MA-219 Linear Algebra

14 B. Determinants - Orientation; Volume computation

November 03, 2003 ; Submit solutions before 11:00 AM ; November 17, 2003.
14.10. (Norm) Let A be a finite dimensional K-algebra. For $x \in A$, let $\lambda_{x}: A \rightarrow A$ denote the left multiplication $y \mapsto x y$ by x in A. Then λ_{x} is K-linear operator on A. Its determinant is called the norm of x (over K) and is denoted by $\mathrm{N}_{K}^{A}(x)=\mathrm{N}(x)$.
a). For all $x, y \in A$ and for all $a \in K$, show that
(1) $\mathrm{N}(x y)=\mathrm{N}(x) \mathrm{N}(y)$.
(2) $\mathrm{N}(a):=\mathrm{N}\left(a \cdot 1_{A}\right)=a^{n}, n:=\operatorname{Dim}_{K} A$.
(3) An element $z \in A$ is a unit in A if and only if $\mathrm{N}(x) \neq 0$ in K.
b). For all elements z of the \mathbb{R}-algebra \mathbb{C}, show that $\mathbb{N}_{\mathbb{R}}^{\mathbb{C}}(z)=|z|^{2}$. (Vgl. Aufg. 4.)
c). Let $A=\mathrm{M}_{n}(K)$ be the algebra the $n \times n$-matrices over the field K. For all $\mathfrak{A} \in A$, prove that $\mathrm{N}_{K}^{A}(\mathfrak{A})=(\text { Det } \mathfrak{A})^{n}$
14.11. Determine which of the following affinities of n-dimensional orientated real affine spaces preserve the orientation:
a). Point-reflections. b). Reflections of a hyperplane along a line resp. product of such r reflections, $r \in \mathbb{N}$.
c). Shearings.
d). Dilatations.
e). Magnifications.
14.12. Show that the volume of the ellipsoid $\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n} \left\lvert\, \frac{x_{1}^{2}}{a_{1}^{2}}+\cdots+\frac{x_{n}^{2}}{a_{n}^{2}} \leq 1\right.\right\} \subseteq \mathbb{R}^{n}$, $a_{i} \in \mathbb{R}_{+}^{\times}, 1 \leq i \leq n$, is $\omega_{n} a_{1} \cdots a_{n}$, where ω_{n} is the volume of the unit-sphere $\mathrm{S}(0,1):=$ $\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n} \mid x_{1}^{2}+\cdots+x_{n}^{2} \leq 1\right\}$. (Remark: The ω_{n} can be computed by using integration and it is $\omega_{n}=\pi^{n / 2} /(n / 2)!$.)
14.13. Let f_{1}, \ldots, f_{n} be a basis of the space of linear forms on \mathbb{R}^{n}. Let $\mathfrak{A}:=\left(a_{i j}\right) \in \mathrm{GL}_{n}(\mathbb{R})$ be the transition matrix corresponding to the dual basis $e_{1}^{*}, \ldots, e_{n}^{*}$ of the standard basis. Then $f_{j}=\sum_{i=1}^{n} a_{i j} e_{i}^{*}$ and f_{1}, \ldots, f_{n} is the dual basis corresponding to the basis $v_{j}=\sum_{i=1}^{n} b_{i j} e_{i}$, $j=1, \ldots, n$, where $\mathfrak{B}:=\left(b_{i j}\right)={ }^{t} \mathfrak{A}^{-1}$ is the contra-gradient matrix of \mathfrak{A} (see 8.A, Aufg. 24). Let $d:=|\operatorname{Det} \mathfrak{A}|$.
a). For $c_{1}, \ldots, c_{n} \geq 0$, the volume of $\left\{x \in \mathbb{R}^{n}| | f_{i}(x) \mid \leq c_{i}, i=1, \ldots, n\right\}$ is $2^{n} c_{1} \cdots c_{n} / d$.
b). For $c \geq 0$, the volume of $\left\{x \in \mathbb{R}^{n}\left|\sum_{i=1}^{n}\right| f_{i}(x) \mid \leq c\right\}$ is $2^{n} c^{n} / n!d$.
c). For $c \geq 0$, the volume of the ellipsoid $\left\{\left.x \in \mathbb{R}^{n}\left|\sum_{i=1}^{n}\right| f_{i}(x)\right|^{2} \leq c^{2}\right\}$ is $\omega_{n} c^{n} / d$, where ω_{n} is same as that in 14.12.
d). For $c_{0}, c_{1}, \ldots, c_{n} \in \mathbb{R}$ with $c_{0} \leq c_{1}+\cdots+c_{n}$, the volume of the simplex

$$
\left\{x \in \mathbb{R}^{n} \mid f_{i}(x) \leq c_{i}, i=1, \ldots, n, f_{1}(x)+\cdots+f_{n}(x) \geq c_{0}\right\}
$$

is $b^{n} / n!d$, where $b:=c_{1}+\cdots+c_{n}-c_{0}$.
14.14. Let $n \in \mathbb{N}^{*}$. The group $\mathrm{GL}_{n}(\mathbb{R})$ is the direct product of the group $\mathrm{I}_{n}(\mathbb{R})$ of the volume preserving (or unimodular) matrices $\mathfrak{B} \in \mathrm{GL}_{n}(\mathbb{R})$ with $|\operatorname{Det} \mathfrak{B}|=1$ and the group $\mathbb{R}_{+}^{\times} \mathfrak{E}_{n} \cong$ \mathbb{R}_{+}^{\times}of the scalar matrices $a \mathfrak{E}_{n}, a \in \mathbb{R}_{+}^{\times}$, i.e. every matrix $\mathfrak{A} \in \mathrm{GL}_{n}(\mathbb{R})$ has a representation $\mathfrak{A}=a \mathfrak{B}=\mathfrak{B} a$ with uniquely determined (by \mathfrak{A}) elements $a \in \mathbb{R}_{+}^{\times}$and $\mathfrak{B} \in \mathrm{I}_{n}(\mathbb{R})$. (Remark: Every linear automorphism f of \mathbb{R}^{n} is therefore composition of a volume preserving automorphism g and a magnification a id with positive magnification factor a, where g and a are uniquely determined by f. This g is called the volume preserving part and a is called the magnification factor of f.)

On the other side one can see (simple) test-exercises ; their solutions need not be submitted.

Test-Exercises

T14.55. Let V be a finite dimensional K-vector space. Compute the determinant of the following linear maps $f: V \rightarrow V$:
a). f is the homothecy $a \mathrm{id}_{V}$. b). f is a projection.
c). f is an involution (see exercises $12.5,12.6$ and 13.5).
d). f is a transvection or dilatation (see exercises 12.5, 12.6 and 13.5) .

T14.56. Let $f: V \rightarrow V$ be a nilpotent endomorphism of the n-dimensional K-vector space V. Then show that $\operatorname{Det}\left(a \mathrm{id}_{V}+f\right)=a^{n}$ for all $a \in K$; More generally, Det $(g+f)=\operatorname{Det} g$ for every operator g on V which commute with f. (See also ???.)

T14.57. Let $V:=K[t]$ be the space of the polynomial functions over the field K with infinitely many elements and let $V_{n}:=K[t]_{n}$ be the subspace of the polynomial functions of $\operatorname{deg}<n, n \in \mathbb{N}^{*}$.
a). For $a, b \in K$, let $\varepsilon: V \rightarrow V$ be defined by $f(t) \mapsto f(a t+b)$. Show that ε is linear with $\varepsilon\left(V_{n}\right) \subseteq V_{n}$ for all n, and compute $\operatorname{Det}\left(\varepsilon \mid V_{n}\right)$.
b). Let $K=\mathbb{K}$. For $c_{0}, \ldots, c_{r} \in \mathbb{K}$, let $\delta: V \rightarrow V$ be the differential operator

$$
f(t) \mapsto \sum_{k=0}^{r} c_{k} f^{(k)}(t) .
$$

For $n \in \mathbb{N}^{*}$ show that δ is linear with $\delta\left(V_{n}\right) \subseteq V_{n}$ and compute $\operatorname{Det}\left(\delta \mid V_{n}\right)$.
T14.58. Let V be a finite dimensional \mathbb{C}-vector space and let $f: V \rightarrow V$ be a \mathbb{C}-linear operator on V. We consider V as a \mathbb{R}-vector space and so f is a \mathbb{R}-linear operator; its determinant is denoted by $\operatorname{Det}_{\mathbb{R}} f$.
Show that $\operatorname{Det}_{\mathbb{R}} f=|\operatorname{Det} f|^{2}$. (Hint: If $\mathfrak{A}+\mathrm{i} \mathfrak{B}, \mathfrak{A}, \mathfrak{B} \in \mathrm{M}_{n}(\mathbb{R})$ is the matrix of f with respect to the \mathbb{C}-basis v_{1}, \ldots, v_{n} of V, then

$$
\left(\begin{array}{rr}
\mathfrak{A} & -\mathfrak{B} \\
\mathfrak{B} & \mathfrak{A}
\end{array}\right) \in \mathrm{M}_{2 n}(\mathbb{R})
$$

is the matrix of f with respect to the \mathbb{R}-basis $v_{1}, \ldots, v_{n}, \mathrm{i} v_{1}, \ldots, \mathrm{i} v_{n}$ and

$$
\left|\begin{array}{cc}
\mathfrak{A} & -\mathfrak{B} \\
\mathfrak{B} & \mathfrak{A}
\end{array}\right|=\left|\begin{array}{cc}
\mathfrak{A}-\mathrm{i} \mathfrak{B} & -\mathfrak{B} \\
\mathfrak{B}+\mathrm{i} \mathfrak{A} & \mathfrak{A}
\end{array}\right|=\left|\begin{array}{cc}
\mathfrak{A}-\mathrm{i} \mathfrak{B} & -\mathfrak{B} \\
0 & \mathfrak{A}+\mathrm{i} \mathfrak{B}
\end{array}\right| .
$$

Special case: If A is a finite dimensional \mathbb{C}-algebra, then for all $x \in A$, we have $\mathrm{N}_{\mathbb{R}}^{A}(x)=\left|\mathrm{N}_{\mathbb{C}}^{A}(x)\right|^{2}$.)
T14.59. a). Let V be an orientated n-dimensional \mathbb{R}-vector space and let $\sigma \in \mathfrak{S}_{n}$ be a permutation. If the basis v_{1}, \ldots, v_{n} represents the orientation of V, then the basis $v_{\sigma(1)}, \ldots, v_{\sigma(n)}$ of V represents the orientation of V if and only if σ is even. The basis v_{n}, \ldots, v_{1} represents the orientation of V if and only if $n \equiv 0$ or $n \equiv 1$ modulo 4 .
b). Let E be an orientated n-dimensinal \mathbb{R}-affine space. Suppose that the affine basis P_{0}, \ldots, P_{n} of E represents the orientation of E. For a permutation $\sigma \in \mathfrak{S}(\{0, \ldots, n\})$, the affine basis $P_{\sigma(0)}, \ldots, P_{\sigma(n)}$ of E represents the orientation of E if and only if σ is even. The affine basis P_{n}, \ldots, P_{0} of E represents the orientation of E if and only if $n \equiv 0$ or $n \equiv 3$ modulo 4 .

T14.60. In every subgroup of the affine group $\mathrm{A}(E)$ of an orientated finite dimensional real affine space E which has at least one element which does not preserve the orientation, the orientation preserving maps form a subgroup of index 2 .

T14.61. Suppose that the finite dimensional \mathbb{R}-vector space V is the direct sum of the subspaces U and W. By the following prescripion the orientation of any two spaces of U, V, W define a orientation of the third : If $\mathfrak{u}=\left(u_{1}, \ldots, u_{r}\right)$ resp. $\mathfrak{w}=\left(w_{1}, \ldots, w_{s}\right)$ bases of U resp. W, then the basis $\left(u_{1}, \ldots, u_{r}, w_{1}, \ldots, w_{s}\right)$ representation of the orientation of $V=U \oplus W$ if and only if the bases \mathfrak{u} resp. \mathfrak{w} both represent resp. donot represent both the orientations of U resp. W. (Remark: Note the dependence on the succession of U and W.)

T14.62. Let V be a finite dimensional \mathbb{R}-vector space, V^{\prime} be a subspace and let $\bar{V}=V / V^{\prime}$. By the following prescripion the orientation of any two spaces of V^{\prime}, V, \bar{V} define a orientation of the third: If $v_{1}^{\prime}, \ldots, v_{r}^{\prime} \in V^{\prime}$ is a basis of V^{\prime} and the residue classes of $v_{1}, \ldots, v_{s} \in V$ is a basis of \bar{V}, then the basis $v_{1}^{\prime}, \ldots, v_{r}^{\prime}, v_{1}, \ldots, v_{s}$ of V represents the orientation of V if and only if the bases $v_{1}^{\prime}, \ldots, v_{r}^{\prime}$ of V^{\prime} and $\bar{v}_{1}, \ldots, \bar{v}_{s}$ of \bar{V} represent resp. donot represent both the orientation of V^{\prime} resp. \bar{V}.

T14.63. Determine which of the following bases of \mathbb{R}^{n} represent the standard orientation:
a). $n=2 ; v_{1}=(1,1), v_{2}=(1,-1)$.
b). $n=3 ; v_{1}=(-1,0,1), v_{2}=(0,-1,1), v_{3}=(1,-1,1)$.
c). $n=4 ; v_{1}=(1,1,1,1), v_{2}=(1,2,1,1), v_{3}=(1,1,3,1), v_{4}=(1,1,1,4)$.

T14.64. Every \mathbb{C}-linear isomorphism of a finite dimensional complex vector space is orientation preserving.
T14.65. Let E be a real affine plane with the volume function λ_{v} with respect to the basis v_{1}, v_{2} of the space of the translations of E and $P_{0}, \ldots, P_{r}, r \geq 2$, be the points with coordinates $\left(a_{j}, b_{j}\right), j=0, \ldots, r$ with respect to an affine coordinate system $O ; v_{1}, v_{2}$. Let $\left[P_{0}, P_{1}, \ldots, P_{r}, P_{0}\right]$ be a simple closed polgonal path, i.e. the edges intersects if and only if they are consecutive and intersect only in vertices. Show that the surface-area of the closed polygon, upto sign, is equal to

$$
\frac{1}{2}\left(\operatorname{Det}\left(\begin{array}{ll}
a_{0} & a_{1} \\
b_{0} & b_{1}
\end{array}\right)+\cdots+\operatorname{Det}\left(\begin{array}{ll}
a_{r-1} & a_{r} \\
b_{r-1} & b_{r}
\end{array}\right)+\operatorname{Det}\left(\begin{array}{ll}
a_{r} & a_{0} \\
b_{r} & b_{0}
\end{array}\right)\right) .
$$

(Hint: What does the sign mean? One can think on the orientation of E. - Use induction and from the case $r-1$ to the case r use after renumbering the vertices of the polygon with vertices P_{0}, \ldots, P_{r-1} and the triangle with the vertices P_{r-1}, P_{r}, P_{0} with the path [P_{r-1}, P_{0}] in common.)

T14.66. Draw the picture of the set $M:=H_{1} \cap H_{2} \cap H_{3}$ in \mathbb{R}^{2} with $H_{i}:=\left\{(x, y) \in \mathbb{R}^{2} \mid f_{i}(x, y) \geq 0\right\}$, $i=1,2,3$ and $f_{1}(x, y):=x+3 y+1, f_{2}(x, y):=-5 x+y+1, f_{3}(x, y):=x-y+3$ and compute its surface-area.

T14.67. Let $P_{0}, \ldots, P_{n} \in \mathbb{R}^{n}$ be affinely independent points and S is the (convex) simplex with these vertices. Further, let $y_{0}, \ldots, y_{n} \in \mathbb{R}_{+}$and H is the affine hyperplane in \mathbb{R}^{n+1} passing through the points $\left(P_{0}, y_{0}\right), \ldots,\left(P_{n}, y_{n}\right) \in \mathbb{R}^{n+1}$. Then H is the graph of the affine function $h: \mathbb{R}^{n} \rightarrow \mathbb{R}$ with $h\left(P_{i}\right)=y_{i}$, $i=0, \ldots, n$. If $T \subseteq \mathbb{R}^{n+1}$ is the region in between S and H, i.e.

$$
T:=\left\{(x, y) \in \mathbb{R}^{n+1} \mid x \in S, 0 \leq y \leq h(x)\right\},
$$

then

$$
\lambda^{n+1}(T)=\frac{y_{0}+\cdots+y_{n}}{n+1} \lambda^{n}(S) .
$$

$\left(\lambda^{n+1}(T)\right.$ is additive in $\left(y_{0}, \ldots, y_{n}\right)$ and does not alter even if the values y_{0}, \ldots, y_{n} are permutated. One may therefore assume that all y_{i} are equal or that all y_{i} other than one value $y_{i_{0}}$ are zero.) Compute the volume of the following region in \mathbb{R}^{3}, where the plane surface is:

