MA 315 Galois Theory / January-April 2014

(Int PhD. and Ph. D. Programmes)

Download from: http://www.math.iisc.ernet.in/patil/courses/courses/Current Courses/...

Tel: +91-(0)80-2293 3212/(CSA 2239) E-mails: patil@math.iisc.ernet.in / dppatil@csa.iisc.ernet.in Venue: MA LH-4 (if LH-1 is not free)/LH-1

Lectures: Monday and Wednesday; 11:30–13:00

TAs/Corrections by: Aritra Sen (john.galt.10551990@gmail.com) / Palash Dey (palash@csa.iisc.ernet.in) Midterms: 1-st: February ??, 2014; 2-nd: March ??, 2014; Final Examination: ???. April ??. 2014

Final Examination: ???, April ??, 2014,

Evaluation Weightage: Assignments: 20% Midterms (Two): 30% Final Examination: 50%

Range of Marks for Grades (Total 100 Marks)						
	Grade S	Grade A	Grade B	Grade C	Grade D	Grade F
Marks-Range	> 90	76–90	61–75	46–60	35–45	< 35

1. Zeros of Polynomials

- **1.1** Let k be a field and let $f := a_0 + a_1X + a_2X^2 + \cdots + a_nX^n \in k[X]$ be a polynomial. Further, let $f_0 := a_0 + a_2 X + a_4 X^2 + \cdots$ and $f_1 := a_1 + a_3 X + a_5 X^2 + \cdots$. Show that $X^2 - a$ divides f in k[X] if and only if $f_0(a) = f_1(a) = 0$. (**Hint**: Divide f by $X^2 - a$.)
- **1.2** Let A be an infinite integral domain and let $f, g, h \in A[X_1, \dots, X_n], h \neq 0$ be polynomials such that f(a) = g(a) for all $a \in A^n$ whenever $h(a) \neq 0$. Show that f = g. (Hint: Use the following: **Identity Theorem for Polynomials:** Let A be an integral domain and let $f,g \in A[X_1,...,X_n]$ be two polynomials such that the partial degrees $\deg_{X_i} f$ and $\deg_{X_i} g$ with respect to the indeterminate X_i is $\leq r_i \in \mathbb{N} \cup \{-\infty\}$ for all i = 1, ..., n. Suppose that there are subsets $N_1, ..., N_n$ of A such that $\#N_i > r_i$ for all $i=1,\ldots,n$. If $f(a_1,\ldots,a_n)=g(a_1,\ldots,a_n)$ for all $(a_1,\ldots,a_n)\in N_1\times\cdots\times N_n$, then f=g.)
- **1.3** Let A be a non-zero commutative ring. Show that the canonical map $\Phi: A[X] \to A^A$, defined by $f \mapsto (A \to A, a \mapsto f(a))$ is surjective if and only if A is a finite field. Moreover, in this case, prove that the kernel Ker Φ is generated by the monic polynomial $X^q - X$. (Hint: Use Division with remainder and the Identity Theorem given in the Hint of Exercise 1.2.)
- **1.4** Let k be an infinite field and let K|k be a field extension of $k, f \in k[X_1, \dots, X_n]$ be a polynomial and let $\mathscr{E}: a_{i1}x_1 + \cdots + a_{in}x_n = b_i, \quad i = 1, \dots, m,$

be a system of linear equations with coefficients $a_{ij}, b_i \in k$. Suppose that the system \mathscr{E} has a solution $(x_1, ..., x_n) \in K^n$ with $f(x_1, ..., x_n) \neq 0$. Then show that the system \mathscr{E} also has a solution $(y_1,\ldots,y_n)\in k^n$ with $f(y_1,\ldots,y_n)\neq 0$. (**Hint:** Let n-r be the rank of the system $\mathscr E$. The entire solution spaces $L_k(\mathscr{E})$ (over k) and $L_K(\mathscr{E})$ (over K) of the system \mathscr{E} are determined by a solution x = 1 $(x_1,\ldots,x_n)\in k^n$ and solutions $x^{(\rho)}=(x_1^{(\rho)},\ldots,x_n^{(\rho)})\in k^n$, $\rho=1,\ldots,r$, which generate the solution spaces $L_k(\mathcal{E}_0)$ and $L_K(\mathcal{E}_0)$ of the corresponding homogenous system \mathcal{E}_0 over k as well as over K. Substitute this resulting parametrization of the solution space $L_K(\mathscr{E})$ in the polynomial f and use the Identity Theorem.)

- **1.5** Let A be a commutative ring, $\mathfrak{a}_1, \ldots, \mathfrak{a}_n$ be pairwise comaximal ideals in A and $\mathfrak{a} := \mathfrak{a}_1 \cdots \mathfrak{a}_n$. Suppose that the polynomial $f \in A[X]$ has a zero in every quotient ring A/\mathfrak{a}_i , $i = 1 \dots, n$. Show that f has also a zero in the quotient ring A/\mathfrak{a} . (Hint: - - Recall that two ideal $\mathfrak{a},\mathfrak{b}$ in a (commutative) ring A are said to c o m a x i m a l if the sum ideal $\mathfrak{a} + \mathfrak{b} = A$. For example, the ideals $\mathbb{Z}n$ and $\mathbb{Z}m$ in the ring \mathbb{Z} are comaximal if and only if m and n are relatively prime. Use the following: **Chinese Remainder Theorem**: The canonical ring homomorphism $\pi: A \to \prod_{i=1}^n A/\mathfrak{a}_i$ defined by $a \mapsto$ $(\pi_1(a),\ldots,\pi_n(a))$, where $\pi_i:A\to A/\mathfrak{a}_i$, $i=1,\ldots,n$ are the canonical projections, is surjective with Ker $\pi = \bigcap_{i=1}^n \mathfrak{a}_i$. In particular, π induces the isomorphism $A/\bigcap_{i=1}^n \mathfrak{a}_i \xrightarrow{\sim} \prod_{i=1}^n A/\mathfrak{a}_i$.)
- **1.6** Let $f \in \mathbb{Z}[X]$ be a polynomial of positive degree. Show that there are infinitely many prime numbers p such that the polynomial f has a zero in $\mathbb{Z}/\mathbb{Z}p$. (Hint: Show by using Taylor's formula the values $f(x) \neq 0$ for $x \in \mathbb{N}^*$ have altogether have infinitely many prime divisors: For $x \in \mathbb{N}^*$, there exists an integer $y \in \mathbb{Z}$ such that $f(x+f(x)^2) = f(x) + f(x)^2 y = f(x) (1+f(x)y)$. But not all |f(x)|, $x \in \mathbb{N}^*$ are

Below one can see some supplements to the results proved in the class.

Supplements

To understand and appreciate the Supplements which are marked with the symbol † one may possibly require more mathematical maturity than one has! These are steps towards applications to various other branches of mathematics, especially to Analysis, Number Theory and Algebraic Geometry.

- **T1.1** (a) How many zeros the polynomial $X^2 + X$ in \mathbb{Z}_6 ?
- **(b)** The polynomial $X^3 + X^2 + X + 1 \in \mathbb{Z}_4[X]$ is a multiple of both X + 1 and X + 3, but not of the product (X + 1)(X + 3).
- (c) Give an example of a commutative ring A such that the polynomial $X^2 X$ has infinitely many zeros in A.
- (d) Compute the zeros and the two top coefficients of the polynomial over \mathbb{Z} defined by the following determinant:

Det
$$\begin{pmatrix} 1 & 1 & 1 & \cdots & 1 \\ 1 & X+1 & 1 & \cdots & 1 \\ 1 & 1 & X+2 & \cdots & 1 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & 1 & \cdots & X+n \end{pmatrix}$$

- (e) For which prime numbers p, the polynomial $X^5 + 6X 20$ is divisible by $X^2 + 2$ in the polynomial ring k[X] in one indeterminate over a field k of characteristic p?
- (f) Let $f_1, \ldots, f_n \in A[X]$ be polynomials in one indeterminate over a commutative ring A of degrees $\leq n-2$ and let $a_1, \ldots, a_n \in A$ be arbitrary elements. Show that :

$$Det (f_i(a_j))_{1 \le i, j \le n} = 0.$$

- **T1.2** Let K|k be a field extension and let $f,g \in k[X] \subseteq L[X]$. Show that g divides f in the ring k[X] if and only if g divides f in the ring K[X].
- **T1.3** Let $a, b, c \in \mathbb{N}$ be natural numbers. Show that $X^{3a+2} + X^{3b+1} + X^{3c} \in \mathbb{Z}[X]$ is divisible by $X^2 + X + 1$.
- **T1.4** Let A be an infinite integral domain and let $f \in A[X_1, ..., X_n]$. Show that f is homogeneous of degree r if and only if $f(aX_1, ..., aX_n) = a^r f(X_1, ..., X_n)$.
- [†]**T1.5** Show that the polynomials

$$f := (X^2 - 2)(X^2 + 7)(X^2 + 14)$$
 and $g := (X^2 - 2)(X^2 - 17)(X^2 - 34)$

have zeros in every proper quotient ring $\mathbb{Z}/\mathbb{Z}n$ of the ring of integers \mathbb{Z} , $n \in \mathbb{N}$, $n \geq 2$, but have no zeroes in the field \mathbb{Q} of rational numbers. (**Hint**: Use the following Exercise from Elementary Number Theory: Let a and b be relatively prime integers. Suppose that every prime divisor p of a (respectively, of b), b (respectively, a) is a quadratic residue modulo p. Further assume that one of the numbers a, b, ab is congruent modulo 1 modulo 8. Then show that for every $m \in \mathbb{N}^*$, the equation $(x^2 - a)(x^2 - b)(x^2 - ab) \equiv 0 \pmod{m}$ has a solution. For the solution of this Exercise one might need to use the elementary facts about the unit group \mathbb{Z}_m^\times and quadratic residues.)

T1.6 (Taylor's Formula) Let I be any indexed set (for example, $I = \{1, 2, ..., n\}, n \in \mathbb{N}$) and let A be an arbitrary commutative ring. Let $f \in A[X_i \mid i \in I]$ and let $a = (a_i)_{i \in I} \in A^I$. The coefficients $b_v \in A$, $v \in \mathbb{N}^{(I)}$, in the Taylor's expansion

$$f = \sum_{\mathbf{v} \in \mathbb{N}^{(I)}} b_{\mathbf{v}} (X - a)^{\mathbf{v}}$$

are determined by the equations : $v!b_v = (\partial_v f)(a)$, $v \in \mathbb{N}^{(I)}$. Moreover, if $m = m \cdot 1_A$ are all units in A for all $m \in \mathbb{N}^*$ (for example, $A = \mathbb{Q}$ or A = k is any field of characteristic 0), then the above formula can be represented as:

$$f = \sum_{\mathbf{v} \in \mathbb{N}^{(I)}} \frac{(\partial_{\mathbf{v}} f)(a)}{\mathbf{v}!} (X - a)^{\mathbf{v}}$$

D. P. Patil/IISc ma315-gt2014-ex01.tex January 13, 2014; 9:50 a.m. 2/4

and is called the Taylor's expansion of $f \in A[X_i | i \in I]$ at the point $a \in A^I$.

(**Remarks:** Note that above we have used the standard notation from the Calculus of severable variables: For each $j \in I$, $\partial_j := \partial/\partial X_j$ is the j-th partial derivatives of $A[X_i \mid i \in I]$; $\partial_j : A[X_i \mid i \in I] \to A[X_i \mid i \in I]$ is an A-linear endomorphism of $A[X_i \mid i \in I]$ which also satisfy the product-rule: $\partial_j (fg) = f \partial_j (g) + g \partial_j (f)$ for all $f, g \in A[X_i \mid i \in I]$. This means that ∂_j is a A-derivation of the polynomial ring $A[X_i \mid i \in I]$. Moreover, $\partial_j, j \in I$, are pairwise commutative, i. e. $\partial_j \partial_k = \partial_k \partial_j$ for all $j, k \in I$ (this is immediate from the fact that ∂_j is uniquely determined by its values $\partial_j (X_i)$ on the indeterminates $X_i, i \in I$).

Therefore, for arbitrary $v = (v_i) \in \mathbb{N}^{(I)}$, $\partial_v := \frac{\partial^{|v|}}{\partial X^v} = \prod_{i \in I} \partial_i^{v_i}$ is a well-defined A-linear endomorphism of

 $A[X_i \mid i \in I]$. In case of one variable, i. e. $I = \{1\}$ and $X = X_1$; it is $\frac{\mathrm{d}}{\mathrm{d}X^{\nu}}$ and instead of $\frac{\mathrm{d}f}{\mathrm{d}X^{\nu}}$ one can also use the short notation $f^{(\nu)}$ (called the ν -th derivative of f). For multi-index $\nu = (\nu_i) \in \mathbb{N}^{(I)}$, we have used the short notation: $|\nu| = \sum_{i \in I} \nu_i$, $\nu = \prod_{i \in I} \nu_i!$, $V^{\nu} = \prod_{i \in I} X_i^{\nu_i}$.)

- (a) Let A be an integral domain, $a \in A$ and let $f \in A[X]$, $f \neq 0$. For $i \in \mathbb{N}$, let $f^{(i)} := \frac{\mathrm{d}f}{\mathrm{d}X^i}$ be the *i*-th derivative of f. then:
- (1) If a is a zero of f with multiplicity v, then $f^{(i)}(a) = 0$ for all i = 0, ..., v 1. Moreover, if v! is not a zero divisor in A, then $f^{(v)}(a) \neq 0$.
- (2) (Converse of (1)) If v! is not a zero divisor in A and if $f^{(i)}(a) = 0$ for all i = 0, ..., v 1 and $f^{(v)}(a) \neq 0$, then v is the multiplicity of the zero a of f.

In particular, if the characteristic CharA=0, then the multiplicity of f at $a\in A$ is the smallest natural number $v\in \mathbb{N}$ with $f^{(v)}(a)\neq 0$. (**Hint**: Use Taylor's Formula $f=\sum_{i\in \mathbb{N}}b_i(X-a)^i$, where $i!b_i=f^{(i)}(a)$.)

(b) (Polynomial Theorem) Let A be a commutative ring and let $a_1, \ldots, a_r \in A$ be arbitrary elements. Then for every $n \in \mathbb{N}$, we have the formula:

$$(a_1 + \dots + a_r)^n = \sum_{\mathbf{v} = (v_1, \dots, v_r) \in \mathbb{N}^r, |\mathbf{v}| = n} \frac{n!}{\mathbf{v}!} a^{\mathbf{v}}.$$

(**Hint :** For a proof use the Kronecker's method of indeterminates. For this, let $\Phi: \mathbb{Z}[X_1,\ldots,X_r] \to A$ be the substitution homomorphism $X_i \mapsto a_i$, $i=1,\ldots,r$. Clearly, the formula for X_1,\ldots,X_r implies the formula for a_1,\ldots,a_r . We therefore restrict to calculate g^n for $g:=X_1+\cdots+X_r$. By the Taylor's formula $g^n=\sum_{|v|=n}a_vX^v$ where $v!a_v=(\partial_vg^n)(0)$.

- (c) Let k be a field of characteristic 0. Show that all zeroes of the n-th truncated exponential polynomial $E_n:=1+X+X^2/2!+\cdots+X^n/n!,\ n\in\mathbb{N}^*$, are simple, i.e. of multiplicity one. (**Hint:** Note that $\frac{\mathrm{d}}{\mathrm{d}X}(E_n)=E_n'=E_{n-1}$ for every $n\in\mathbb{N}^*$.)
- **T1.7** Let $f \in \mathbb{R}[X]$ be a non-constant polynomial which has only real zeroes. Show that:
- (a) If a is a multiple zero of the derivative f' of f, then a is also a zero of f. (Hint: Use Rolle's Theorem.)
- **(b)** $(f'(a))^2 \ge f(a) f''(a)$ for all $a \in \mathbb{R}$. (**Hint**: Let $a_1, \ldots, a_n \in \mathbb{R}$ be all zeroes (may be repeated!) of f. Then $f'(x) = \sum_{i=1}^n \frac{f(x)}{(X-a_i)}$ for all $x \notin \{a_1, \ldots, a_n\}$. The product rule of differentiation yields $\frac{f'(x)}{f(x)} = \sum_{i=1}^n \frac{1}{(X-a_i)}$. Differentiate this equation again.)
- **T1.8** We recall here some consequences of the Intermediate Value theorem for real polynomials. These can be directly proved without going back to Analysis.
- (a) (R olle's Theorem) Let $f \in \mathbb{R}[X]$ be a polynomial and let $a, b \in \mathbb{R}$ be two zeroes of f with a < b. Then there exists $c \in (a,b)$ such that f'(c) = 0.
- **(b)** (Mean-Value Theorem) Let $f \in \mathbb{R}[X]$ be a polynomial and let $a,b \in \mathbb{R}$ with a < b. Then there exists $c \in (a,b)$ such that $\frac{f(b)-f(a)}{b-a}=f'(c)$, where f' denote the derivative of f. (**Hint:** Apply Rolle's theorem to the polynomial $g:=f-f(a)-\frac{f(b)-f(a)}{b-a}(X-a)$.)

3/4

- (c) Let $f \in \mathbb{R}[X]$ be a polynomial and let $a, b \in \mathbb{R}$ with a < b. Suppose that f'(x) > 0 (respectively, f'(x) < 0) for all $x \in (a,b)$ (respectively, $x \in (a,b)$), then show that f(a) < f(b) (respectively, f(a) > f(b)).
- **T1.9** Let $f \in \mathbb{R}[X]$ be a polynomial and let $a, b \in \mathbb{R}$ with a < b.
- (a) If $f(a) \cdot f(b) < 0$ (respectively, $f(a) \cdot f(b) > 0$), then show that the number of zeros (every zero should be counted with multiplicities) of f in (a,b) is odd (respectively, even). (**Hint:** Let x_1, \ldots, x_r be all distinct zeroes of f in (a,b) with multiplicities v_1, \ldots, v_r , respectively. Therefore $f(X) = (X x_1)^{v_1} \cdots (X x_r)^{v_r} \cdot g(X)$ with $g \in \mathbb{R}[X]$ and g has no zero in (a,b). Further, since $g(a) \cdot g(b) > 0$ and $\frac{f(b)}{f(a)} = \left(\frac{b x_1}{a x_1}\right)^{v_1} \cdots \left(\frac{b x_r}{a x_r}\right)^{v_r} \cdot \frac{g(b)}{g(a)}$, we have Sign $\frac{f(b)}{f(a)} = (-1)^{v_1 + \cdots + v_r}$.)
- (b) If f(a) = 0, f(b) = 0 and if f has no zeroes in (a,b), then show that the number of zeros (every zero should be counted with multiplicities) of f' in (a,b) is odd. (**Hint**: Suppose that $f = (X-a)^{\mu} \cdot (X-b)^{\nu} \cdot g(X)$ with $g \in \mathbb{R}[X]$ and g has no zero in [a,b]. Then $f' = (X-a)^{\nu-1} \cdot (X-b)^{\mu-1} \cdot h$ with $h := \mu(X-b) \cdot g + \nu(X-a) \cdot g + (X-a)(X-b) \cdot g'$ and hence $h(a) \cdot h(b) < 0$. Now use the part (a).)
- **T1.10** Let $n \in \mathbb{N}^*$ and let $L_n := \sum_{\nu=0}^{n-1} (-1)^{\nu} X^{\nu} / (\nu+1)$ be the *n*-th truncated logarithm polynomial (the expansion of $\log(1+X)$ at the point 0). Show that if *n* is odd (respectively, even), then L_n has no (respectively, exactly one simple zero) real zero other than 0.
- **T1.11** (a) Let $f \in \mathbb{R}[X]$, $f \neq 0$, and let $a \in \mathbb{R}$. Show that the polynomial F := f + af' has at least as many as real zeros as f; Moreover, this assertion is also true even if one counts each zero with multiplicities. (**Hint**: Assume $a \neq 0$. If $x, y \in \mathbb{R}$, x < y are zeroes of f such that f has no zeroes in (x,y), then F has odd number of zeroes counted with multiplicities in (x,y). Further, note that $\deg F = \deg f$.)
- (b) Let $g \in \mathbb{R}[X]$ be a polynomial of degree $n \in \mathbb{N}$ and let $a \in \mathbb{R}$. Show that the polynomial $f := g + ag' + \cdots + a^n g^{(n)}$ have at most as many real zeroes as g (whether each zero is counted with multiplicities or as simple). (**Hint**: Use g = f af'.)
- (c) Let $n \in \mathbb{N}$. Show that the *n*-th truncated exponential polynomial $E_n := \sum_{v=0}^n X^v/v!$ has exactly one (simple) (respectively, no) real zero if *n* is odd (respectively, even). (**Hint**: Apply part (b) to $g := X^n/n!$ and a := 1.)
- **T1.12** (Polynomial-Interpolation) Let A be an integral domain and let $m \in \mathbb{N}$. Whether there is a polynomial $f \in A[X]$ of degree m which takes m+1 given values at m+1 places and how does one explicit find it, is known as Interpoltaion Problem. Over fields the existence of f is trivial: If k is a field, $a_1, \ldots, a_{m+1} \in k$ are distinct (places) elements in k and if $b_1, \ldots, b_m \in k$ are given values in k, then (Lagrange's Interpolation-Formula):

$$f := \sum_{i=0}^{m} \frac{b_i}{c_i} \prod_{j \neq i} (X - a_j), \quad \text{where} \quad c_i := \prod_{j \neq i} (a_i - a_j), \quad i = 0, \dots, m,$$

is the unique polynomial of degree $\leq m$ with $f(a_i) = b_i$ for i = 0, ..., m.

(Newton's interpolation) One can also proceed as follows: Since $f_j(a_j) \neq 0$, the coefficients $\alpha_0, \ldots, \alpha_m \in k$, in

 $\left(\sum_{j=0}^r \alpha_j f_j\right)(a_r) = b_r, \quad r = 0, \dots, m,$

can be recursively determined, where $f_0:=1, f_1:=X-a_0, f_2:=(X-a_0)(X-a_1), \ldots, f_m:=(X-a_0)\cdots(X-a_{m-1})$. Moreover, the polynomials $\sum_{j=0}^r \alpha_j f_j$ are of degree $\leq r$ and takes the values b_i at the places a_i for all $i=0,\ldots,r$.

(Hermite-Interpolation) Let k be a field, $a_1, \ldots, a_r \in k$ be distinct elements and let $m_1, \ldots, m_r \in \mathbb{N}$ be such that $m_1! \cdots m_r!$ is not zero in k. Further, let $m := (m_1 + 1) + \cdots + (m_r + 1)$.

For given elements $b_i^{(\mu_i)}$ in k, $0 \le \mu_i \le m_i$, $1 \le i \le n$, show that there exists a unique polynomial $f \in k[X]$ of degree < m such that $\frac{\mathrm{d}^{\mu_i} f}{\mathrm{d} X^{\mu_i}}(a_i) = b_i^{(\mu_i)}$, $0 \le \mu_i \le m_i$, $1 \le i \le n$. (**Hint:** The k-linear map $f \mapsto \left(\frac{\mathrm{d}^{\mu_i} f}{\mathrm{d} X^{\mu_i}}(a_i)\right)$ from the k-vector space $k[X]_m$ of polynomials of degree < m into the k-vector space k^m is injective and hence bijective, since $\dim_k k[X] = m = \dim_k k^m$.)