Prof. D. P.Patil, Department of Mathematics, Indian Institute of Science, Bangalore August-December 2003

MA-219 Linear Algebra

14. Determinants — Permutations, Multi-linear and alternating maps
October 28, 2003 ; Submit solutions before 11:00 AM ; November 03, 2003.

14.1. Let T be a set of transpositions in the gro&p , » > 1. We associate the graph I'; to
T as follows: the vertices of r are the numbers,1..,n and two verticeg and;j withi # j are
joined by a edge if and only if the transpositian j) = (j, i) belong toT. LetI'y, ..., ", be the
connected components Bf .

a). The transpositions i generate the grou@, if and only if I'7 is connected, i.e. if any two
vertices ofl"'r can be joined by the sequence of edgeEn The subgroup of5, generated by
is the product5(I'y)) x --- x 6(I',) € 6,,.

b). If T is a generating system for the gro@p , thenT has at least — 1 elements.  (Hint:
Letry,..., 7, be the elements df (may be with repeatations) with - --t,, = id. Thenm is even and
m=>2%" (I0,1=1).)

c). Every generating system @, consisting of transpositions contain a (minimal) generating
system ofS,, with n — 1 elements. (The graphs corresponding to such a minimal generating
systems are calletfees. Evergonnected graph has a generating system which is a tree. —There
are exactly:"~? generating systems consisting- 1 transpositions.(Hint: Prove this by descending
inductionk; induction starts at = n — 1: the number of trees in which the number 1 belongs to exactly
edges, is(n — 1" *1(27%) and add.)

d). The transpositiongl, 2), (2,3),...,(n — 1, n) (resp. (1,2), (1, 3),...,(1,n)) form a
minimal generating system @b, . (Hint: If a, b, ¢ are three distinct elements, then
{ab)lac){ab) = (bc).)

14.2. a). Letv;, j € J be abasis of th& -vector spac& and letw;,, (j;) € J! be a family

of elements of theK -vector spacéV, where! is a finite indexed set. Then there exists a unique
K-multilinear map f: V! — W such that f((v;)ier) = wg, (i) € J'. If V.andW are finite
dimensional, then th& -vector space of the multilinear maps fraii into W has the dimension
b). A multilinear map f: V" — W of K-vector spaces is alternating jf(xy, ..., x,) = 0 for
everyn-tuple (x4, ..., x,) in which two consecutive components are equal.

14.3. LetV andW be K-vector spaces.

a). Let I be a finite indexed set with elements. Suppose that ki the elementn! = n! - 1¢
is non-zero, i.e. Chak = 0 or Chark > n. Then the mapsf — %Af and f — L15f

1) Simplicial Complexes and Graphs. A simplicial complex X is a setV(X) called thevertex
set (ofX) and a family of subsets dof (X), called simpkxes (inX) such that

(i) for eachv € V(X), the singleton sefv} is a simplex inkK .

(i) if sis a simplexinX then so is every subset sf

A simplexsin X iscalledaqg -simplex if cards) = ¢ + 1 and say thashas dimensior. For
a simplicial complexX, we write dimX) = sup{g | there existsa — simplexinX} and is called the
dimension ofX. A simplicial complex of dimensior: 1is called agraph.

An edge inX is an ordered paifvg, v1) of vertices such thdtg, v1} is a simplex inX . If e = (vg, v1)
is an edge inK the vertexvg (respectivelyvs) is called the origin (respectivelg nd) ofe and usually
denoted by orige) (respectively engb)).

A path «in X of lengthn is a sequence;e; - - - e, of edges inK with ende;) = orig(e 1) for every
1<i<n-—1 Forapathy = ee---e, we put orige) = orig(e;) and endw) := ende,) and say that
is a path from origx) to endw).

A simplicial complexX is calledconnected if for everyair (vo, v1) Of vertices inXK there exists a
patha in X such that origx) = v and endw) = v1.
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are projections of th& -vector space of the multilinear mapd — W onto the subspace of the
alternating resp. the symmetiielinear maps.

b). Suppose that Chd # 2. The space of the bilinear maps x V. — W is the direct sum
of the subspace of the alternating (i.e. skew-symmetric) and the subspace the symmetric bilinear
maps. The corresponding projections émresp.%S. (Remark: A bilinear mapf:V xV — W

can be decomposed into iskew-symmetric part%Af andits symmetric part%Sf. )

14.4. Let K be afield and leV, W be vector spaces ovéf.

a). Let f:V" — K be an alternating multilinear form ovi and letg: vV — W be aK-linear
map. Then (xo, ..., x,) —> > .+ o(=1)" f(x0, ..., Xi—1, Xi41,...,X,) g(x;) is an alternating
K-multilinear mapV”"+* — Ww.

b). (Cramer’s Formula)Suppose that is an-dimensionakk -vector space. Then for every

determinant functi_om : V" — K and for arbitraryxo, ..., x, € V, prove that
Yo (=1 A(xo, ...y Xi—1, Xit1, .- X)X = 0. (Hint: Use the part a) above. )

On the other side one can see (simple) test-exercises ; their solutions need not be submitted.
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Test-Exercises
T14.1. a). Give an element of biggest posible order in the gréisp
b). Forn > 4, the groupl, is not abelian.

T14.2. For the following permutations compute the number of variations and the sign.
a). The permutation > n —i +1inG,,.

1 2 ... n n+1 ... 2n
b). (1 3. ;-1 2 .. 2n)€62”'

1 2 ... n n+1 ... 2n
) <2 4 2 1 ... 2n—l)€62”'

1 ... —r+1 n—r+2 ... D
d). (r " ’: " ’i rfl>66n,1§r§n. (Ans: (—=1)¢-De+D y
& 1 2 3 4 5 6 ... 2n s
“\1 22 3 20-1) 5 20-2) ... 2 2n -
f). Forasubsef C{l,...,n}wWithJ ={j1,...,jn},J1 < -+ < ju, leto; be the permutation

a,=<:.L ceom ml—l—l ceoon )GGH,
J1 Jm 11 li—m

where the numberg < --- < i,_,, are the elements of the complement/oin {1,...,n}. (Hint: The

number of variations of; is F(o;) = (ij:l jk) — (’”31) and hence Sigv;) = (—=1)F©) )

g). Leto resp. t be permutations of the finite sefsresp./. Compute the sign of the permutation
oxt:.( j)r (oi, tj)of I xJ(interms of Sigrs, Signt andm = |I|, n .= |J]).

T14.3. Letn e N*. Then

a). A subgroup of the permutation growp, which contain an odd permutation contains equal number of
even and odd permutations.

b). A permutatioro € &, which is of odd order is an even permutation.
c). The square? of a permutation € &, is an even permutation.

d). Leto = {ip, ..., ix_1) be acycle of lengtlh > 2. What is the inverse af ? For whichm € Z, 0™ is a
cycle of lengthk ?

e). Leto € &, andm € Z. Every orbit ofo of lengthk decomposes into gglk, m) orbits of the length
k/ggT(k, m) of o™.

f). LetI be afinite set. The inverse ! of a permutationr € &(7) has the same orbits and same sign as
those ofo.

g). Letm = p;*--- p* be the canonical prime factorisationmfe N*. Then the permutation grou,

contain an element of order if and only ifn > p{* + --- + p%. For whichn € N there exists an element
of order 3000 (resp. 3001) in the gro@p?

T14.4. a). If 0 € 6,, n € NT hass orbits, thero can be represented as a productefs transpositions
and cannot be represented as a product of lessiithan transpositions.

b). Let 0 € &,, n € NT be a permutation of typ@, ..., v,). Then the number of permuations &,
which commute witho isvq!---v,!1"...»". (Hint: These permutations form the centralisey, &)
ofo.)

T14.5. a). Thecycleg1,2), (2,...,n) generate the grou@, ,n > 2. (Hint: Use 14.1-d))
b). Thecyclegl, 2), (1, 2,...,n) generate the group, ,n > 2. (Hint: Use 14.1-d))
c). (1,n), {1,...,n)generate the group,, n > 2. (Hint: Use 14.1-d))

T14.6. Letn e NT.

a). Forn > 2, Sign : 6, — {-1,1} is the only non-trivial group homomorphism. Hift:
(ab) and {cd) be two transpositionss, . If o € &, be an arbitrary permutation with — ¢, b — d,
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then o (ab)o~! = (cd) and so every homomorphism : &, — {1, —1} have the same value on all
transpositions. If this value is 1, thenif it si —1, theny = Sign. )

b). 2, is the commutato6,,.

c). Using the simplicity of the groug!(,,, n > 5, prove that the grouf, is the only non-trivial normal
subgroup in the grou, forn > 5.

d). The groupl4 andl, are the only non-trivial normal subgroupséy.
e). The groupl, is the only non-trivial normal subgroup 2fy.

T14.7. Let[I be afinite set and let € &(/) be a permutation of of prime power ordep™, p prime.
Then the number of fixed points efand the number of ;= |I| of elements of are congruent modulp.
In particular,

(1) If n is not divisible byp, theno has at least one fixed point.

(2) If n is divisible by p, then the number of fixed points 6fis also divisible byp. (Remark: Thisis a
special case of the assertion ??7? )

T14.8. Let G be afinite group of order and letA: G — &(G) be the corresponding Cayley’s homomor-
phism.

a). For everyg € G, the permutationr, has exactlyn/ordg orbits of lengths org. Inparticular,
Signi, = (—1)"~@/0ds) — (—1)[GH@I+IGI where Hg ) is the cyclic subgroup of; generated by.

b). If G := &, andn > 4, theni(G) = A(&,) C A(S,). (Hint: Compute Sigr,), wherer € &, is a
transposition.)

c). AM(G) € A(G) ifand only ifn is even ands has an element of ordef 2where 2 is the biggest power

of 2 which dividen. (i.e. if and only if the 2—Sylow subgroup ©f is cyclic and is non-trivial). Moreover,
in this caseG has a normal subgroup of index 2.

d). If |G| = 2m, m is odd, thenG has a normal subgroup of index 2dift: G has an elemengt of order
2. Compute the Sign,). )

e). The order of a finite simple non-abelian group is divisible by 4. Hint Use d) and the theorem of
Feit—ThompsonEvery finite non-abelian simple group has even order. The proof of this theorem is
not easy. Seepit,w. and Thompson, J.: Solvability of groups of odd ordeRacific Journal of Mathematics,
pp-775-1029, (1963).] )

T14.9. Every finite subgroup is isomorphic to a subgroup of an alternating giigup (Hint: Use ?7?-b)

or the following remark : For € N, let f be the bijection > n +i of {1,...,n}onto{n +1,..., 2n}.
The mapo +— o', which maps every permutatien € S, to the permutatio’ € S5, wheres’ = o on
{1,....n}ando’ = fof~ton{n+1,...,2n}, is a homomorphism frord, into Ay,.)

T14.10. a). Compute the class number of the gra@ipfor n < 6. (Hint: Use 44.9.)

b). Forn > 3, the center Z5,) = {id}. (Hint: Foro € &,,n > 3,0 # id, find a transpositiorab) with
o (ab)o =t = (o (a)o (b)) # (ab).)

T14.11. Let G be a subgroup o6,, n > 2. Suppose that the natural operation®bn {1, ..., n} is
transitive.
a). If G contain a transposition and a cycle of order 1, thenG = &,. (Hint: Use T14.5-a). )

b). If G contain a transposition and a cycle of prime ordavith 5 < p < n, thenG = &,.

T14.12. Let p be a prime number.

a). If the subgroupG of &, contain a transposition and sf divides the order oG, thenG = &,. (Hint:
G contain an element of order. This must be a cycle. Now use T14.5-c). Remark: Show that the
condition “p | |G|" is equivalent with “the natural opeartion af on {1, ..., p} is transitive”.)

b). LetG be the subgroup ab,.1. Suppose that has the following properties:
(1) The natural opeartion @ on{1, ..., p + 1} is transitive.

(2) p divides the order of;.

(3) G contains a transposition.

ThenG = G,41. (Hint: Use T14.11-a).)
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T14.13. The quaternion grou@ can be embedded in the gro@f, » € N, ifand only ifn > 8. (Hint:
Study the elements of the order 4.)

T14.14. LetV andW be K-vector spaceg, be a finite indexed set anf: V! — W be a multilineare
map. Letg:U — V andh: W — X be K-vector space homomorphisms. Then fog/ : U! — X
is a multilineare map, wherg’ is defined byg’ (1)) := (g(u;)), ;) € U'. If f is symmetric resp.
skew-symmetric resp. alternating, then sé is f o g’.

T14.15. (Functoriality) LetvV’', vV, V", W KW, W’" be K-vector spaces and be a finite indexed
set. Letf':V -V, f:V—->V", ¢g:W —Wandg: W — W beK-linear maps. Then

a). The map Mulk(Z, f/; W) : Multx (I, V, W) — Multg (I, V', W) definedby & — ®o f! is
K-linear. Moreover, Mult (7, idy; W) = idmult, 7, v:w) and Multx (Z, f” o f'; W) = Multg (I, f'; W) o
Multg (I, f7; W).

b). The map Mulk(Z,V;g) : Multgy(I,V, W) — Multg(I,V,W) definedby & > g o ® is
K-linear. Moreover, Mulk(Z, V;idw) = idmuit,a.v.wy and Multe (I, V; g o g) = Multg(I,V;g) o
Multx (1, V; g').

c). Themap Al (I, f'; W) : Altx (I, V, W) — Altx (I, V', W) definedby &+ ®o f! isK-linear.
Moreover, Al (1, idy; W) = idaitc.v.wy and Altg (1, "o f's W) = Altg (I, f'; W) o Altg (1, f"; W).
d). Themap Alk (I, V;g) : Altx(I,V, W) — Altx (I, V,W) definedby &+ g’ o ® is K-linear.
Moreover, Al (1, V;idw) = idait, i, v.w) and Altg (I, V; gog) =Altx (I, V; g) o Altx (1, V; g).
(Remark: This mean that the part a) and c) (resp. b) and d) ) for a fikedector spaceWw (resp.
V) the assignmenV +— Multg (I, V; W) and V — Altx (I, V; W) (resp. W — Multg (I, V; W) and
W Altgx (I, V; W)) arecontravariant andcovariant functors from thecategory Vi of K-vector spaces
to itself, respectively.)—In particular, the assignmént> Alt ¢ (I, V) is acontravariant functor from the
category Vi of K-vector spaces to itself.)

T14.16. Let A be a commutative ringy be an A—module,I, J := I U {k} be finite index sets
with k ¢ I andlet® € Alt,(1, V; A). Then the map

CD/ . VJ —V defined by (U,‘),'GJ = @((vi)iel)vk

is multi-linear, i.e. ® € Mult,(J, V; V) and the mapd” := &' — ., (ik)®’ is alternating,
e. ®" e Alt,(J,V; V). (Remark: The map®” is obtained from®’ by the process
similar to that of anti-symmetrisation by using the transpositigit$ € G(J) ; the factor—1 appears in
the sum as a common Sign of the transpositigtis . — Note the formula for®” in the specail case
I={,...,n},J={1...,n,n+1}))

T14.17. (Determinants over a commutative ring) L&be a commutative ring.

a). Let V be a finite freeA—module with a basis;, i € I. Thenthe mapp : Alt,(I,V) = A
defined by . ® — ®((x;);¢;) IS anA—isomorphism.

b). Let V andW be arbitrary modules ovet and letf : V. — W be anA-linear map. Then for
every finite indexed set, f induces a naturad—linear map
Alt4(1, f) = Alt(, f) :Alt4(I, W) — Alt o (1, V)

defined by® — ®o f!/ , wherethe magf’ : V! — W!  isdefined by(v;) — (f(v;)). Moreover,
if g : W — X is anotherA—linear map ofA—modules, then

Alt(I, gf) = Alt(, ) o Alt(l, g),

c). Let V be a freeA—module of finite rank: and I be an indexed set with elements. Then
Alt (1, f) is an endomorphism of Alf, V) = A and hence Ali/, f) is the multiplication by
a uniquely determined elemeat € A, and so is a homothecy,. The element « € A with
Alt(Z, f) = v, isindependent of the choice of the indexed set 1. (Proof: Let J be another
set withn elements and Alt/, /) = 9. there exists a bijectios : I — J. Then(v));e; = (V.i)ier IS
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an A—isomorphismy : V’/ — V! and henced +— @7 is a bijection from Al{Z, V) onto Alt(J, V). For an
arbitrary® € Alt (I, V) we have :

a-(dn) = (@®)n = (At, f) P)n= (Df = o(f'n) = d(nf’)
= (dn) f/ =Alt(J, f) (Pn) =b- (Pn).
and hence = b.)

d). Let V be a finite freeA—module with a basis consisting efelements and lef € End, V.
Then the uniquely determined element A with Alt(n, f) = 9, is called thedeterminant

of f (overA) and is denoted by Det. The determinant mapf — Detf ide denoted by
Det: Endy V — A. (Remark: In the definition of determinant instead of the standard indexed set
{1, ..., n}, we may choose any other indexed se&tith n elements (see part ¢). For a finite fréemodule

V of rankn the elements of Aliz, V) are also called determmiant functions (orV oronv”.)

e). Let V be a finite freeA—module with basis;, i € I andlet f € End, V.
(1) For everyl-linear form ® € Alt ,(1, V) and for everyl-tuple (v;) € V'

D ((f (vi))ier) = (Alt, f)P)(vi)ier) = Detf - d((vi)ier) -

(2) For an alternating-linear form A on V! with A((x;)ic;) = 1: Detf = A(f(x;))icr) -
(Proof: By part a)A is a basis of Ali (7, V) and by definition AltZ, f)(A) = (Detf) - A. Taking the
image of(x;);c; € V! on both sides, we geA ((f(x;))ic;) = Det f - A((x;)ic;) = Detf.)

f). Let V be a finite freeA—module with a basis consistimgelements. Then the determinant map
Det:End,V — A

have the following properties:

(1) Det(idy) = 1.
(2) Det(fg) = (Det f)(Detg) forall f,g € Endy V.
(3) Det(af) = a"Detf foralla e A andall f € Endy V.

T14.18. Let A be a commutative ring and lét be a finite freeA—module andf € End, V.
Show that : There exists@ € End4 V such that(Det f)-idy = fg = gf . (Hint: Letxy,...,x,
be abasisof’, A € Aut,(n, V) be suchthatA(xy,...,x,) =1 and® = Alt(n, f)(A) =Detf-A. Let
g, i =1 ...,n bethelinear form orv defined byv > A(f(x1),..., f(xi_1), v, f(xiy1), ..., f(x)
andletg : V — V be the map defined by — )" ; g/ (v)x; . The equationgf = (Det ) -id, can be
verified directly from definitions. For the proof ofg = (Det f) - idy apply the exercise T14.16 t® and
construct(n + )—linear map®’ : (v1, ..., V,, Vpy1) = W1, ..., V)Vug1 = A(f (1), ..., fF(V))Uns1
and hence the alternatirig + 1)-linear map®” : V**! — v is the zero map. Deduce thaiDet )V <
im f . Further, this shows that D¢t is a unitin A if and only if f is bijective. If Detf is a non-zero
divisor in A, then f injective.

T14.19. Let A beacommutativering and let V be a non-zero finite free A-module. The determinant map
Det: End, V — A isasurjective monoid homomorphism of the multiplicative monoid of End, V' onto

the multiplicative monoid of A. Further, it maps the unit group (End, V)* = Aut, V onto the unit group

A* and Det™(A*) = Aut, V . Thismean that : an operator f € End, V isanautomorphismif and only

if Detf isaunitin A. (Proof: It follows from T14.17(1) and (2) that Det is a homomorphism. Further,
by the commutativity ol we have

Det(fg) = (Det f)(Detg) = (Detg)(Det f) = Det(gf) .
By restricting we get a group homomorphism Det : put— A* . In particular, we have
Det(f 1) = (Detf)™*

for f € Aut, V. The surjectivity of Det follows easily : Let € A be given and leky, ..., x, be

a basis vonvV. Thenn > 1. For the endomorphisnf; with x — ax; andx; — x; fori > 2, the
determinant Defy = A(ax1, x2, ..., x,) = aA(x1,...,x,) = a, whereA is a basis element of Al(n, V)
with A(x1,...,x,) = 1. Ifa € A*, then f; € Aut, V, this also proves the surjectivity of the restriction
Det : Auty, V — A*. Now, it remains to prove that : If Det is a unitin A, then f is an automorphism.
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The proof of this asserrtion is not that easy One has to use either the expansion of the determinants or one
can also give a direct proof using T14.18k also note here the simple proof in the special case when A

isafield, i.e. in the case when V is a vector space. We use the ir benutzen eine Basis ..., x, vonV

and the alternating—linear formA on V" with A(x1,...,x,) = 1. Then Detf = A(f(x1), ..., f(x,)).

By hypothesis Def # 0. Then the vectorg (x1), ..., f(x,) are linearly independent and gbis an
isomorphism. )

T14.20. Let A, V andx;, i € I be asin T14.17-a). For eve—moduleW, the mapd +— & ((x;)ier)
defines an isomorphism Alk, V; W) — W.

T14.21. Letxy,...,x, be a basis of the free modulé over a commutative ringt. For a subseH C
{L....n}, H={i1,....0}, i1 < --- < i, letxy denote the—tuple (x; ,...x;) € V". Then for every
r € N, the map

@ = (P(xu))in|=r
defines am—isomorphism Altr, V) — A¥ ™ where}, (n) isthe set of subsets ¢, . . ., n} of cardinality
r. Inparticular, Alir, V) is a free module of rank;). (Hint: The standardbasis—element, H as above,
of A®™ define an--alternating functiom  := Alt(r, 7y)(A}), wherery : V. — Vy = >, Ax; is
the projection withy; — x;, if i € H, andx; — 0, ifi ¢ H andA’, : vV}, — A is the determinant function
with A% (x;, ..., x;,) =1,see T14.17-a). )

T14.22. Letm, n € Nandm < n. For arbitrary matrice8( = (a;;) € M,, ,(A) andB = (b;;) € M,, ,,(A)
over a commutative ring :

aljl e aljm bjll T bjlm

Det@®) = >

l<jp<<jm=n
am.]l U am.]m b] l U bj”lm

(Hint: Letf: A" — A™andg : A™ — A" be theA—linear maps with the matric€sresp.25 with respect to
the standard bases. Then compute the compositigmAlfg) = Alt (m, g) o Alt (m, f) by using the basis
Ay, H € B, (n) of Alt(m, A") see the exercise T14.21, whatg.. . ., x, is the standard basis df'.)

T14.23. Let A be a non-zero commutative ring and et W be finite freeA—modules with bases
X1,...,X, resp. yi,..., y,. Further, letf : V. — W be anA—homomorphism with the matrix
A = (a;j) € My, ,(A) with respect to the given bases. Then

a). Cokerf is annihilated by all minors dil of orderm. — In particular, ifW = V, then Detf) -
Ker f = 0 and Detf) - Cokerf = 0.

b). The following statements are equivalent:

(1) f is surjective. (2) The minors &1 of orderm generate the unit-ideal iA. (Hint: For
(1) = (2) consider a homomorphisg: W — V with fg = idy and the matrixX3. From8 = ¢, and
the exercise T14.22 the assertion (2) follows. &r= (1) use the part a). )

T14.24. Let A be a non-zero commutative ring and létbe a finite freeA—module with a basis
consisting ofz elements, > 2. Then the determinant map Det : End — A is not additive.

T14.25. LetA be acommutative ring and [&tbe anA—module. Suppose that = (a;;) € M, (A)

and the elementsy, ..., x, of V satisfy the equations
ayxy+---+apx, = 0
apiX1+ -+ Xy = 0

Then (Det)x; =0 foreveryj =1,...,n. (Hint: Use the Cramer’s rule.)

T14.26. (Dedekind’s lemma)Let V be a finitely gebnerated module over a commutative
ringAandlet a € A beanideal in A. Supposethat V = aV . Thenthereexistsanelement a € a
suchthat (1 —a)V =0. (Proof: Letxs,...,x, be agenerating system for. Sincex; € aV, there
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exist elements;; € a such that; = 37, a;;x;, i.e. 3 7_; (8;; — a;;)x; = 0. From T14.22 it follows that
Det(¢ —0)x; =0, j =1,...,n,i.e. De(€ —A) - V =0, weher := (a;;) . The matrix& — 2 is the
unit matrix moduloa, we have Dat¢ — ) = Det¢ = 1 moduloa. and so Det® — 2) = 1 —a with an
elementa € a.)

T14.27. If f isa surjective endomorphism of a finitely generated module V over a commutative
ring A, then f is an automor phismus. (Proof: We consideV as a module over the commutative
subalgebra[ f] of End, V generated by, wherefx := f(x) for x € V. Then the surjectivity of mean

V = fV. The Dedekind’s Lemma assures the existence of an endomorglfismA[ f] - f, g € A[f]
suchthatl— gf)V =0. Thismean (1 —gf)x =00rx = gfx = g(f(x)) forallx € V,i.e.gf =idy.
Sinceg € A[f], we havefg = gf and sof is invertible andg = f~1. — This proof show more Under
the above hypothesisthe inverse 1 belong to A[ f] and henceis a polynomial f over A.)
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