MA-219 Linear Algebra

14. Determinants - Permutations, Multi-linear and alternating maps

October 28, 2003 ; Submit solutions before 11:00 AM ; November 03, 2003.
14.1. Let T be a set of transpositions in the group $\mathfrak{S}_{n}, n \geq 1$. We associate the graph ${ }^{1}$) Γ_{T} to T as follows: the vertices of Γ_{T} are the numbers $1, \ldots, n$ and two vertices i and j with $i \neq j$ are joined by a edge if and only if the transposition $\langle i, j\rangle=\langle j, i\rangle$ belong to T. Let $\Gamma_{1}, \ldots, \Gamma_{r}$ be the connected components of Γ_{T}.
a). The transpositions in T generate the group \mathfrak{S}_{n} if and only if Γ_{T} is connected, i.e. if any two vertices of Γ_{T} can be joined by the sequence of edges in Γ_{T}. The subgroup of \mathfrak{S}_{n} generated by T is the product $\mathfrak{S}\left(\Gamma_{1}\right) \times \cdots \times \mathfrak{S}\left(\Gamma_{r}\right) \subseteq \mathfrak{S}_{n}$.
b). If T is a generating system for the group \mathfrak{S}_{n}, then T has at least $n-1$ elements. (Hint:

Let $\tau_{1}, \ldots, \tau_{m}$ be the elements of T (may be with repeatations) with $\tau_{1} \cdots \tau_{m}=\mathrm{id}$. Then m is even and $m \geq 2 \sum_{\rho=1}^{r}\left(\left|\Gamma_{\rho}\right|-1\right)$.)
c). Every generating system of \mathfrak{S}_{n} consisting of transpositions contain a (minimal) generating system of \mathfrak{S}_{n} with $n-1$ elements. (The graphs corresponding to such a minimal generating systems are called trees. Every connected graph has a generating system which is a tree. -There are exactly n^{n-2} generating systems consisting $n-1$ transpositions. (Hint: Prove this by descending induction k; induction starts at $k=n-1$: the number of trees in which the number 1 belongs to exactly k edges, is $(n-1)^{n-k-1}\binom{n-2}{k-1}$ and add.)
d). The transpositions $\langle 1,2\rangle,\langle 2,3\rangle, \ldots,\langle n-1, n\rangle$ (resp. $\langle 1,2\rangle,\langle 1,3\rangle, \ldots,\langle 1, n\rangle$) form a minimal generating system of \mathfrak{S}_{n}.
(Hint: If a, b, c are three distinct elements, then $\langle a b\rangle\langle a c\rangle\langle a b\rangle=\langle b c\rangle$.
14.2. a). Let $v_{j}, j \in J$ be a basis of the K-vector space V and let $w_{\left(j_{i}\right)},\left(j_{i}\right) \in J^{I}$ be a family of elements of the K-vector space W, where I is a finite indexed set. Then there exists a unique K-multilinear map $f: V^{I} \rightarrow W$ such that $f\left(\left(v_{j_{i}}\right)_{i \in I}\right)=w_{\left(j_{i}\right)},\left(j_{i}\right) \in J^{I}$. If V and W are finite dimensional, then the K-vector space of the multilinear maps from V^{I} into W has the dimension $\left(\operatorname{Dim}_{K} V\right)^{|I|} \cdot \operatorname{Dim}_{K} W$.
b). A multilinear map $f: V^{n} \rightarrow W$ of K-vector spaces is alternating if $f\left(x_{1}, \ldots, x_{n}\right)=0$ for every n-tuple $\left(x_{1}, \ldots, x_{n}\right)$ in which two consecutive components are equal.

14.3. Let V and W be K-vector spaces.

a). Let I be a finite indexed set with n elements. Suppose that in K the element $n!=n!\cdot 1_{K}$ is non-zero, i.e. Char $K=0$ or Char $K>n$. Then the maps $f \mapsto \frac{1}{n!} A f$ and $f \mapsto \frac{1}{n!} S f$

[^0]are projections of the K-vector space of the multilinear maps $V^{I} \rightarrow W$ onto the subspace of the alternating resp. the symmetric I-linear maps.
b). Suppose that Char $K \neq 2$. The space of the bilinear maps $V \times V \rightarrow W$ is the direct sum of the subspace of the alternating (i.e. skew-symmetric) and the subspace the symmetric bilinear maps. The corresponding projections are $\frac{1}{2} A$ resp. $\frac{1}{2} S$. (Remark: A bilinear map $f: V \times V \rightarrow W$ can be decomposed into its skew-symmetric part $\frac{1}{2} A f$ and its symmetric part $\frac{1}{2} S f$.)
14.4. Let K be a field and let V, W be vector spaces over K.
a). Let $f: V^{n} \rightarrow K$ be an alternating multilinear form on V and let $g: V \rightarrow W$ be a K-linear map. Then $\left(x_{0}, \ldots, x_{n}\right) \longmapsto \sum_{i=0}^{n}(-1)^{i} f\left(x_{0}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{n}\right) g\left(x_{i}\right)$ is an alternating K-multilinear map $V^{n+1} \rightarrow W$.
b). (Cramer's Formula) Suppose that V is a n-dimensional K-vector space. Then for every determinant function $\Delta: V^{n} \rightarrow K$ and for arbitrary $x_{0}, \ldots, x_{n} \in V$, prove that $\sum_{i=0}^{n}(-1)^{i} \Delta\left(x_{0}, \ldots, x_{i-1}, x_{i+1}, \ldots x_{n}\right) x_{i}=0 . \quad$ (Hint: Use the part a) above.)

On the other side one can see (simple) test-exercises ; their solutions need not be submitted.

Test-Exercises

T14.1. a). Give an element of biggest posible order in the group \mathfrak{S}_{5}.
b). For $n \geq 4$, the group \mathfrak{A}_{n} is not abelian.

T14.2. For the following permutations compute the number of variations and the sign.
a). The permutation $i \mapsto n-i+1$ in \mathfrak{S}_{n}.
b). $\quad\left(\begin{array}{ccccccc}1 & 2 & \ldots & n & n+1 & \ldots & 2 n \\ 1 & 3 & \ldots & 2 n-1 & 2 & \ldots & 2 n\end{array}\right) \in \mathfrak{S}_{2 n}$.
c). $\quad\left(\begin{array}{ccccccc}1 & 2 & \ldots & n & n+1 & \ldots & 2 n \\ 2 & 4 & \ldots & 2 n & 1 & \ldots & 2 n-1\end{array}\right) \in \mathfrak{S}_{2 n}$.
d). $\quad\left(\begin{array}{cccccc}1 & \ldots & n-r+1 & n-r+2 & \ldots & n \\ r & \ldots & n & 1 & \ldots & r-1\end{array}\right) \in \mathfrak{S}_{n}, 1 \leq r \leq n . \quad \quad$ (Ans : $(-1)^{(r-1)(n+1)}$.)
e). $\left(\begin{array}{cccccccc}1 & 2 & 3 & 4 & 5 & 6 & \ldots & 2 n \\ 1 & 2 n & 3 & 2(n-1) & 5 & 2(n-2) & \ldots & 2\end{array}\right) \in \mathfrak{S}_{2 n}$.
f). For a subset $J \subseteq\{1, \ldots, n\}$ with $J=\left\{j_{1}, \ldots, j_{m}\right\}, j_{1}<\cdots<j_{m}$, let σ_{J} be the permutation

$$
\sigma_{J}=\left(\begin{array}{cccccc}
1 & \ldots & m & m+1 & \ldots & n \\
j_{1} & \ldots & j_{m} & i_{1} & \ldots & i_{n-m}
\end{array}\right) \in \mathfrak{S}_{n}
$$

where the numbers $i_{1}<\cdots<i_{n-m}$ are the elements of the complement of J in $\{1, \ldots, n\}$. (Hint: The number of variations of σ_{J} is $F\left(\sigma_{J}\right)=\left(\sum_{k=1}^{m} j_{k}\right)-\binom{m+1}{2}$ and hence $\operatorname{Sign}\left(\sigma_{J}\right)=(-1)^{F\left(\sigma_{J}\right)}$.)
g). Let σ resp. τ be permutations of the finite sets I resp. J. Compute the sign of the permutation $\sigma \times \tau:(i, j) \mapsto(\sigma i, \tau j)$ of $I \times J$ (in terms of $\operatorname{Sign} \sigma, \operatorname{Sign} \tau$ and $m:=|I|, n:=|J|)$.

T14.3. Let $n \in \mathbb{N}^{+}$. Then
a). A subgroup of the permutation group \mathfrak{S}_{n} which contain an odd permutation contains equal number of even and odd permutations.
b). A permutation $\sigma \in \mathfrak{S}_{n}$ which is of odd order is an even permutation.
c). The square σ^{2} of a permutation $\sigma \in \mathfrak{S}_{n}$ is an even permutation.
d). Let $\sigma=\left\langle i_{0}, \ldots, i_{k-1}\right\rangle$ be a cycle of length $k \geq 2$. What is the inverse of σ ? For which $m \in \mathbb{Z}, \sigma^{m}$ is a cycle of length k ?
e). Let $\sigma \in \mathfrak{S}_{n}$ and $m \in \mathbb{Z}$. Every orbit of σ of length k decomposes into $\operatorname{ggT}(k, m)$ orbits of the length $k / \operatorname{ggT}(k, m)$ of σ^{m}.
f). Let I be a finite set. The inverse σ^{-1} of a permutation $\sigma \in \mathfrak{S}(I)$ has the same orbits and same sign as those of σ.
g). Let $m=p_{1}^{\alpha_{1}} \cdots p_{r}^{\alpha_{r}}$ be the canonical prime factorisation of $m \in \mathbb{N}^{*}$. Then the permutation group \mathfrak{S}_{n} contain an element of order m if and only if $n \geq p_{1}^{\alpha_{1}}+\cdots+p_{r}^{\alpha_{r}}$. For which $n \in \mathbb{N}$ there exists an element of order 3000 (resp. 3001) in the group \mathfrak{S}_{n} ?

T14.4. a). If $\sigma \in \mathfrak{S}_{n}, n \in \mathbb{N}^{+}$has s orbits, then σ can be represented as a product of $n-s$ transpositions and cannot be represented as a product of less than $n-s$ transpositions.
b). Let $\sigma \in \mathfrak{S}_{n}, n \in \mathbb{N}^{+}$be a permutation of type $\left(v_{1}, \ldots, v_{n}\right)$. Then the number of permuations in \mathfrak{S}_{n} which commute with σ is $v_{1}!\cdots v_{n}!1^{\nu_{1}} \cdots n^{\nu_{n}}$. (Hint: These permutations form the centraliser $\mathrm{C}_{\mathfrak{S}_{n}}(\sigma)$ of σ.)

T14.5. a). The cycles $\langle 1,2\rangle,\langle 2, \ldots, n\rangle$ generate the group $\mathfrak{S}_{n}, n \geq 2$. (Hint: Use 14.1-d))
b). The cycles $\langle 1,2\rangle,\langle 1,2, \ldots, n\rangle$ generate the group $\mathfrak{S}_{n}, n \geq 2$. (Hint: Use 14.1-d))
c). $\langle 1, n\rangle,\langle 1, \ldots, n\rangle$ generate the group $\mathfrak{S}_{n}, n \geq 2$. (Hint: Use 14.1-d))

T14.6. Let $n \in \mathbb{N}^{+}$.
a). For $n \geq 2$, Sign : $\mathfrak{S}_{n} \rightarrow\{-1,1\}$ is the only non-trivial group homomorphism.
(Hint:
$\langle a b\rangle$ and $\langle c d\rangle$ be two transpositions \mathfrak{S}_{n}. If $\sigma \in \mathfrak{S}_{n}$ be an arbitrary permutation with $a \mapsto c, b \mapsto d$,
then $\sigma\langle a b\rangle \sigma^{-1}=\langle c d\rangle$ and so every homomorphism $\varphi: \mathfrak{S}_{n} \rightarrow\{1,-1\}$ have the same value on all transpositions. If this value is 1 , then φ; if it $\operatorname{si}-1$, then $\varphi=$ Sign.)
b). \mathfrak{A}_{n} is the commutator \mathfrak{S}_{n}.
c). Using the simplicity of the group $\mathfrak{A}_{n}, n \geq 5$, prove that the group \mathfrak{A}_{n} is the only non-trivial normal subgroup in the group \mathfrak{S}_{n} for $n \geq 5$.
d). The groups \mathfrak{A}_{4} and \mathfrak{V}_{4} are the only non-trivial normal subgroups in \mathfrak{S}_{4}.
e). The group \mathfrak{V}_{4} is the only non-trivial normal subgroup in \mathfrak{A}_{4}.

T14.7. Let I be a finite set and let $\sigma \in \mathfrak{S}(I)$ be a permutation of I of prime power order p^{m}, p prime. Then the number of fixed points of σ and the number of $n:=|I|$ of elements of I are congruent modulo p. In particular,
(1) If n is not divisible by p, then σ has at least one fixed point.
(2) If n is divisible by p, then the number of fixed points of σ is also divisible by p. (Remark: This is a special case of the assertion ???)

T14.8. Let G be a finite group of order n and let $\lambda: G \rightarrow \mathfrak{S}(G)$ be the corresponding Cayley's homomorphism.
a). For every $g \in G$, the permutation λ_{g} has exactly $n /$ ord g orbits of lengths ord g. In particular, Sign $\lambda_{g}=(-1)^{n-(n / \text { ord } g)}=(-1)^{[G: H(g)]+|G|}$, where $\mathrm{H}(g)$ is the cyclic subgroup of G generated by g.
b). If $G:=\mathfrak{S}_{n}$ and $n \geq 4$, then $\lambda(G)=\lambda\left(\mathfrak{S}_{n}\right) \subseteq \mathfrak{A}\left(\mathfrak{S}_{n}\right)$. (Hint: Compute $\operatorname{Sign}\left(\lambda_{\tau}\right)$, where $\tau \in \mathfrak{S}_{n}$ is a transposition.)
c). $\lambda(G) \nsubseteq \mathfrak{A}(G)$ if and only if n is even and G has an element of order 2^{α}, where 2^{α} is the biggest power of 2 which divide n. (i.e. if and only if the 2 -Sylow subgroup of G is cyclic and is non-trivial). Moreover, in this case G has a normal subgroup of index 2 .
d). If $|G|=2 m, m$ is odd, then G has a normal subgroup of index 2 . (Hint: G has an element g of order 2. Compute the $\operatorname{Sign}\left(\lambda_{g}\right)$.)
e). The order of a finite simple non-abelian group is divisible by 4 . (Hint: Use d) and the theorem of Feit-Thompson Every finite non-abelian simple group has even order. The proof of this theorem is not easy. See [Feit, W. and Thompson, J. : Solvability of groups of odd order, Pacific Journal of Mathematics, pp-775-1029, (1963).])

T14.9. Every finite subgroup is isomorphic to a subgroup of an alternating group \mathfrak{A}_{m}. (Hint: Use ??-b) or the following remark : For $n \in \mathbb{N}$, let f be the bijection $i \mapsto n+i$ of $\{1, \ldots, n\}$ onto $\{n+1, \ldots, 2 n\}$. The map $\sigma \mapsto \sigma^{\prime}$, which maps every permutation $\sigma \in \mathfrak{S}_{n}$ to the permutation $\sigma^{\prime} \in \mathfrak{S}_{2 n}$ where $\sigma^{\prime}=\sigma$ on $\{1, \ldots, n\}$ and $\sigma^{\prime}=f \sigma f^{-1}$ on $\{n+1, \ldots, 2 n\}$, is a homomorphism from \mathfrak{S}_{n} into $\mathfrak{A}_{2 n}$.)

T14.10. a). Compute the class number of the group \mathfrak{S}_{n} for $n \leq 6$. (Hint: Use 44.9.)
b). For $n \geq 3$, the center $\mathrm{Z}\left(\mathfrak{S}_{n}\right)=\{\mathrm{id}\}$. (Hint: For $\sigma \in \mathfrak{S}_{n}, n \geq 3, \sigma \neq \mathrm{id}$, find a transposition $\langle a b\rangle$ with $\sigma\langle a b\rangle \sigma^{-1}=\langle\sigma(a) \sigma(b)\rangle \neq\langle a b\rangle$.)

T14.11. Let G be a subgroup of $\mathfrak{S}_{n}, n \geq 2$. Suppose that the natural operation of G on $\{1, \ldots, n\}$ is transitive.
a). If G contain a transposition and a cycle of order $n-1$, then $G=\mathfrak{S}_{n}$. (Hint: Use T14.5-a).)
b). If G contain a transposition and a cycle of prime order p with $\frac{n}{2}<p<n$, then $G=\mathfrak{S}_{n}$.

T14.12. Let p be a prime number.
a). If the subgroup G of \mathfrak{S}_{p} contain a transposition and if p divides the order of G, then $G=\mathfrak{S}_{p}$. (Hint: G contain an element of order p. This must be a cycle. Now use T14.5-c). - Remark: Show that the condition " $p||G|$ " is equivalent with "the natural opeartion of G on $\{1, \ldots, p\}$ is transitive".)
b). Let G be the subgroup of \mathfrak{S}_{p+1}. Suppose that G has the following properties:
(1) The natural opeartion of G on $\{1, \ldots, p+1\}$ is transitive.
(2) p divides the order of G.
(3) G contains a transposition.

Then $G=\mathfrak{S}_{p+1}$. (Hint: Use T14.11-a).)

T14.13. The quaternion group Q can be embedded in the group $\mathfrak{S}_{n}, n \in \mathbb{N}$, if and only if $n \geq 8$. (Hint: Study the elements of the order 4.)

T14.14. Let V and W be K-vector spaces, I be a finite indexed set and $f: V^{I} \rightarrow W$ be a multilineare map. Let $g: U \rightarrow V$ and $h: W \rightarrow X$ be K-vector space homomorphisms. Then $h \circ f \circ g^{I}: U^{I} \rightarrow X$ is a multilineare map, where g^{I} is defined by $g^{I}\left(\left(u_{i}\right)\right):=\left(g\left(u_{i}\right)\right),\left(u_{i}\right) \in U^{I}$. If f is symmetric resp. skew-symmetric resp. alternating, then so is $h \circ f \circ g^{I}$.

T14.15. (Functoriality) Let $V^{\prime}, V, V^{\prime \prime}, W^{\prime}, W, W^{\prime \prime}$ be K-vector spaces and I be a finite indexed set. Let $f^{\prime}: V^{\prime} \rightarrow V, f: V \rightarrow V^{\prime \prime}, g^{\prime}: W^{\prime} \rightarrow W$ and $g: W \rightarrow W^{\prime \prime}$ be K-linear maps. Then
a). The map $\operatorname{Mult}_{K}\left(I, f^{\prime} ; W\right): \operatorname{Mult}_{K}(I, V, W) \rightarrow \operatorname{Mult}_{K}\left(I, V^{\prime}, W\right) \quad$ defined by $\quad \Phi \mapsto \Phi \circ f^{I} \quad$ is K-linear. Moreover, $\operatorname{Mult}_{K}\left(I, \operatorname{id}_{V} ; W\right)=\operatorname{id}_{M_{M u l t}^{K}(I, V ; W)}$ and $\operatorname{Mult}_{K}\left(I, f^{\prime \prime} \circ f^{\prime} ; W\right)=\operatorname{Mult}_{K}\left(I, f^{\prime} ; W\right) \circ$ $\operatorname{Mult}_{K}\left(I, f^{\prime \prime} ; W\right)$.
b). The map $\operatorname{Mult}_{K}\left(I, V ; g^{\prime}\right): \operatorname{Mult}_{K}\left(I, V, W^{\prime}\right) \rightarrow \operatorname{Mult}_{K}(I, V, W) \quad$ defined by $\quad \Phi \mapsto g^{\prime} \circ \Phi$ is K-linear. Moreover, $\operatorname{Mult}_{K}\left(I, V ; \mathrm{id}_{W}\right)=\operatorname{id}_{M_{\text {ult }}^{K}(I, V ; W)}$ and $\operatorname{Mult}_{K}\left(I, V ; g \circ g^{\prime}\right)=\operatorname{Mult}_{K}(I, V ; g) \circ$ $\operatorname{Mult}_{K}\left(I, V ; g^{\prime}\right)$.
c). The map $\operatorname{Alt}_{K}\left(I, f^{\prime} ; W\right): \operatorname{Alt}_{K}(I, V, W) \rightarrow \operatorname{Alt}_{K}\left(I, V^{\prime}, W\right) \quad$ defined by $\quad \Phi \mapsto \Phi \circ f^{I}$ is K-linear. Moreover, $\operatorname{Alt}_{K}\left(I, \operatorname{id}_{V} ; W\right)=\operatorname{id}_{\operatorname{Alt}_{K}(I, V ; W)}$ and $\operatorname{Alt}_{K}\left(I, f^{\prime \prime} \circ f^{\prime} ; W\right)=\operatorname{Alt}_{K}\left(I, f^{\prime} ; W\right) \circ \operatorname{Alt}_{K}\left(I, f^{\prime \prime} ; W\right)$.
d). The map $\operatorname{Alt}_{K}\left(I, V ; g^{\prime}\right): \operatorname{Alt}_{K}\left(I, V, W^{\prime}\right) \rightarrow \operatorname{Alt}_{K}(I, V, W) \quad$ defined by $\quad \Phi \mapsto g^{\prime} \circ \Phi$ is K-linear. Moreover, $\operatorname{Alt}_{K}\left(I, V ; \operatorname{id}_{W}\right)=\operatorname{id}_{\operatorname{Alt}_{K}(I, V ; W)}$ and $\operatorname{Alt}_{K}\left(I, V ; g \circ g^{\prime}\right)=\operatorname{Alt}_{K}(I, V ; g) \circ \operatorname{Alt}_{K}\left(I, V ; g^{\prime}\right)$.
(Remark: This mean that the part a) and c) (resp. b) and d)) for a fixed K-vector space W (resp. $V)$ the assignment $V \mapsto \operatorname{Mult}_{K}(I, V ; W)$ and $V \mapsto \operatorname{Alt}_{K}(I, V ; W)$ (resp. $W \mapsto \operatorname{Mult}_{K}(I, V ; W)$ and $\left.W \mapsto \operatorname{Alt}_{K}(I, V ; W)\right)$ are contravariant and covariant functors from the category \mathcal{V}_{K} of K-vector spaces to itself, respectively.)—In particular, the assignment $V \mapsto \operatorname{Alt}_{K}(I, V)$ is a contravariant functor from the category \mathcal{V}_{K} of K-vector spaces to itself.)

T14.16. Let A be a commutative ring, V be an A-module, $I, J:=I \cup\{k\}$ be finite index sets with $k \notin I$ and let $\Phi \in \operatorname{Alt}_{A}(I, V ; A)$. Then the map

$$
\Phi^{\prime}: V^{J} \rightarrow V \quad \text { defined by } \quad\left(v_{i}\right)_{i \in J} \mapsto \Phi\left(\left(v_{i}\right)_{i \in I}\right) v_{k}
$$

is multi-linear, i.e. $\Phi^{\prime} \in \operatorname{Mult}_{A}(J, V ; V)$ and the map $\Phi^{\prime \prime}:=\Phi^{\prime}-\sum_{i \in I}\langle i k\rangle \Phi^{\prime}$ is alternating, i.e. $\Phi^{\prime \prime} \in \operatorname{Alt}_{A}(J, V ; V)$. (Remark: The map $\Phi^{\prime \prime}$ is obtained from Φ^{\prime} by the process similar to that of anti-symmetrisation by using the transpositions $\langle i k\rangle \in \mathfrak{S}(J)$; the factor -1 appears in the sum as a common Sign of the transpositions $\langle i k\rangle$. - Note the formula for $\Phi^{\prime \prime}$ in the specail case $I=\{1, \ldots, n\}, J=\{1, \ldots, n, n+1\}$.

T14.17. (Determinants over a commutative ring) Let A be a commutative ring.
a). Let V be a finite free A-module with a basis $x_{i}, i \in I$. Then the map $\varphi: \operatorname{Alt}_{A}(I, V) \cong A$ defined by . $\Phi \mapsto \Phi\left(\left(x_{i}\right)_{i \in I}\right)$ is an A-isomorphism.
b). Let V and W be arbitrary modules over A and let $f: V \rightarrow W$ be an A-linear map. Then for every finite indexed set I, f induces a natural A-linear map

$$
\operatorname{Alt}_{A}(I, f)=\operatorname{Alt}(I, f): \operatorname{Alt}_{A}(I, W) \rightarrow \operatorname{Alt}_{A}(I, V)
$$

defined by $\Phi \mapsto \Phi \circ f^{I}$, where the map $f^{I}: V^{I} \rightarrow W^{I}$, is defined by $\left(v_{i}\right) \mapsto\left(f\left(v_{i}\right)\right)$. Moreover, if $g: W \rightarrow X$ is another A-linear map of A-modules, then

$$
\operatorname{Alt}(I, g f)=\operatorname{Alt}(I, f) \circ \operatorname{Alt}(I, g)
$$

c). Let V be a free A-module of finite rank n and I be an indexed set with n elements. Then $\operatorname{Alt}(I, f)$ is an endomorphism of $\operatorname{Alt}(I, V) \cong A$ and hence $\operatorname{Alt}(I, f)$ is the multiplication by a uniquely determined element $a \in A$, and so is a homothecy ϑ_{a}. The element $a \in A$ with $\operatorname{Alt}(I, f)=\vartheta_{a}$ is independent of the choice of the indexed set $I . \quad$ (Proof: Let J be another set with n elements and $\operatorname{Alt}(J, f)=\vartheta_{b}$. there exists a bijection $\varkappa: I \rightarrow J$. Then $\left(v_{j}\right)_{j \in J} \mapsto\left(v_{\varkappa i}\right)_{i \in I}$ is
an A-isomorphism $\eta: V^{J} \rightarrow V^{I}$ and hence $\Phi \mapsto \Phi \eta$ is a bijection from $\operatorname{Alt}(I, V)$ onto $\operatorname{Alt}(J, V)$. For an arbitrary $\Phi \in \operatorname{Alt}(I, V)$ we have :

$$
\begin{aligned}
a \cdot(\Phi \eta) & =(a \Phi) \eta=(\operatorname{Alt}(I, f) \Phi) \eta=\left(\Phi f^{I}\right) \eta=\Phi\left(f^{I} \eta\right)=\Phi\left(\eta f^{J}\right) \\
& =(\Phi \eta) f^{J}=\operatorname{Alt}(J, f)(\Phi \eta)=b \cdot(\Phi \eta)
\end{aligned}
$$

and hence $a=b$.)
d). Let V be a finite free A-module with a basis consisting of n elements and let $f \in \operatorname{End}_{A} V$. Then the uniquely determined element $a \in A$ with $\operatorname{Alt}(n, f)=\vartheta_{a}$ is called the determinant of f (over A) and is denoted by Det f. The determinant map $f \mapsto$ Det f ide denoted by Det : $\operatorname{End}_{A} V \rightarrow A . \quad$ (Remark: In the definition of determinant instead of the standard indexed set $\{1, \ldots, n\}$, we may choose any other indexed set I with n elements (see part c). For a finite free $A-$ module V of rank n the elements of $\operatorname{Alt}(n, V)$ are also called determinant functions (on V or on V^{n}.)
e). Let V be a finite free A-module with basis $x_{i}, i \in I$ and let $f \in \operatorname{End}_{A} V$.
(1) For every I-linear form $\Phi \in \operatorname{Alt}_{A}(I, V)$ and for every I-tuple $\left(v_{i}\right) \in V^{I}$:

$$
\Phi\left(\left(f\left(v_{i}\right)\right)_{i \in I}\right)=(\operatorname{Alt}(I, f) \Phi)\left(\left(v_{i}\right)_{i \in I}\right)=\operatorname{Det} f \cdot \Phi\left(\left(v_{i}\right)_{i \in I}\right)
$$

(2) For an alternating I-linear form Δ on V^{I} with $\Delta\left(\left(x_{i}\right)_{i \in I}\right)=1: \quad$ Det $f=\Delta\left(\left(f\left(x_{i}\right)\right)_{i \in I}\right)$.
(Proof: By part a) Δ is a basis of $\operatorname{Alt}_{A}(I, V)$ and by definition $\operatorname{Alt}(I, f)(\Delta)=(\operatorname{Det} f) \cdot \Delta$. Taking the image of $\left(x_{i}\right)_{i \in I} \in V^{I}$ on both sides, we get $\left.\Delta\left(\left(f\left(x_{i}\right)\right)_{i \in I}\right)=\operatorname{Det} f \cdot \Delta\left(\left(x_{i}\right)_{i \in I}\right)=\operatorname{Det} f.\right)$
f). Let V be a finite free A-module with a basis consisting n elements. Then the determinant map

$$
\text { Det }: \operatorname{End}_{A} V \rightarrow A
$$

have the following properties:
(1) $\operatorname{Det}\left(\mathrm{id}_{V}\right)=1$.
(2) $\operatorname{Det}(f g)=(\operatorname{Det} f)(\operatorname{Det} g)$ for all $f, g \in \operatorname{End}_{A} V$.
(3) $\operatorname{Det}(a f)=a^{n} \operatorname{Det} f$ for all $a \in A$ and all $f \in \operatorname{End}_{A} V$.

T14.18. Let A be a commutative ring and let V be a finite free A-module and $f \in \mathrm{End}_{A} V$. Show that: There exists a $g \in \operatorname{End}_{A} V$ such that $($ Det $f) \cdot \mathrm{id}_{V}=f g=g f$. (Hint: Let x_{1}, \ldots, x_{n} be a basis of $V, \Delta \in \operatorname{Aut}_{A}(n, V)$ be such that $\Delta\left(x_{1}, \ldots, x_{n}\right)=1$ and $\Phi=\operatorname{Alt}(n, f)(\Delta)=\operatorname{Det} f \cdot \Delta$. Let $g_{i}, i=1, \ldots, n$ be the linear form on V defined by $v \mapsto \Delta\left(f\left(x_{1}\right), \ldots, f\left(x_{i-1}\right), v, f\left(x_{i+1}\right), \ldots, f\left(x_{n}\right)\right)$ and let $g: V \rightarrow V$ be the map defined by $v \mapsto \sum_{i=1}^{n} g_{i}(v) x_{i}$. The equation $g f=(\operatorname{Det} f) \cdot \mathrm{id}_{V}$ can be verified directly from definitions. For the proof of $f g=($ Det $f) \cdot \mathrm{id}_{V}$ apply the exercise T14.16 to Φ and construct $(n+1)$-linear map $\Phi^{\prime}:\left(v_{1}, \ldots, v_{n}, v_{n+1}\right) \mapsto \Phi\left(v_{1}, \ldots, v_{n}\right) v_{n+1}=\Delta\left(f\left(v_{1}\right), \ldots, f\left(v_{n}\right)\right) v_{n+1}$ and hence the alternating $(n+1)$-linear map $\Phi^{\prime \prime}: V^{n+1} \rightarrow V$ is the zero map. Deduce that : (Det f) $V \subseteq$ $\operatorname{im} f$. Further, this shows that Det f is a unit in A if and only if f is bijective. If Det f is a non-zero divisor in A, then f injective.

T14.19. Let A be a commutative ring and let V be a non-zero finite free A-module. The determinant map Det : $\operatorname{End}_{A} V \rightarrow A$ is a surjective monoid homomorphism of the multiplicative monoid of End ${ }_{A} V$ onto the multiplicative monoid of A. Further, it maps the unit group $\left(\operatorname{End}_{A} V\right)^{\times}=$Aut $_{A} V$ onto the unit group A^{\times}and $\operatorname{Det}^{-1}\left(A^{\times}\right)=\operatorname{Aut}_{A} V$. This mean that: an operator $f \in \operatorname{End}_{A} V$ is an automorphism if and only if Det f is a unit in A. (Proof: It follows from T14.17(1) and (2) that Det is a homomorphism. Further, by the commutativity of A we have

$$
\operatorname{Det}(f g)=(\operatorname{Det} f)(\operatorname{Det} g)=(\operatorname{Det} g)(\operatorname{Det} f)=\operatorname{Det}(g f)
$$

By restricting we get a group homomorphism Det: $\operatorname{Aut}_{A} V \rightarrow A^{\times}$. In particular, we have

$$
\operatorname{Det}\left(f^{-1}\right)=(\operatorname{Det} f)^{-1}
$$

for $f \in \operatorname{Aut}_{A} V$. The surjectivity of Det follows easily : Let $a \in A$ be given and let x_{1}, \ldots, x_{n} be a basis von V. Then $n \geq 1$. For the endomorphism f_{1} with $x \mapsto a x_{1}$ and $x_{i} \mapsto x_{i}$ for $i \geq 2$, the determinant Det $f_{1}=\Delta\left(a x_{1}, x_{2}, \ldots, x_{n}\right)=a \Delta\left(x_{1}, \ldots, x_{n}\right)=a$, where Δ is a basis element of $\operatorname{Alt}_{A}(n, V)$ with $\Delta\left(x_{1}, \ldots, x_{n}\right)=1$. If $a \in A^{\times}$, then $f_{1} \in \operatorname{Aut}_{A} V$, this also proves the surjectivity of the restriction Det : Aut ${ }_{A} V \rightarrow A^{\times}$. Now, it remains to prove that: If Det f is a unit in A, then f is an automorphism.

The proof of this asserrtion is not that easy One has to use either the expansion of the determinants or one can also give a direct proof using T14.18. We also note here the simple proof in the special case when A is a field, i.e. in the case when V is a vector space: We use the ir benutzen eine Basis x_{1}, \ldots, x_{n} von V and the alternating n-linear form Δ on V^{n} with $\Delta\left(x_{1}, \ldots, x_{n}\right)=1$. Then Det $f=\Delta\left(f\left(x_{1}\right), \ldots, f\left(x_{n}\right)\right)$. By hypothesis Det $f \neq 0$. Then the vectors $f\left(x_{1}\right), \ldots, f\left(x_{n}\right)$ are linearly independent and so f is an isomorphism.)

T14.20. Let A, V and $x_{i}, i \in I$ be as in T14.17-a). For every A-module W, the map $\Phi \mapsto \Phi\left(\left(x_{i}\right)_{i \in I}\right)$ defines an isomorphism $\operatorname{Alt}(I, V ; W) \rightarrow W$.

T14.21. Let x_{1}, \ldots, x_{n} be a basis of the free module V over a commutative ring A. For a subset $H \subseteq$ $\{1, \ldots, n\}, H=\left\{i_{1}, \ldots, i_{r}\right\}, i_{1}<\cdots<i_{r}$, let x_{H} denote the r-tuple $\left(x_{i_{1}}, \ldots x_{i_{r}}\right) \in V^{r}$. Then for every $r \in \mathbb{N}$, the map

$$
\Phi \mapsto\left(\Phi\left(x_{H}\right)\right)_{|H|=r}
$$

defines an A-isomorphism $\operatorname{Alt}(r, V) \rightarrow A^{\mathfrak{P}_{r}(n)}$, where $\mathfrak{P}_{r}(n)$ is the set of subsets of $\{1, \ldots, n\}$ of cardinality r. In particular, $\operatorname{Alt}(r, V)$ is a free module of rank $\binom{n}{r}$. (Hint: The standardbasis-element e_{H}, H as above, of $A^{\mathfrak{P}_{r}(n)}$ define an r-alternating function $\Delta_{H}:=\operatorname{Alt}\left(r, \pi_{H}\right)\left(\Delta_{H}^{\prime}\right)$, where $\pi_{H}: V \rightarrow V_{H}:=\sum_{i \in H} A x_{i}$ is the projection with $x_{i} \mapsto x_{i}$, if $i \in H$, and $x_{i} \mapsto 0$, if $i \notin H$ and $\Delta_{H}^{\prime}: V_{H}^{r} \rightarrow A$ is the determinant function with $\Delta_{H}^{\prime}\left(x_{i_{1}}, \ldots, x_{i_{r}}\right)=1$, see T14.17-a).)

T14.22. Let $m, n \in \mathbb{N}$ and $m \leq n$. For arbitrary matrices $\mathfrak{A}=\left(a_{i j}\right) \in \mathbf{M}_{m, n}(A)$ and $\mathfrak{B}=\left(b_{j i}\right) \in \mathbf{M}_{n, m}(A)$ over a commutative ring A :

$$
\operatorname{Det}(\mathfrak{A B})=\sum_{1 \leq j_{1}<\cdots<j_{m} \leq n}\left|\begin{array}{ccc}
a_{1 j_{1}} & \cdots & a_{1 j_{m}} \\
\vdots & \ddots & \vdots \\
a_{m j_{1}} & \cdots & a_{m j_{m}}
\end{array}\right|\left|\begin{array}{ccc}
b_{j_{1} 1} & \cdots & b_{j_{1} m} \\
\vdots & \ddots & \vdots \\
b_{j_{m} 1} & \cdots & b_{j_{m} m}
\end{array}\right|
$$

(Hint: Let $f: A^{n} \rightarrow A^{m}$ and $g: A^{m} \rightarrow A^{n}$ be the A-linear maps with the matrices \mathfrak{A} resp. \mathfrak{B} with respect to the standard bases. Then compute the composition $\operatorname{Alt}(m, f g)=\operatorname{Alt}(m, g) \circ \operatorname{Alt}(m, f)$ by using the basis $\Delta_{H}, H \in \mathfrak{P}_{m}(n)$ of $\operatorname{Alt}\left(m, A^{n}\right)$ see the exercise T14.21, where x_{1}, \ldots, x_{n} is the standard basis of A^{n}.)

T14.23. Let A be a non-zero commutative ring and let V, W be finite free A-modules with bases x_{1}, \ldots, x_{n} resp. $\quad y_{1}, \ldots, y_{m}$. Further, let $f: V \rightarrow W$ be an A-homomorphism with the matrix $\mathfrak{A}=\left(a_{i j}\right) \in \mathbf{M}_{m, n}(A)$ with respect to the given bases. Then
a). Coker f is annihilated by all minors of \mathfrak{A} of order m. - In particular, if $W=V$, then Det f). Ker $f=0$ and Det f) \cdot Coker $f=0$.
b). The following statements are equivalent:
(1) f is surjective. (2) The minors of \mathfrak{A} of order m generate the unit-ideal in A. (Hint: For
$(1) \Rightarrow(2)$ consider a homomorphism $g: W \rightarrow V$ with $f g=\mathrm{id}_{W}$ and the matrix \mathfrak{B}. From $\mathfrak{A B}=\mathfrak{E}_{m}$ and the exercise T14.22 the assertion (2) follows. For $(2) \Rightarrow$ (1) use the part a).)

T14.24. Let A be a non-zero commutative ring and let V be a finite free A-module with a basis consisting of n elements, $n \geq 2$. Then the determinant map Det : End ${ }_{A} V \rightarrow A$ is not additive.

T14.25. Let A be a commutative ring and let V be an A-module. Suppose that $\mathfrak{A}=\left(a_{i j}\right) \in \mathrm{M}_{n}(A)$ and the elements x_{1}, \ldots, x_{n} of V satisfy the equations

$$
\begin{aligned}
& a_{11} x_{1}+\cdots+a_{1 n} x_{n}=0 \\
& \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \\
& a_{n 1} x_{1}+\cdots+a_{n n} x_{n}=0
\end{aligned}
$$

Then (Det $\mathfrak{A}) x_{j}=0$ for every $j=1, \ldots, n$. (Hint: Use the Cramer's rule.)

T14.26. (Dedekind's lemma) Let V be a finitely gebnerated module over a commutative ring A and let $\mathfrak{a} \subseteq A$ be an ideal in A. Suppose that $V=\mathfrak{a} V$. Then there exists an element $a \in \mathfrak{a}$ such that $(1-a) V=0 . \quad$ (Proof: Let x_{1}, \ldots, x_{n} be a generating system for V. Since $x_{i} \in \mathfrak{a} V$, there
exist elements $a_{i j} \in \mathfrak{a}$ such that $x_{i}=\sum_{j=1}^{n} a_{i j} x_{j}$, i.e. $\sum_{j=1}^{n}\left(\delta_{i j}-a_{i j}\right) x_{j}=0$. From T14.22 it follows that $\operatorname{Det}(\mathfrak{E}-\mathfrak{A}) x_{j}=0, j=1, \ldots, n$, i.e. $\operatorname{Det}(\mathfrak{E}-\mathfrak{A}) \cdot V=0$, weher $\mathfrak{A}:=\left(a_{i j}\right)$. The matrix $\mathfrak{E}-\mathfrak{A}$ is the unit matrix modulo \mathfrak{a}, we have $\operatorname{Det}(\mathfrak{E}-\mathfrak{A}) \equiv \operatorname{Det} \mathfrak{E}=1$ modulo \mathfrak{a}. and so $\operatorname{Det}(\mathfrak{E}-\mathfrak{A})=1-a$ with an element $a \in \mathfrak{a}$.)

T14.27. If f is a surjective endomorphism of a finitely generated module V over a commutative ring A, then f is an automorphismus. (Proof: We consider V as a module over the commutative subalgebra $A[f]$ of $\operatorname{End}_{A} V$ generated by f, where $f x:=f(x)$ for $x \in V$. Then the surjectivity of f mean $V=f V$. The Dedekind's Lemma assures the existence of an endomorphism $g f \in A[f] \cdot f, g \in A[f]$ such that $(1-g f) V=0$. This mean : $(1-g f) x=0$ or $x=g f x=g(f(x))$ for all $x \in V$, i.e. $g f=\mathrm{id}_{V}$. Since $g \in A[f]$, we have $f g=g f$ and so f is invertible and $g=f^{-1}$. - This proof show more : Under the above hypothesis the inverse f^{-1} belong to $A[f]$ and hence is a polynomial f over A.)

[^0]: ${ }^{1}$) Simplicial Complexes and Graphs. A simplicial complex \mathcal{K} is a set $\mathbf{V}(\mathcal{K})$ called the vertex set (of \mathcal{K}) and a family of subsets of $\mathbf{V}(\mathcal{K})$, called simplexes (in \mathcal{K}) such that
 (i) for each $v \in \mathbf{V}(\mathcal{K})$, the singleton set $\{v\}$ is a simplex in K.
 (ii) if s is a simplex in \mathcal{K} then so is every subset of \mathbf{s}.

 A simplex \mathbf{s} in \mathcal{K} is called a q-simplex if $\operatorname{card}(\mathbf{s})=q+1$ and say that \mathbf{s} has dimension q. For a simplicial complex \mathcal{K}, we write $\operatorname{dim}(\mathcal{K}):=\sup \{q \mid$ there existsa $q-\operatorname{simplex}$ in $\mathcal{K}\}$ and is called the dimension of \mathcal{K}. A simplicial complex of dimension ≤ 1 is called a graph.
 An edge in \mathcal{K} is an ordered pair $\left(v_{0}, v_{1}\right)$ of vertices such that $\left\{v_{0}, v_{1}\right\}$ is a simplex in \mathcal{K}. If $\mathbf{e}=\left(v_{0}, v_{1}\right)$ is an edge in \mathcal{K} the vertex v_{0} (respectively v_{1}) is called the origin (respectively end) of \mathbf{e} and usually denoted by orig(e) (respectively end (e)).
 A path α in \mathcal{K} of length n is a sequence $\mathbf{e}_{1} \mathbf{e}_{2} \cdots \mathbf{e}_{n}$ of edges in K with end $\left(\mathbf{e}_{i}\right)=\operatorname{orig}\left(\mathbf{e}_{i+1}\right)$ for every $1 \leq i \leq n-1$. For a path $\alpha=\mathbf{e}_{1} \mathbf{e}_{2} \cdots \mathbf{e}_{n}$ we put orig $(\alpha)=\operatorname{orig}\left(\mathbf{e}_{1}\right)$ and $\operatorname{end}(\alpha):=\operatorname{end}\left(\mathbf{e}_{n}\right)$ and say that α is a path from orig (α) to end (α).
 A simplicial complex \mathcal{K} is called connected if for every pair (v_{0}, v_{1}) of vertices in \mathcal{K} there exists a path α in \mathcal{K} such that orig $(\alpha)=v_{0}$ and $\operatorname{end}(\alpha)=v_{1}$.

