac{1}{n!} A f$ and $f \mapsto \frac{1}{n!} S f$

A simplex s in \mathcal{K} is called a q-simplex if card(s) = q + 1 and say that s has dimension q. For a simplicial complex \mathcal{K} , we write dim(\mathcal{K}) := sup{q | there exists a q - simplex in \mathcal{K} } and is called the dimension of \mathcal{K} . A simplicial complex of dimension ≤ 1 is called a graph.

An edge in \mathcal{K} is an ordered pair (v_0, v_1) of vertices such that $\{v_0, v_1\}$ is a simplex in \mathcal{K} . If $\mathbf{e} = (v_0, v_1)$ is an edge in \mathcal{K} the vertex v_0 (respectively v_1) is called the origin (respectively end) of \mathbf{e} and usually denoted by orig(\mathbf{e}) (respectively end(\mathbf{e})).

A path α in \mathcal{K} of length *n* is a sequence $\mathbf{e}_1 \mathbf{e}_2 \cdots \mathbf{e}_n$ of edges in *K* with $\operatorname{end}(\mathbf{e}_i) = \operatorname{orig}(\mathbf{e}_{i+1})$ for every $1 \le i \le n-1$. For a path $\alpha = \mathbf{e}_1 \mathbf{e}_2 \cdots \mathbf{e}_n$ we put $\operatorname{orig}(\alpha) = \operatorname{orig}(\mathbf{e}_1)$ and $\operatorname{end}(\alpha) := \operatorname{end}(\mathbf{e}_n)$ and say that α is a path from $\operatorname{orig}(\alpha)$ to $\operatorname{end}(\alpha)$.

A simplicial complex \mathcal{K} is called connected if for every pair (v_0, v_1) of vertices in \mathcal{K} there exists a path α in \mathcal{K} such that $\operatorname{orig}(\alpha) = v_0$ and $\operatorname{end}(\alpha) = v_1$.

¹) Simplicial Complexes and Graphs. A simplicial complex \mathcal{K} is a set $V(\mathcal{K})$ called the vertex set (of \mathcal{K}) and a family of subsets of $V(\mathcal{K})$, called simplexes (in \mathcal{K}) such that

⁽i) for each $v \in \mathbf{V}(\mathcal{K})$, the singleton set $\{v\}$ is a simplex in *K*.

⁽ii) if \mathbf{s} is a simplex in \mathcal{K} then so is every subset of \mathbf{s} .

are projections of the *K*-vector space of the multilinear maps $V^I \rightarrow W$ onto the subspace of the alternating resp. the symmetric *I*-linear maps.

b). Suppose that Char $K \neq 2$. The space of the bilinear maps $V \times V \rightarrow W$ is the direct sum of the subspace of the alternating (i.e. skew-symmetric) and the subspace the symmetric bilinear maps. The corresponding projections are $\frac{1}{2}A$ resp. $\frac{1}{2}S$. (Remark: A bilinear map $f: V \times V \rightarrow W$ can be decomposed into its skew-symmetric part $\frac{1}{2}Af$ and its symmetric part $\frac{1}{2}Sf$.)

14.4. Let K be a field and let V, W be vector spaces over K.

a). Let $f: V^n \to K$ be an alternating multilinear form on V and let $g: V \to W$ be a K-linear map. Then $(x_0, \ldots, x_n) \mapsto \sum_{i=0}^n (-1)^i f(x_0, \ldots, x_{i-1}, x_{i+1}, \ldots, x_n) g(x_i)$ is an alternating K-multilinear map $V^{n+1} \to W$.

b). (Cramer's Formula) Suppose that V is a *n*-dimensional K-vector space. Then for every determinant function $\Delta: V^n \to K$ and for arbitrary $x_0, \ldots, x_n \in V$, prove that $\sum_{i=0}^{n} (-1)^i \Delta(x_0, \ldots, x_{i-1}, x_{i+1}, \ldots, x_n) x_i = 0$. (Hint: Use the part a) above.)

On the other side one can see (simple) test-exercises ; their solutions need not be submitted.

Test-Exercises

T14.1. a). Give an element of biggest posible order in the group \mathfrak{S}_5 .

b). For $n \ge 4$, the group \mathfrak{A}_n is not abelian.

T14.2. For the following permutations compute the number of variations and the sign.

a). The permutation $i \mapsto n - i + 1$ in \mathfrak{S}_n . b). $\begin{pmatrix} 1 & 2 & \dots & n & n+1 & \dots & 2n \\ 1 & 3 & \dots & 2n-1 & 2 & \dots & 2n \end{pmatrix} \in \mathfrak{S}_{2n}$. c). $\begin{pmatrix} 1 & 2 & \dots & n & n+1 & \dots & 2n \\ 2 & 4 & \dots & 2n & 1 & \dots & 2n-1 \end{pmatrix} \in \mathfrak{S}_{2n}$. d). $\begin{pmatrix} 1 & \dots & n-r+1 & n-r+2 & \dots & n \\ r & \dots & n & 1 & \dots & r-1 \end{pmatrix} \in \mathfrak{S}_n, \ 1 \le r \le n$. (Ans: $(-1)^{(r-1)(n+1)}$.) e). $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & \dots & 2n \\ 1 & 2n & 3 & 2(n-1) & 5 & 2(n-2) & \dots & 2 \end{pmatrix} \in \mathfrak{S}_{2n}$. f). For a subset $J \subseteq \{1, \dots, n\}$ with $J = \{j_1, \dots, j_m\}, \ j_1 < \dots < j_m$, let σ_J be the permutation $\begin{pmatrix} 1 & \dots & m & m+1 & \dots & n \\ 1 & \dots & m & m+1 & \dots & n \end{pmatrix} = \mathfrak{S}_n$

$$\sigma_J = \begin{pmatrix} 1 & \dots & m & m+1 & \dots & n \\ j_1 & \dots & j_m & i_1 & \dots & i_{n-m} \end{pmatrix} \in \mathfrak{S}_n,$$

where the numbers $i_1 < \cdots < i_{n-m}$ are the elements of the complement of J in $\{1, \ldots, n\}$. (Hint: The number of variations of σ_J is $F(\sigma_J) = \left(\sum_{k=1}^m j_k\right) - {m+1 \choose 2}$ and hence $\text{Sign}(\sigma_J) = (-1)^{F(\sigma_J)}$.)

g). Let σ resp. τ be permutations of the finite sets *I* resp. *J*. Compute the sign of the permutation $\sigma \times \tau : (i, j) \mapsto (\sigma i, \tau j)$ of $I \times J$ (in terms of Sign σ , Sign τ and m := |I|, n := |J|).

T14.3. Let $n \in \mathbb{N}^+$. Then

a). A subgroup of the permutation group \mathfrak{S}_n which contain an odd permutation contains equal number of even and odd permutations.

b). A permutation $\sigma \in \mathfrak{S}_n$ which is of odd order is an even permutation.

c). The square σ^2 of a permutation $\sigma \in \mathfrak{S}_n$ is an even permutation.

d). Let $\sigma = \langle i_0, \dots, i_{k-1} \rangle$ be a cycle of length $k \ge 2$. What is the inverse of σ ? For which $m \in \mathbb{Z}$, σ^m is a cycle of length k?

e). Let $\sigma \in \mathfrak{S}_n$ and $m \in \mathbb{Z}$. Every orbit of σ of length k decomposes into ggT (k, m) orbits of the length k/ ggT (k, m) of σ^m .

f). Let *I* be a finite set. The inverse σ^{-1} of a permutation $\sigma \in \mathfrak{S}(I)$ has the same orbits and same sign as those of σ .

g). Let $m = p_1^{\alpha_1} \cdots p_r^{\alpha_r}$ be the canonical prime factorisation of $m \in \mathbb{N}^*$. Then the permutation group \mathfrak{S}_n contain an element of order *m* if and only if $n \ge p_1^{\alpha_1} + \cdots + p_r^{\alpha_r}$. For which $n \in \mathbb{N}$ there exists an element of order 3000 (resp. 3001) in the group \mathfrak{S}_n ?

T14.4. a). If $\sigma \in \mathfrak{S}_n$, $n \in \mathbb{N}^+$ has *s* orbits, then σ can be represented as a product of n-s transpositions and cannot be represented as a product of less than n-s transpositions.

b). Let $\sigma \in \mathfrak{S}_n$, $n \in \mathbb{N}^+$ be a permutation of type (v_1, \ldots, v_n) . Then the number of permuations in \mathfrak{S}_n which commute with σ is $v_1! \cdots v_n! 1^{v_1} \cdots n^{v_n}$. (Hint: These permutations form the centraliser $C_{\mathfrak{S}_n}(\sigma)$ of σ .)

T14.5. a). The cycles (1, 2), (2, ..., n) generate the group \mathfrak{S}_n , $n \ge 2$. (Hint: Use 14.1-d))

b). The cycles (1, 2), (1, 2, ..., n) generate the group \mathfrak{S}_n , $n \ge 2$. (Hint: Use 14.1-d))

c). (1, n), (1, ..., n) generate the group $\mathfrak{S}_n, n \ge 2$. (Hint: Use 14.1-d))

T14.6. Let $n \in \mathbb{N}^+$.

a). For $n \ge 2$, Sign : $\mathfrak{S}_n \to \{-1, 1\}$ is the only non-trivial group homomorphism. (Hint: $\langle a b \rangle$ and $\langle c d \rangle$ be two transpositions \mathfrak{S}_n . If $\sigma \in \mathfrak{S}_n$ be an arbitrary permutation with $a \mapsto c, b \mapsto d$,

then $\sigma \langle a b \rangle \sigma^{-1} = \langle c d \rangle$ and so every homomorphism $\varphi : \mathfrak{S}_n \to \{1, -1\}$ have the same value on all transpositions. If this value is 1, then φ ; if it si -1, then $\varphi = \text{Sign.}$)

b). \mathfrak{A}_n is the commutator \mathfrak{S}_n .

c). Using the simplicity of the group \mathfrak{A}_n , $n \ge 5$, prove that the group \mathfrak{A}_n is the only non-trivial normal subgroup in the group \mathfrak{S}_n for $n \ge 5$.

d). The groups \mathfrak{A}_4 and \mathfrak{V}_4 are the only non-trivial normal subgroups in \mathfrak{S}_4 .

e). The group \mathfrak{V}_4 is the only non-trivial normal subgroup in \mathfrak{A}_4 .

T14.7. Let *I* be a finite set and let $\sigma \in \mathfrak{S}(I)$ be a permutation of *I* of prime power order p^m , *p* prime. Then the number of fixed points of σ and the number of n := |I| of elements of *I* are congruent modulo *p*. In particular,

(1) If *n* is not divisible by *p*, then σ has at least one fixed point.

(2) If *n* is divisible by *p*, then the number of fixed points of σ is also divisible by *p*. (**Remark**: This is a special case of the assertion ???)

T14.8. Let *G* be a finite group of order *n* and let $\lambda: G \to \mathfrak{S}(G)$ be the corresponding Cayley's homomorphism.

a). For every $g \in G$, the permutation λ_g has exactly n/ord g orbits of lengths ord g. In particular, $\text{Sign } \lambda_g = (-1)^{n-(n/\text{ord } g)} = (-1)^{[G:\text{H}(g)]+|G|}$, where H(g) is the cyclic subgroup of G generated by g.

b). If $G := \mathfrak{S}_n$ and $n \ge 4$, then $\lambda(G) = \lambda(\mathfrak{S}_n) \subseteq \mathfrak{A}(\mathfrak{S}_n)$. (Hint: Compute Sign (λ_{τ}) , where $\tau \in \mathfrak{S}_n$ is a transposition.)

c). $\lambda(G) \not\subseteq \mathfrak{A}(G)$ if and only if *n* is even and *G* has an element of order 2^{α} , where 2^{α} is the biggest power of 2 which divide *n*. (i.e. if and only if the 2–Sylow subgroup of *G* is cyclic and is non-trivial). Moreover, in this case *G* has a normal subgroup of index 2.

d). If |G| = 2m, *m* is odd, then *G* has a normal subgroup of index 2. (Hint: *G* has an element *g* of order 2. Compute the Sign(λ_g).)

e). The order of a finite simple non-abelian group is divisible by 4. (**Hint**: Use d) and the theorem of Feit-Thompson *Every finite non-abelian simple group has even order*. The proof of this theorem is not easy. See [**Feit**, **W**. and **Thompson**, **J**.: Solvability of groups of odd order, *Pacific Journal of Mathematics*, pp-775-1029, (1963).])

T14.9. Every finite subgroup is isomorphic to a subgroup of an alternating group \mathfrak{A}_m . (Hint: Use ??-b) or the following remark : For $n \in \mathbb{N}$, let f be the bijection $i \mapsto n + i$ of $\{1, \ldots, n\}$ onto $\{n + 1, \ldots, 2n\}$. The map $\sigma \mapsto \sigma'$, which maps every permutation $\sigma \in \mathfrak{S}_n$ to the permutation $\sigma' \in \mathfrak{S}_{2n}$ where $\sigma' = \sigma$ on $\{1, \ldots, n\}$ and $\sigma' = f\sigma f^{-1}$ on $\{n + 1, \ldots, 2n\}$, is a homomorphism from \mathfrak{S}_n into \mathfrak{A}_{2n} .)

T14.10. a). Compute the class number of the group \mathfrak{S}_n for $n \leq 6$. (Hint: Use 44.9.)

b). For $n \ge 3$, the center $Z(\mathfrak{S}_n) = \{id\}$. (Hint: For $\sigma \in \mathfrak{S}_n, n \ge 3, \sigma \neq id$, find a transposition $\langle ab \rangle$ with $\sigma \langle ab \rangle \sigma^{-1} = \langle \sigma(a)\sigma(b) \rangle \neq \langle ab \rangle$.)

T14.11. Let G be a subgroup of \mathfrak{S}_n , $n \ge 2$. Suppose that the natural operation of G on $\{1, \ldots, n\}$ is transitive.

a). If G contain a transposition and a cycle of order n - 1, then $G = \mathfrak{S}_n$. (Hint: Use T14.5-a).)

b). If G contain a transposition and a cycle of prime order p with $\frac{n}{2} , then <math>G = \mathfrak{S}_n$.

T14.12. Let *p* be a prime number.

a). If the subgroup G of \mathfrak{S}_p contain a transposition and if p divides the order of G, then $G = \mathfrak{S}_p$. (Hint: G contain an element of order p. This must be a cycle. Now use T14.5-c). — Remark: Show that the condition " $p \mid |G|$ " is equivalent with "the natural opeartion of G on $\{1, \ldots, p\}$ is transitive".)

b). Let G be the subgroup of \mathfrak{S}_{p+1} . Suppose that G has the following properties:

(1) The natural opeartion of G on $\{1, \ldots, p+1\}$ is transitive.

- (2) p divides the order of G.
- (3) G contains a transposition.

Then $G = \mathfrak{S}_{p+1}$. (Hint: Use T14.11-a).)

T14.13. The quaternion group Q can be embedded in the group \mathfrak{S}_n , $n \in \mathbb{N}$, if and only if $n \ge 8$. (Hint: Study the elements of the order 4.)

T14.14. Let *V* and *W* be *K*-vector spaces, *I* be a finite indexed set and $f: V^{I} \to W$ be a multilineare map. Let $g: U \to V$ and $h: W \to X$ be *K*-vector space homomorphisms. Then $h \circ f \circ g^{I}: U^{I} \to X$ is a multilineare map, where g^{I} is defined by $g^{I}((u_{i})) := (g(u_{i})), (u_{i}) \in U^{I}$. If *f* is symmetric resp. skew-symmetric resp. alternating, then so is $h \circ f \circ g^{I}$.

T14.15. (Functoriality) Let V', V, V'', W', W, W'' be K-vector spaces and I be a finite indexed set. Let $f': V' \to V$, $f: V \to V''$, $g': W' \to W$ and $g: W \to W''$ be K-linear maps. Then

a). The map $\operatorname{Mult}_{K}(I, f'; W) : \operatorname{Mult}_{K}(I, V, W) \to \operatorname{Mult}_{K}(I, V', W)$ defined by $\Phi \mapsto \Phi \circ f^{I}$ is *K*-linear. Moreover, $\operatorname{Mult}_{K}(I, \operatorname{id}_{V}; W) = \operatorname{id}_{\operatorname{Mult}_{K}(I, V; W)}$ and $\operatorname{Mult}_{K}(I, f'' \circ f'; W) = \operatorname{Mult}_{K}(I, f'; W) \circ \operatorname{Mult}_{K}(I, f''; W)$.

b). The map $\operatorname{Mult}_{K}(I, V; g') : \operatorname{Mult}_{K}(I, V, W') \to \operatorname{Mult}_{K}(I, V, W)$ defined by $\Phi \mapsto g' \circ \Phi$ is *K*-linear. Moreover, $\operatorname{Mult}_{K}(I, V; \operatorname{id}_{W}) = \operatorname{id}_{\operatorname{Mult}_{K}(I, V; W)}$ and $\operatorname{Mult}_{K}(I, V; g \circ g') = \operatorname{Mult}_{K}(I, V; g) \circ \operatorname{Mult}_{K}(I, V; g')$.

c). The map $\operatorname{Alt}_K(I, f'; W) : \operatorname{Alt}_K(I, V, W) \to \operatorname{Alt}_K(I, V', W)$ defined by $\Phi \mapsto \Phi \circ f^I$ is *K*-linear. Moreover, $\operatorname{Alt}_K(I, \operatorname{id}_V; W) = \operatorname{id}_{\operatorname{Alt}_K(I, V; W)}$ and $\operatorname{Alt}_K(I, f'' \circ f'; W) = \operatorname{Alt}_K(I, f'; W) \circ \operatorname{Alt}_K(I, f''; W)$.

d). The map $\operatorname{Alt}_K(I, V; g') : \operatorname{Alt}_K(I, V, W') \to \operatorname{Alt}_K(I, V, W)$ defined by $\Phi \mapsto g' \circ \Phi$ is *K*-linear. Moreover, $\operatorname{Alt}_K(I, V; \operatorname{id}_W) = \operatorname{id}_{\operatorname{Alt}_K(I, V; W)}$ and $\operatorname{Alt}_K(I, V; g \circ g') = \operatorname{Alt}_K(I, V; g) \circ \operatorname{Alt}_K(I, V; g')$.

(**Remark**: This mean that the part a) and c) (resp. b) and d)) for a fixed *K*-vector space *W* (resp. *V*) the assignment $V \mapsto \operatorname{Mult}_{K}(I, V; W)$ and $V \mapsto \operatorname{Alt}_{K}(I, V; W)$ (resp. $W \mapsto \operatorname{Mult}_{K}(I, V; W)$ and $W \mapsto \operatorname{Alt}_{K}(I, V; W)$) are *contravariant* and *covariant* functors from the *category* \mathcal{V}_{K} of *K*-vector spaces to itself, respectively.)—In particular, the assignment $V \mapsto \operatorname{Alt}_{K}(I, V)$ is a *contravariant functor* from the *category* \mathcal{V}_{K} of *K*-vector spaces to itself.)

T14.16. Let A be a commutative ring, V be an A-module, I, $J := I \cup \{k\}$ be finite index sets with $k \notin I$ and let $\Phi \in Alt_A(I, V; A)$. Then the map

$$\Phi': V^J \to V$$
 defined by $(v_i)_{i \in J} \mapsto \Phi((v_i)_{i \in I})v_k$

is multi-linear, i.e. $\Phi' \in \text{Mult}_A(J, V; V)$ and the map $\Phi'' := \Phi' - \sum_{i \in I} \langle ik \rangle \Phi'$ is alternating, i.e. $\Phi'' \in \text{Alt}_A(J, V; V)$. (Remark: The map Φ'' is obtained from Φ' by the process similar to that of anti-symmetrisation by using the transpositions $\langle ik \rangle \in \mathfrak{S}(J)$; the factor -1 appears in the sum as a common Sign of the transpositions $\langle ik \rangle$. — Note the formula for Φ'' in the special case $I = \{1, \ldots, n\}, J = \{1, \ldots, n, n+1\}$.)

T14.17. (Determinants over a commutative ring) Let A be a commutative ring.

a). Let V be a finite free A-module with a basis x_i , $i \in I$. Then the map φ : Alt_A $(I, V) \cong A$ defined by $\Phi \mapsto \Phi((x_i)_{i \in I})$ is an A-isomorphism.

b). Let V and W be arbitrary modules over A and let $f : V \to W$ be an A-linear map. Then for every finite indexed set I, f induces a natural A-linear map

$$\operatorname{Alt}_A(I, f) = \operatorname{Alt}(I, f) : \operatorname{Alt}_A(I, W) \to \operatorname{Alt}_A(I, V)$$

defined by $\Phi \mapsto \Phi \circ f^I$, where the map $f^I : V^I \to W^I$, is defined by $(v_i) \mapsto (f(v_i))$. Moreover, if $g : W \to X$ is another A-linear map of A-modules, then

$$\operatorname{Alt}(I, gf) = \operatorname{Alt}(I, f) \circ \operatorname{Alt}(I, g),$$

c). Let V be a free A-module of finite rank n and I be an indexed set with n elements. Then Alt(I, f) is an endomorphism of Alt(I, V) \cong A and hence Alt(I, f) is the multiplication by a uniquely determined element $a \in A$, and so is a homothecy ϑ_a . The element $a \in A$ with Alt(I, f) = ϑ_a is independent of the choice of the indexed set I. (Proof: Let J be another set with n elements and Alt(J, f) = ϑ_b . there exists a bijection $\varkappa : I \to J$. Then $(v_j)_{j \in J} \mapsto (v_{\varkappa i})_{i \in I}$ is

an A-isomorphism $\eta : V^J \to V^I$ and hence $\Phi \mapsto \Phi \eta$ is a bijection from Alt(I, V) onto Alt(J, V). For an arbitrary $\Phi \in Alt(I, V)$ we have :

$$a \cdot (\Phi \eta) = (a\Phi)\eta = (\operatorname{Alt}(I, f) \Phi)\eta = (\Phi f^{I})\eta = \Phi(f^{I}\eta) = \Phi(\eta f^{J})$$
$$= (\Phi \eta) f^{J} = \operatorname{Alt}(J, f) (\Phi \eta) = b \cdot (\Phi \eta).$$

and hence a = b.)

d). Let V be a finite free A-module with a basis consisting of n elements and let $f \in \operatorname{End}_A V$. Then the uniquely determined element $a \in A$ with $\operatorname{Alt}(n, f) = \vartheta_a$ is called the determinant of f (over A) and is denoted by Det f. The determinant map $f \mapsto \operatorname{Det} f$ ide denoted by Det : $\operatorname{End}_A V \to A$. (Remark: In the definition of determinant instead of the standard indexed set $\{1, \ldots, n\}$, we may choose any other indexed set I with n elements (see part c). For a finite free A-module V of rank n the elements of $\operatorname{Alt}(n, V)$ are also called determinant functions (on V or on V^n .)

e). Let V be a finite free A-module with basis x_i , $i \in I$ and let $f \in \text{End}_A V$.

(1) For every *I*-linear form $\Phi \in Alt_A(I, V)$ and for every *I*-tuple $(v_i) \in V^I$:

$$\Phi((f(v_i))_{i \in I}) = (\operatorname{Alt}(I, f)\Phi)((v_i)_{i \in I}) = \operatorname{Det} f \cdot \Phi((v_i)_{i \in I}).$$

(2) For an alternating *I*-linear form Δ on V^I with $\Delta((x_i)_{i \in I}) = 1$: Det $f = \Delta((f(x_i))_{i \in I})$. (**Proof**: By part a) Δ is a basis of $Alt_A(I, V)$ and by definition $Alt(I, f)(\Delta) = (\text{Det } f) \cdot \Delta$. Taking the image of $(x_i)_{i \in I} \in V^I$ on both sides, we get $\Delta((f(x_i))_{i \in I}) = \text{Det } f \cdot \Delta((x_i)_{i \in I}) = \text{Det } f$.)

f). Let V be a finite free A-module with a basis consisting n elements. Then the determinant map

$$Det: End_A V \to A$$

have the following properties:

(1) $\text{Det}(\text{id}_V) = 1.$

(2) $\operatorname{Det}(fg) = (\operatorname{Det} f)(\operatorname{Det} g)$ for all $f, g \in \operatorname{End}_A V$.

(3) $\text{Det}(af) = a^n \text{Det} f$ for all $a \in A$ and all $f \in \text{End}_A V$.

T14.18. Let A be a commutative ring and let V be a finite free A-module and $f \in \operatorname{End}_A V$. Show that : There exists a $g \in \operatorname{End}_A V$ such that $(\operatorname{Det} f) \cdot \operatorname{id}_V = fg = gf$. (Hint: Let x_1, \ldots, x_n be a basis of V, $\Delta \in \operatorname{Aut}_A(n, V)$ be such that $\Delta(x_1, \ldots, x_n) = 1$ and $\Phi = \operatorname{Alt}(n, f)(\Delta) = \operatorname{Det} f \cdot \Delta$. Let $g_i, i = 1, \ldots, n$ be the linear form on V defined by $v \mapsto \Delta(f(x_1), \ldots, f(x_{i-1}), v, f(x_{i+1}), \ldots, f(x_n))$ and let $g : V \to V$ be the map defined by $v \mapsto \sum_{i=1}^n g_i(v)x_i$. The equation $gf = (\operatorname{Det} f) \cdot \operatorname{id}_V$ can be verified directly from definitions. For the proof of $fg = (\operatorname{Det} f) \cdot \operatorname{id}_V$ apply the exercise T14.16 to Φ and construct (n + 1)-linear map $\Phi' : (v_1, \ldots, v_n, v_{n+1}) \mapsto \Phi(v_1, \ldots, v_n)v_{n+1} = \Delta(f(v_1), \ldots, f(v_n))v_{n+1}$ and hence the alternating (n + 1)-linear map $\Phi'' : V^{n+1} \to V$ is the zero map. Deduce that : $(\operatorname{Det} f)V \subseteq \operatorname{im} f$. Further, this shows that Det f is a unit in A if and only if f is bijective. If Det f is a non-zero divisor in A, then f injective.

T14.19. Let A be a commutative ring and let V be a non-zero finite free A-module. The determinant map Det : End_A $V \rightarrow A$ is a surjective monoid homomorphism of the multiplicative monoid of End_A V onto the multiplicative monoid of A. Further, it maps the unit group (End_A V)[×] = Aut_A V onto the unit group $A^{×}$ and Det⁻¹($A^{×}$) = Aut_A V. This mean that : an operator $f \in \text{End}_A V$ is an automorphism if and only if Det f is a unit in A. (**Proof**: It follows from T14.17(1) and (2) that Det is a homomorphism. Further, by the commutativity of A we have

$$\operatorname{Det}(fg) = (\operatorname{Det} f)(\operatorname{Det} g) = (\operatorname{Det} g)(\operatorname{Det} f) = \operatorname{Det}(gf).$$

By restricting we get a group homomorphism Det : Aut_A $V \to A^{\times}$. In particular, we have

 $Det(f^{-1}) = (Det f)^{-1}$

for $f \in Aut_A V$. The surjectivity of Det follows easily : Let $a \in A$ be given and let x_1, \ldots, x_n be a basis von V. Then $n \ge 1$. For the endomorphism f_1 with $x \mapsto ax_1$ and $x_i \mapsto x_i$ for $i \ge 2$, the determinant Det $f_1 = \Delta(ax_1, x_2, \ldots, x_n) = a\Delta(x_1, \ldots, x_n) = a$, where Δ is a basis element of $Alt_A(n, V)$ with $\Delta(x_1, \ldots, x_n) = 1$. If $a \in A^{\times}$, then $f_1 \in Aut_A V$, this also proves the surjectivity of the restriction Det : $Aut_A V \to A^{\times}$. Now, it remains to prove that : If Det f is a unit in A, then f is an automorphism. The proof of this assertion is not that easy One has to use either the expansion of the determinants or one can also give a direct proof using T14.18. We also note here the simple proof in the special case when A is a field, i.e. in the case when V is a vector space: We use the ir benutzen eine Basis x_1, \ldots, x_n von V and the alternating *n*-linear form Δ on V^n with $\Delta(x_1, \ldots, x_n) = 1$. Then Det $f = \Delta(f(x_1), \ldots, f(x_n))$. By hypothesis Det $f \neq 0$. Then the vectors $f(x_1), \ldots, f(x_n)$ are linearly independent and so f is an isomorphism.

T14.20. Let A, V and x_i , $i \in I$ be as in T14.17-a). For every A-module W, the map $\Phi \mapsto \Phi((x_i)_{i \in I})$ defines an isomorphism Alt $(I, V; W) \rightarrow W$.

T14.21. Let x_1, \ldots, x_n be a basis of the free module V over a commutative ring A. For a subset $H \subseteq \{1, \ldots, n\}, H = \{i_1, \ldots, i_r\}, i_1 < \cdots < i_r$, let x_H denote the r-tuple $(x_{i_1}, \ldots, x_{i_r}) \in V^r$. Then for every $r \in \mathbb{N}$, the map

$$\Phi \mapsto (\Phi(x_H))_{|H|=r}$$

defines an *A*-isomorphism Alt $(r, V) \to A^{\mathfrak{P}_r(n)}$, where $\mathfrak{P}_r(n)$ is the set of subsets of $\{1, \ldots, n\}$ of cardinality r. In particular, Alt(r, V) is a free module of rank $\binom{n}{r}$. (Hint: The standardbasis-element e_H , H as above, of $A^{\mathfrak{P}_r(n)}$ define an r-alternating function $\Delta_H := \operatorname{Alt}(r, \pi_H)(\Delta'_H)$, where $\pi_H : V \to V_H := \sum_{i \in H} Ax_i$ is the projection with $x_i \mapsto x_i$, if $i \in H$, and $x_i \mapsto 0$, if $i \notin H$ and $\Delta'_H : V'_H \to A$ is the determinant function with $\Delta'_H(x_{i_1}, \ldots, x_{i_r}) = 1$, see T14.17-a).

T14.22. Let $m, n \in \mathbb{N}$ and $m \leq n$. For arbitrary matrices $\mathfrak{A} = (a_{ij}) \in M_{m,n}(A)$ and $\mathfrak{B} = (b_{ji}) \in M_{n,m}(A)$ over a commutative ring A:

$$\operatorname{Det}(\mathfrak{AB}) = \sum_{1 \le j_1 < \dots < j_m \le n} \begin{vmatrix} a_{1j_1} & \dots & a_{1j_m} \\ \vdots & \ddots & \vdots \\ a_{mj_1} & \dots & a_{mj_m} \end{vmatrix} \begin{vmatrix} b_{j_11} & \dots & b_{j_1m} \\ \vdots & \ddots & \vdots \\ b_{j_m1} & \dots & b_{j_mm} \end{vmatrix}.$$

(**Hint**: Let $f : A^n \to A^m$ and $g : A^m \to A^n$ be the *A*-linear maps with the matrices \mathfrak{A} resp. \mathfrak{B} with respect to the standard bases. Then compute the composition $\operatorname{Alt}(m, fg) = \operatorname{Alt}(m, g) \circ \operatorname{Alt}(m, f)$ by using the basis Δ_H , $H \in \mathfrak{P}_m(n)$ of $\operatorname{Alt}(m, A^n)$ see the exercise T14.21, where x_1, \ldots, x_n is the standard basis of A^n .)

T14.23. Let *A* be a non-zero commutative ring and let *V*, *W* be finite free *A*-modules with bases x_1, \ldots, x_n resp. y_1, \ldots, y_m . Further, let $f : V \to W$ be an *A*-homomorphism with the matrix $\mathfrak{A} = (a_{ij}) \in M_{m,n}(A)$ with respect to the given bases. Then

a). Coker f is annihilated by all minors of \mathfrak{A} of order m. – In particular, if W = V, then Det $f) \cdot$ Ker f = 0 and Det $f) \cdot$ Coker f = 0.

b). The following statements are equivalent:

(1) f is surjective. (2) The minors of \mathfrak{A} of order m generate the unit-ideal in A. (Hint: For $(1) \Rightarrow (2)$ consider a homomorphism $g: W \to V$ with $fg = \mathrm{id}_W$ and the matrix \mathfrak{B} . From $\mathfrak{AB} = \mathfrak{E}_m$ and the exercise T14.22 the assertion (2) follows. For $(2) \Rightarrow (1)$ use the part a).)

T14.24. Let *A* be a non-zero commutative ring and let *V* be a finite free *A*-module with a basis consisting of *n* elements, $n \ge 2$. Then the determinant map Det : End_A $V \rightarrow A$ is not additive.

T14.25. Let *A* be a commutative ring and let *V* be an *A*-module. Suppose that $\mathfrak{A} = (a_{ij}) \in M_n(A)$ and the elements x_1, \ldots, x_n of *V* satisfy the equations

$$a_{11}x_1 + \dots + a_{1n}x_n = 0$$

$$a_{n1}x_1 + \dots + a_{nn}x_n = 0$$

Then $(\text{Det }\mathfrak{A})x_j = 0$ for every j = 1, ..., n. (Hint: Use the Cramer's rule.)

T14.26. (Dedekind's lemma) Let V be a finitely gebnerated module over a commutative ring A and let $a \subseteq A$ be an ideal in A. Suppose that V = aV. Then there exists an element $a \in a$ such that (1 - a)V = 0. (Proof: Let x_1, \ldots, x_n be a generating system for V. Since $x_i \in aV$, there

exist elements $a_{ij} \in \mathfrak{a}$ such that $x_i = \sum_{j=1}^n a_{ij}x_j$, i.e. $\sum_{j=1}^n (\delta_{ij} - a_{ij})x_j = 0$. From T14.22 it follows that $\operatorname{Det}(\mathfrak{E} - \mathfrak{A})x_j = 0$, $j = 1, \ldots, n$, i.e. $\operatorname{Det}(\mathfrak{E} - \mathfrak{A}) \cdot V = 0$, wher $\mathfrak{A} := (a_{ij})$. The matrix $\mathfrak{E} - \mathfrak{A}$ is the unit matrix modulo \mathfrak{a} , we have $\operatorname{Det}(\mathfrak{E} - \mathfrak{A}) \equiv \operatorname{Det} \mathfrak{E} = 1$ modulo \mathfrak{a} . and so $\operatorname{Det}(\mathfrak{E} - \mathfrak{A}) = 1 - a$ with an element $a \in \mathfrak{a}$.

T14.27. If f is a surjective endomorphism of a finitely generated module V over a commutative ring A, then f is an automorphismus. (Proof: We consider V as a module over the commutative subalgebra A[f] of $End_A V$ generated by f, where fx := f(x) for $x \in V$. Then the surjectivity of f mean V = fV. The Dedekind's Lemma assures the existence of an endomorphism $gf \in A[f] \cdot f$, $g \in A[f]$ such that (1 - gf)V = 0. This mean : (1 - gf)x = 0 or x = gfx = g(f(x)) for all $x \in V$, i.e. $gf = id_V$. Since $g \in A[f]$, we have fg = gf and so f is invertible and $g = f^{-1}$. — This proof show more : Under the above hypothesis the inverse f^{-1} belong to A[f] and hence is a polynomial f over A.)