Prof. D. P.Patil, Department of Mathematics, Indian Institute of Science, Bangalore

August-December 2003

MA-219 Linear Algebra

Test 1

Saturday, September 06, 2003 ; 10:00 AM - 11:30 AM

Let *K* denote a field.

T1.1. Show that

a). the family $\{f_a \mid a \in \mathbb{R}\} \subseteq \mathbb{R}^{\mathbb{R}}$ is linearly independent over \mathbb{R} , where $f_a : \mathbb{R} \to \mathbb{R}$ is the function defined by $t \mapsto |t - a|$; [2 Points]

b). the family $\{t^n e^{at} \mid n \in \mathbb{N}, a \in \mathbb{C}\}$ is linearly independent over \mathbb{C} . [3 Points]

T1.2. Let V be a vector space over K.

a). If V has a countable infinite basis, then show that every K-subspace U of V has a countable basis. [2 Points]

b). Let *U* and *W* be two subspaces of *V* with bases x_i , $i \in I$ and y_j , $j \in J$ respectively. Show that x_i , y_j , $(i, j) \in I \times J$ is a basis of U + W if and only if $U \cap W = 0$. [3 Points]

T1.3. Suppose that *K* has at least *n* elements and $d := \text{Dim}_{K} V \in \mathbb{N}^{+}$. Let U_{1}, \ldots, U_{n} be subspaces of *V* of equal dimension *r* and let u_{1i}, \ldots, u_{ir} be a basis of U_{i} for $i = 1, \ldots, r$. Show that there exist d - r vectors $x_{1}, \ldots, x_{d-r} \in V$ such that $u_{1i}, \ldots, u_{ir}, x_{1}, \ldots, x_{d-r}$ is a basis of *V* for every $i = 1, \ldots, n$. [5 Points]

T1.4. Let *E* be an affine space over \mathbb{R} and assume that Dim $E \ge n \in \mathbb{N}^+$. Let (P_0, \ldots, P_n) be an *n*-simplex in *E* and let *S* be the center of mass of the points P_0, \ldots, P_n with equal weights 1. Show that

a).
$$\overrightarrow{P_0S} = \frac{1}{n+1} \sum_{i=0}^{n} \overrightarrow{P_0P_i}$$
. [2 Points]

b). Assume that $n \ge 2$. For i = 0, ..., n, let S_i be the center of mass of the (n - 1)- simplex obtained from the *n*-simplex $(P_0, ..., P_n)$ by removing the point P_i . Show that the affine lines $P_i S_i$, i = 0, ..., n intersect at the point S and it divide each affine line $P_i S_i$ in the equal ratio n : (n + 1) i.e., $\overrightarrow{P_i S} = \frac{n}{(n + 1)} \overrightarrow{P_i S_i}$ for all i = 0, ..., n. [3 Points]