

MA-219 Linear Algebra**Test 1****Saturday, September 06, 2003 ; 10:00 AM - 11:30 AM**Let K denote a field.**T1.1.** Show that

a). the family $\{f_a \mid a \in \mathbb{R}\} \subseteq \mathbb{R}^{\mathbb{R}}$ is linearly independent over \mathbb{R} , where $f_a : \mathbb{R} \rightarrow \mathbb{R}$ is the function defined by $t \mapsto |t - a|$; [2 Points]

b). the family $\{t^n e^{at} \mid n \in \mathbb{N}, a \in \mathbb{C}\}$ is linearly independent over \mathbb{C} . [3 Points]

T1.2. Let V be a vector space over K .

a). If V has a countable infinite basis, then show that every K -subspace U of V has a countable basis. [2 Points]

b). Let U and W be two subspaces of V with bases $x_i, i \in I$ and $y_j, j \in J$ respectively. Show that $x_i, y_j, (i, j) \in I \times J$ is a basis of $U + W$ if and only if $U \cap W = 0$. [3 Points]

T1.3. Suppose that K has at least n elements and $d := \text{Dim}_K V \in \mathbb{N}^+$. Let U_1, \dots, U_n be subspaces of V of equal dimension r and let u_{1i}, \dots, u_{ir} be a basis of U_i for $i = 1, \dots, r$. Show that there exist $d - r$ vectors $x_1, \dots, x_{d-r} \in V$ such that $u_{1i}, \dots, u_{ir}, x_1, \dots, x_{d-r}$ is a basis of V for every $i = 1, \dots, n$. [5 Points]**T1.4.** Let E be an affine space over \mathbb{R} and assume that $\text{Dim } E \geq n \in \mathbb{N}^+$. Let (P_0, \dots, P_n) be an n -simplex in E and let S be the center of mass of the points P_0, \dots, P_n with equal weights 1. Show that

a). $\overrightarrow{P_0S} = \frac{1}{n+1} \sum_{i=0}^n \overrightarrow{P_0P_i}$. [2 Points]

b). Assume that $n \geq 2$. For $i = 0, \dots, n$, let S_i be the center of mass of the $(n-1)$ -simplex obtained from the n -simplex (P_0, \dots, P_n) by removing the point P_i . Show that the affine lines $P_iS_i, i = 0, \dots, n$ intersect at the point S and it divide each affine line P_iS_i in the equal ratio $n : (n+1)$ i.e., $\overrightarrow{P_iS} = \frac{n}{n+1} \overrightarrow{P_iS_i}$ for all $i = 0, \dots, n$. [3 Points]