MA-219 Linear Algebra

14 B. Determinants – Orientation; Volume computation

November 03, 2003 ; Submit solutions before 11:00 AM ; November 17, 2003.

14.10. (Norm) Let A be a finite dimensional K-algebra. For $x \in A$, let $\lambda_x : A \to A$ denote the left multiplication $y \mapsto xy$ by x in A. Then λ_x is K-linear operator on A. Its determinant is called the norm of x (over K) and is denoted by $N_K^A(x) = N(x)$.

a). For all $x, y \in A$ and for all $a \in K$, show that

(1) N(xy) = N(x)N(y). (2) $N(a) := N(a \cdot 1_A) = a^n$, $n := Dim_K A$.

(3) An element $z \in A$ is a unit in A if and only if $N(x) \neq 0$ in K.

b). For all elements z of the \mathbb{R} -algebra \mathbb{C} , show that $N_{\mathbb{R}}^{\mathbb{C}}(z) = |z|^2$. (Vgl. Aufg. 4.)

c). Let $A = M_n(K)$ be the algebra the $n \times n$ -matrices over the field K. For all $\mathfrak{A} \in A$, prove that $N_K^A(\mathfrak{A}) = (\text{Det } \mathfrak{A})^n$

14.11. Determine which of the following affinities of *n*-dimensional orientated real affine spaces preserve the orientation:

a). Point-reflections. b). Reflections of a hyperplane along a line resp. product of such r reflections, $r \in \mathbb{N}$. c). Shearings. d). Dilatations. e). Magnifications.

14.12. Show that the volume of the ellipsoid $\{(x_1, \ldots, x_n) \in \mathbb{R}^n \mid \frac{x_1^2}{a_1^2} + \cdots + \frac{x_n^2}{a_n^2} \le 1\} \subseteq \mathbb{R}^n$,

 $a_i \in \mathbb{R}^{\times}_+, 1 \le i \le n$, is $\omega_n a_1 \cdots a_n$, where ω_n is the volume of the unit-sphere $S(0, 1) := \{(x_1, \ldots, x_n) \in \mathbb{R}^n \mid x_1^2 + \cdots + x_n^2 \le 1\}$. (Remark: The ω_n can be computed by using integration and it is $\omega_n = \frac{\pi^{n/2}}{(n/2)!}$.)

14.13. Let f_1, \ldots, f_n be a basis of the space of linear forms on \mathbb{R}^n . Let $\mathfrak{A} := (a_{ij}) \in \operatorname{GL}_n(\mathbb{R})$ be the transition matrix corresponding to the dual basis e_1^*, \ldots, e_n^* of the standard basis. Then $f_j = \sum_{i=1}^n a_{ij} e_i^*$ and f_1, \ldots, f_n is the dual basis corresponding to the basis $v_j = \sum_{i=1}^n b_{ij} e_i$, $j = 1, \ldots, n$, where $\mathfrak{B} := (b_{ij}) = {}^t \mathfrak{A}^{-1}$ is the contra-gradient matrix of \mathfrak{A} (see 8.A, Aufg. 24). Let $d := |\operatorname{Det} \mathfrak{A}|$.

a). For $c_1, \ldots, c_n \ge 0$, the volume of $\{x \in \mathbb{R}^n \mid |f_i(x)| \le c_i, i = 1, \ldots, n\}$ is $2^n c_1 \cdots c_n / d$.

b). For $c \ge 0$, the volume of $\left\{x \in \mathbb{R}^n \mid \sum_{i=1}^n |f_i(x)| \le c\right\}$ is $2^n c^n / n! d$.

c). For $c \ge 0$, the volume of the ellipsoid $\{x \in \mathbb{R}^n \mid \sum_{i=1}^n |f_i(x)|^2 \le c^2\}$ is $\omega_n c^n/d$, where ω_n is same as that in 14.12.

d). For $c_0, c_1, \ldots, c_n \in \mathbb{R}$ with $c_0 \leq c_1 + \cdots + c_n$, the volume of the simplex

$$\{x \in \mathbb{R}^n \mid f_i(x) \le c_i, i = 1, \dots, n, f_1(x) + \dots + f_n(x) \ge c_0\}$$

is $b^n/n! d$, where $b := c_1 + \dots + c_n - c_0$.

14.14. Let $n \in \mathbb{N}^*$. The group $\operatorname{GL}_n(\mathbb{R})$ is the direct product of the group $\operatorname{I}_n(\mathbb{R})$ of the volume preserving (or $\operatorname{unimodular}$) matrices $\mathfrak{B} \in \operatorname{GL}_n(\mathbb{R})$ with $|\operatorname{Det}\mathfrak{B}| = 1$ and the group $\mathbb{R}^{\times}_+ \mathfrak{E}_n \cong \mathbb{R}^{\times}_+$ of the scalar matrices $a\mathfrak{E}_n$, $a \in \mathbb{R}^{\times}_+$, i.e. every matrix $\mathfrak{A} \in \operatorname{GL}_n(\mathbb{R})$ has a representation $\mathfrak{A} = a\mathfrak{B} = \mathfrak{B}a$ with uniquely determined (by \mathfrak{A}) elements $a \in \mathbb{R}^{\times}_+$ and $\mathfrak{B} \in \operatorname{I}_n(\mathbb{R})$. (Remark: Every linear automorphism f of \mathbb{R}^n is therefore composition of a volume preserving automorphism g and a magnification a id with positive magnification factor a, where g and a are uniquely determined by f. This g is called the volume preserving part and a is called the magnification factor of f.)

On the other side one can see (simple) test-exercises; their solutions need not be submitted.

Test-Exercises

T14.55. Let V be a finite dimensional K-vector space. Compute the determinant of the following linear maps $f: V \to V$:

a). f is the homothecy $a \operatorname{id}_V$. **b).** f is a projection.

c). f is an involution (see exercises 12.5, 12.6 and 13.5).

d). f is a transvection or dilatation (see exercises 12.5, 12.6 and 13.5).

T14.56. Let $f: V \to V$ be a nilpotent endomorphism of the *n*-dimensional *K*-vector space *V*. Then show that $\text{Det}(a \operatorname{id}_V + f) = a^n$ for all $a \in K$; More generally, Det(g + f) = Detg for every operator *g* on *V* which commute with *f*. (See also ???.)

T14.57. Let V := K[t] be the space of the polynomial functions over the field K with infinitely many elements and let $V_n := K[t]_n$ be the subspace of the polynomial functions of deg < n, $n \in \mathbb{N}^*$.

a). For $a, b \in K$, let $\varepsilon: V \to V$ be defined by $f(t) \mapsto f(at+b)$. Show that ε is linear with $\varepsilon(V_n) \subseteq V_n$ for all n, and compute $Det(\varepsilon|V_n)$.

b). Let $K = \mathbb{K}$. For $c_0, \ldots, c_r \in \mathbb{K}$, let $\delta: V \to V$ be the differential operator

$$f(t) \mapsto \sum_{k=0}^r c_k f^{(k)}(t)$$
.

For $n \in \mathbb{N}^*$ show that δ is linear with $\delta(V_n) \subseteq V_n$ and compute $\text{Det}(\delta|V_n)$.

T14.58. Let *V* be a finite dimensional \mathbb{C} -vector space and let $f: V \to V$ be a \mathbb{C} -linear operator on *V*. We consider *V* as a \mathbb{R} -vector space and so *f* is a \mathbb{R} -linear operator; its determinant is denoted by $\text{Det}_{\mathbb{R}}f$. Show that $\text{Det}_{\mathbb{R}}f = |\text{Det} f|^2$. (**Hint:** If $\mathfrak{A} + i\mathfrak{B}$, $\mathfrak{A}, \mathfrak{B} \in M_n(\mathbb{R})$ is the matrix of *f* with respect to the \mathbb{C} -basis v_1, \ldots, v_n of *V*, then

$$\begin{pmatrix} \mathfrak{A} & -\mathfrak{B} \\ \mathfrak{B} & \mathfrak{A} \end{pmatrix} \in \mathrm{M}_{2n}(\mathbb{R})$$

is the matrix of f with respect to the \mathbb{R} -basis v_1, \ldots, v_n , iv_1, \ldots, iv_n and

$$\begin{vmatrix} \mathfrak{A} & -\mathfrak{B} \\ \mathfrak{B} & \mathfrak{A} \end{vmatrix} = \begin{vmatrix} \mathfrak{A} - i \mathfrak{B} & -\mathfrak{B} \\ \mathfrak{B} + i \mathfrak{A} & \mathfrak{A} \end{vmatrix} = \begin{vmatrix} \mathfrak{A} - i \mathfrak{B} & -\mathfrak{B} \\ 0 & \mathfrak{A} + i \mathfrak{B} \end{vmatrix} .$$

Special case: If A is a finite dimensional \mathbb{C} -algebra, then for all $x \in A$, we have $N^A_{\mathbb{R}}(x) = |N^A_{\mathbb{C}}(x)|^2$.)

T14.59. a). Let *V* be an orientated *n*-dimensional \mathbb{R} -vector space and let $\sigma \in \mathfrak{S}_n$ be a permutation. If the basis v_1, \ldots, v_n represents the orientation of *V*, then the basis $v_{\sigma(1)}, \ldots, v_{\sigma(n)}$ of *V* represents the orientation of *V* if and only if σ is even. The basis v_n, \ldots, v_1 represents the orientation of *V* if and only if $n \equiv 0$ or $n \equiv 1$ modulo 4.

b). Let *E* be an orientated *n*-dimensinal \mathbb{R} -affine space. Suppose that the affine basis P_0, \ldots, P_n of *E* represents the orientation of *E*. For a permutation $\sigma \in \mathfrak{S}(\{0, \ldots, n\})$, the affine basis $P_{\sigma(0)}, \ldots, P_{\sigma(n)}$ of *E* represents the orientation of *E* if and only if σ is even. The affine basis P_n, \ldots, P_0 of *E* represents the orientation of *E* if and only if $n \equiv 0$ or $n \equiv 3$ modulo 4.

T14.60. In every subgroup of the affine group A(E) of an orientated finite dimensional real affine space *E* which has at least one element which does not preserve the orientation, the orientation preserving maps form a subgroup of index 2.

T14.61. Suppose that the finite dimensional \mathbb{R} -vector space *V* is the direct sum of the subspaces *U* and *W*. By the following prescription the orientation of any two spaces of *U*, *V*, *W* define a orientation of the third : If $\mathfrak{u} = (u_1, \ldots, u_r)$ resp. $\mathfrak{w} = (w_1, \ldots, w_s)$ bases of *U* resp. *W*, then the basis $(u_1, \ldots, u_r, w_1, \ldots, w_s)$ representation of the orientation of $V = U \oplus W$ if and only if the bases \mathfrak{u} resp. \mathfrak{w} both represent resp. donot represent both the orientations of *U* resp. *W*. (**Remark**: Note the dependence on the succession of *U* and *W*.) **T14.62.** Let *V* be a finite dimensional \mathbb{R} -vector space, *V'* be a subspace and let $\overline{V} = V/V'$. By the following prescription the orientation of any two spaces of V', V, \overline{V} define a orientation of the third: If $v'_1, \ldots, v'_r \in V'$ is a basis of *V'* and the residue classes of $v_1, \ldots, v_s \in V$ is a basis of \overline{V} , then the basis $v'_1, \ldots, v'_r, v_1, \ldots, v_s$ of *V* represents the orientation of *V* if and only if the bases v'_1, \ldots, v'_r of *V'* and $\overline{v}_1, \ldots, \overline{v}_s$ of \overline{V} represent resp. donot represent both the orientation of *V'* resp. \overline{V} .

T14.63. Determine which of the following bases of \mathbb{R}^n represent the standard orientation:

a). n = 2; $v_1 = (1, 1)$, $v_2 = (1, -1)$. b). n = 3; $v_1 = (-1, 0, 1)$, $v_2 = (0, -1, 1)$, $v_3 = (1, -1, 1)$. c). n = 4; $v_1 = (1, 1, 1, 1)$, $v_2 = (1, 2, 1, 1)$, $v_3 = (1, 1, 3, 1)$, $v_4 = (1, 1, 1, 4)$.

T14.64. Every C-linear isomorphism of a finite dimensional complex vector space is orientation preserving.

T14.65. Let *E* be a real affine plane with the volume function λ_v with respect to the basis v_1, v_2 of the space of the translations of *E* and $P_0, \ldots, P_r, r \ge 2$, be the points with coordinates $(a_j, b_j), j = 0, \ldots, r$ with respect to an affine coordinate system $O; v_1, v_2$. Let $[P_0, P_1, \ldots, P_r, P_0]$ be a simple closed polyonal path, i.e. the edges intersects if and only if they are consecutive and intersect only in vertices. Show that the surface-area of the closed polygon, up to sign, is equal to

$$\frac{1}{2} \left(\operatorname{Det} \begin{pmatrix} a_0 & a_1 \\ b_0 & b_1 \end{pmatrix} + \dots + \operatorname{Det} \begin{pmatrix} a_{r-1} & a_r \\ b_{r-1} & b_r \end{pmatrix} + \operatorname{Det} \begin{pmatrix} a_r & a_0 \\ b_r & b_0 \end{pmatrix} \right)$$

(Hint: What does the sign mean? One can think on the orientation of E. – Use induction and from the case r - 1 to the case r use after renumbering the vertices of the polygon with vertices P_0, \ldots, P_{r-1} and the triangle with the vertices P_{r-1}, P_r, P_0 with the path $[P_{r-1}, P_0]$ in common.)

T14.66. Draw the picture of the set $M := H_1 \cap H_2 \cap H_3$ in \mathbb{R}^2 with $H_i := \{(x, y) \in \mathbb{R}^2 \mid f_i(x, y) \ge 0\}$, i = 1, 2, 3 and $f_1(x, y) := x + 3y + 1$, $f_2(x, y) := -5x + y + 1$, $f_3(x, y) := x - y + 3$ and compute its surface-area.

T14.67. Let $P_0, \ldots, P_n \in \mathbb{R}^n$ be affinely independent points and *S* is the (convex) simplex with these vertices. Further, let $y_0, \ldots, y_n \in \mathbb{R}_+$ and *H* is the affine hyperplane in \mathbb{R}^{n+1} passing through the points $(P_0, y_0), \ldots, (P_n, y_n) \in \mathbb{R}^{n+1}$. Then *H* is the graph of the affine function $h: \mathbb{R}^n \to \mathbb{R}$ with $h(P_i) = y_i$, $i = 0, \ldots, n$. If $T \subseteq \mathbb{R}^{n+1}$ is the region in between *S* and *H*, i.e.

$$T := \{ (x, y) \in \mathbb{R}^{n+1} \mid x \in S, \ 0 \le y \le h(x) \}$$

then

$$\lambda^{n+1}(T) = \frac{y_0 + \dots + y_n}{n+1} \,\lambda^n(S) \,.$$

 $(\lambda^{n+1}(T)$ is additive in (y_0, \ldots, y_n) and does not alter even if the values y_0, \ldots, y_n are permutated. One may therefore assume that all y_i are equal or that all y_i other than one value y_{i_0} are zero.) Compute the volume of the following region in \mathbb{R}^3 , where the plane surface is:

