MA-219 Linear Algebra

Test 1

Saturday, September 06, 2003; 10:00 AM-11:30 AM

Let K denote a field.
T1.1. Show that
a). the family $\left\{f_{a} \mid a \in \mathbb{R}\right\} \subseteq \mathbb{R}^{\mathbb{R}}$ is linearly independent over \mathbb{R}, where $f_{a}: \mathbb{R} \rightarrow \mathbb{R}$ is the function defined by $t \mapsto|t-a|$;
b). the family $\left\{t^{n} e^{a t} \mid n \in \mathbb{N}, a \in \mathbb{C}\right\}$ is linearly independent over \mathbb{C}.

T1.2. Let V be a vector space over K.
a). If V has a countable infinite basis, then show that every K-subspace U of V has a countable basis.
[2 Points]
b). Let U and W be two subspaces of V with bases $x_{i}, i \in I$ and $y_{j}, j \in J$ respectively. Show that $x_{i}, y_{j},(i, j) \in I \times J$ is a basis of $U+W$ if and only if $U \cap W=0$.
[3 Points]
T1.3. Suppose that K has at least n elements and $d:=\operatorname{Dim}_{K} V \in \mathbb{N}^{+}$. Let U_{1}, \ldots, U_{n} be subspaces of V of equal dimension r and let $u_{1 i}, \ldots, u_{i r}$ be a basis of U_{i} for $i=1, \ldots, r$. Show that there exist $d-r$ vectors $x_{1}, \ldots, x_{d-r} \in V$ such that $u_{1 i}, \ldots, u_{i r}, x_{1}, \ldots, x_{d-r}$ is a basis of V for every $i=1, \ldots, n$.
[5 Points]
T1.4. Let E be an affine space over \mathbb{R} and assume that $\operatorname{Dim} E \geq n \in \mathbb{N}^{+}$. Let $\left(P_{0}, \ldots, P_{n}\right)$ be an n-simplex in E and let S be the center of mass of the points P_{0}, \ldots, P_{n} with equal weights 1 . Show that
a). $\overrightarrow{P_{0} S}=\frac{1}{n+1} \sum_{i=0}^{n} \overrightarrow{P_{0} P_{i}}$.
[2 Points]
b). Assume that $n \geq 2$. For $i=0, \ldots, n$, let S_{i} be the center of mass of the $(n-1)$ - simplex obtained from the n-simplex $\left(P_{0}, \ldots, P_{n}\right)$ by removing the point P_{i}. Show that the affine lines $P_{i} S_{i}, i=0, \ldots, n$ intersect at the point S and it divide each affine line $P_{i} S_{i}$ in the equal ratio $n:(n+1)$ i.e., $\overrightarrow{P_{i} S}=\frac{n}{(n+1)} \overrightarrow{P_{i} S_{i}}$ for all $i=0, \ldots, n$.
[3 Points]

