Prof. D. P.Patil, Department of Mathematics, Indian Institute of Science, Bangalore

August-December 2003

[3 Points]

MA-219 Linear Algebra

Test 2	
Sunday, October 05, 2003 ; 10:00 AM - 11:30 AM	
• Wherever necessary justify hints and your answers.	

T2.1. a). In the \mathbb{R} -vector space $V := \mathbb{R}^4$, find a complement W of the \mathbb{R} -subspace

$$U := \left\{ (a, b, c, d) \in V \mid \int_{0}^{1} t(a + bt + ct^{2} + dt^{3})dt = 0 \right\}.$$

and the projection p of V onto U along W.

b). Let $a, b, c \in \mathbb{R}$ and let $f : \mathbb{R}^3 \to \mathbb{R}^3$ be the \mathbb{R} -linear map defined by $f(e_1) = be_1 + ce_2$, $f(e_2) = -ae_1 + ce_3$ and $f(e_3) = -ae_2 - be_3$, where $e_1, e_2, e_3 \in \mathbb{R}^3$ is the standard \mathbb{R} -basis of \mathbb{R}^3 . Find the rank(f). [3 Points]

c). Let *V* be a infinite dimensional vector space over a field *K* with basis $\{v_i \mid i \in I\}$ and let $\{v_i^* \mid i \in I\}$ be the coordinate functions with respect to the basis $\{v_i \mid i \in I\}$. Show that $\sum_{i \in I} K v_i^* \neq V^*$. [4 Points]

T2.2. Let U be a K-subspace of a finite dimensional vector space V over a field K.

a). Suppose that $\frac{1}{2} \operatorname{Dim}_{K} V \leq \operatorname{Dim}_{K} U < \operatorname{Dim}_{K} V$. Show that there exist complements W_{1} , W_{2} of U in V such that $W_{1} \cap W_{2} = 0$. [5 Points]

b). Show that U has a unique complement in V if and only if either U = 0 or U = V. [5 Points]

T2.3. a). Let V be a finite dimensional vector space over a field K and let $f \in \text{End}_K(V)$. Show that there exists $g \in \text{Aut}_K(V)$ and projections p, q of V such that f = pg = gq. [5 Points]

b). Let K be a field and let $s, n \in \mathbb{N}$, $s \le n$. Show that every affine K-subspace of dimension s of K^n is a solution set of a linear system consisting n - s equations in n unknowns of rank n - s. [5 Points]

T2.4. Let V be a vector space over a field K.

a). Let $f_1, \ldots, f_n \in V^*$ be linear forms on in V and let $f: V \to K^n$ be the homomorphism defined by $f(x) := (f_1(x), \ldots, f_n(x))$. Show that $\text{Dim}_K (Kf_1 + \cdots + Kf_n) = \text{rank } f$. [5 Points]

b). Let $x_1, \ldots, x_n \in V$ be all non-zero vectors. Assume that *K* has at least *n* elements. Show that there exists a hyperplane *H* in *V* such that $x_i \notin H$ for all $i = 1, \ldots, n$. [6 Points]