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2. Algebraic Extensions
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2.1 Let K|k be a field extension.
(a) Show that the following statements are equivalent:
(i) K|k is algebraic.
(ii) For every intermediary subfield L ∈ F(K|k) , every k-algebra homomorphism σ : L→ L is an
automorphism.

(b) Let x,y ∈ K be such that y is algebraic over k(x) and y is transcendental over k . Show that x
is algebraic over k(y) .

(c) Let x,y ∈ K be algebraic over k . Prove that µx,k is irreducible over k(y) if and only if µy,k is
irreducible over k(x) . (Remark : For generazation see Exercise T2.6.)

2.2 Let k be a field of characteristic 6= 2.
(a) Let K|k be a field extension of degree [K : k] = 2. Show that K = k(x) with x2 = a ∈ k .
Moreover, show that K|k is Galois extension with Galois group Gal(K|k)≈ Z× .

(b) Let K|k be a field extension and let x,y ∈ K with x2 = b ∈ k and y2 = b ∈ k . Determine
necessary and sufficient condition so that there exists a k-algebra isomorphism k(x)−−−∼−−−−- k(y) .
(Remark : In any case there exists a k-vector space isomorphism k(x)−−−−∼−−−−−- k(y) . See also Exercise T2.3. )

(c) Let z,w ∈ C be algebraic numbers with µz,Q = X2−2 and µw,Q = X2−4X +2. Show that
there exist an isomorphism Q(z)−−−∼−−−−- Q(w) of fields.

2.3 (S i m p l e f i e l d e x t e n s i o n s) A field extension K|k is called s i m p l e with p r i m -
i t i v e e l e m e n t x ∈ K if K = k(x) .
(a) Let K|k be a simple algebraic field extension with primitive element x ∈ K . Let L be an
intermediary subfield of K|k and let µx,L = b0+b1X + · · ·+bm−1Xm−1+Xm ∈ L[X ] be the minimal
polynomial of x over L . Show that L = k(b0, . . . ,bm−1) . (Hint : Put L′ := k(b0, . . . ,bm−1) . Then
L′ ⊆ L , L′(x) = L(x) = K and µx,L = µx,L′ .)

(b) (S t e i n i t z) Let K|k be an algebraic field extension. Show that K|k is simple if there are only
finitely many intermediary subfields. (Hint : Let F(K|k) denote the set of intermediary subfields of K|k .
(⇒ ): Assume K = k(x) is simple and let D(x) := {g∈K[X ] | g is monic divisor of µx,k in K[X ]} . Use part (a)
to show that the map D(x)→ F(K|k) , g = b0+b1X + · · ·+bm−1Xm−1+Xm 7→ k(b0, . . . ,bm−1) is surjective.
(⇐ ): Assume that F(K|k) is finite. We may also assume that k is infinite. Since {k(x) | x ∈ K} ⊆ F(K|k)
is finite, we can choose x ∈ K with [k(x) : k] maximal. We claim that K = k(x) . For, if y ∈ K \ k(x) ,
then consider the finite set {k(x+ay) | a ∈ k} ⊆ F(K|k) . Therefore, since k is infinite, there exist distinct
a,b ∈ k such that k(x+ay) = k(x+by) , but then y = (a−b)−1 (x+ay)− (x+by)) ∈ k(x+ay) and hence
k(x+ay) = k(x,y)) k(x) which contradicts the maximality of [k(x) : k] . )

(c) The assumption that K|k is algebraic is necessary in part (b). More precisely, show that
the simple field extension k(X)|k has infinitely many intermediary subfields. (Hint : Note that
k(Xn) ∈ F(k(X)|k) for every n ∈N∗ and by part (a) k(Xn) = k(Xm) for n,n ∈N∗, n 6= m .)

2.4 (a) Let K = k(x) be a finite simple extension of a field k of degree n . Show that the number of
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intermediate fields L with k ⊆ L⊆ K is at most 2n−1 , i. e. #F(K|k)≤ 2[K:k]−1 . Give an example
to show that this inequality can be very strict.

(b) Let K|k be a field extension and let x,y ∈ K×. If xm ∈ k and yn ∈ k for some relatively prime
natural numbers m,n ∈N∗ . Show that x · y is a primitive element of the field extension k(x,y)|k .
(Hint : There exists s, t ∈Z such that 1 = zm+ tn .)

(c) Let X ,Y be two indeterminates over Zp and let k := Zp(X p,Y p) ⊆ Zp(X ,Y ) =: K . Show
that the field extension K|k has degree p2 and is not simple. Exhibit an infinite number of many
intermediary subfields of K|k . (Hint : Note that [k(X + fY ) : k] = p for every f ∈ k .)

2.5 Let p,q be prime numbers with q < p and let k be a field of characteristic 6= p . Let K(x,y)|k
be a field extension with [k(x) : k] = p and [k(y) : k] = q. Show that K|k is a simple extension with
primitive element x+y . (Hint : If the assertion is not true, then µx+y,k(X +y) = µx,k and µx+y,k(x+X) =

µy,k which is not possible by assumptions.)

2.6 (G a l o i s g r o u p o f t h e f u n c t i o n f i e l d) Let k be a field and let K = k(X) be
the rational function field in one indeterminate X over k.

(a) Let ϕ ∈ k(X) be a non-constant rational function (i. e. ϕ 6∈ k). Show that the field extension
K|k(ϕ) is finite. Moreover, show that [K : k(ϕ)] = deg ϕ , where for a rational function ϕ = f/g
with f ,g ∈ k[X ] , gcd( f ,g) = 1, put deg ϕ := max{deg f ,deg g} . (Hint : Since X is a zero of
the polynomial f (Y )−ϕ · g(Y ) ∈ k(ϕ)[Y ] , X is algebraic over k(ϕ) . Use gcd( f ,g) = 1 to show that
µX ,k(ϕ) = f (Y )−ϕ ·g(Y ) . )

(b) If L ∈ F(k(X)|k) is an intermediary subfield with k 6= L , then show that the field extension
k(X)|L is finite. (Hint : Choose ϕ ∈ L\ k and use the part (a).)

(c) Let ϕ = f/g ∈ k(X) \ k with gcd( f ,g) = 1. Show that the map k(X) → k(X) , F/G 7→
F(ϕ)/G(ϕ) is a k-algebra homomorphism. Moreover, it is a k-algebra automorphism if and only
if deg ϕ = max{deg f ,degg}= 1.
(d) Show that the map

Gal(k(X)|k)→ PGL2(k) := GL2(k)/k× σ 7→ the image of
(

a b
c d

)
in PGL2(k)

is a canonical isomorphism of groups, where σ is defined by σ(X) =
aX +b
cX +d

, see the part (c).

(Remarks : The group PGLn(k) is the well-known group of projective collineations of the projective space
Pk(kn) over k . It is called the P r o j e c t i v e l i n e a r g r o u p over k and often occurs in Projective
Geometry, Complex Analysis and Riemann Surfaces.)

(e) If k is infinite then show that FixGal(k(X)|k) k(X) = k . (Hint : The group Gal(k(X)|k) is generated
by the elements X 7→ aX , X 7→ X +b , X 7→ 1/X , with a ∈ k×,b ∈ k .)

(f) Show that the set of translations T(k(X)|k) := {τa ∈ Gal(k(X)|k) | τa(X) = X +a , a ∈ k} is a
subgroup of the Galois group Gal(k(X)|k) . Moreover, the map (k,+)→ T(k(X)|k) , a 7→ τa is an
isomorphism of groups. If k is infinite then show that FixT(k(X)|k) k(X) = k .

(g) Assume that the characteristic of k is 0 . Let a ∈ k× and let H(τa) ⊆ Gal(k(X)|k) be the
subgroup of Gal(k(X)|k) generated by τa : k(X)→ k(X) , X 7→ X + a . Show that G is infinite
cyclic. Determine the fixed field FixH(τa) k(X) . What is [k(X) : FixH(τa) k(X)]?

2.7 Let k be a field of characteristic 0 and let k(X) be the field of rational functions in one
indeterminate X over k . Let L := k(X2) , L′ := k(X2 +aX +b) be two intermediary subfields of
k(X)|k) . Show that both field extensions k(X)|L and k(X)|L′ are finite field extensions of degrees
2 . Moreover, show that if a 6= 0, then L∩L′ = k and hence the field extension k(X)|(L∩L′) is not
algebraic. (Hint : Use Exercise2.?-(a) and note that ϕ ∈ L′ if and only if ϕ(−X−a) = ϕ(X) . Show that
any ϕ ∈ k(X) with ϕ(X +a) = ϕ(X) must be constant (here one needs to use Chark = 0).)
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2.8 Let k be a finite field with q elements, K|k be a finite extension of k and let 0 6= x ∈ K . Let
d ∈N be the order of x∈K× in the multiplicative group K× of K . Show that s := [k(x) : k] is equal
to the order of the residue class of q in the unit group (Z/Zd)× of the ring Z/Zd . Moreover,

show that s is the smallest positive natural number with x = xqs
and µx,k =

s−1

∏
i=0

(X − xqi
) is the

minimal polynomial of x over k .

2.9 (C o m p o s i t u m o f s u b f i e l d s) Let K|k be a field extension. For two intermediary
subfields L and L′ of K|k , the c o m p o s i t u m L ·L′ of L and L′ is the smallest subfield of K
which contain L∪L′ .

For two intermediary subfields L and L′ of a field extension K|k , show that:

(a) L ·L′ = L(L′) = L′(L) .
(b) If L|k is algebraic, then so is L · L′|L′ . Moreover, if L|k is finite, then so is L · L′|L′ and
[L ·L′ : L′]≤ [L : k] , but, in general, [L ·L′ : L] is not a divisor of [L : k] . (Hint : Consider L =Q(x)
and L =Q(ζ3 x) , where x ∈ |R is the cube root of 2 and ζ3 = e2π i/3 .)
(c) L · L′ is finite over k if and only if both L|k and L′|k are finite. Moreover, in this case
[L ·L : k] ≤ [L : k] · [L′ : k] . Further, if gcd([L : k], [L′ : k]) = 1, then the equality holds. Give an
example of intermediary subfields L,L′ of K|k such that [L ·L′ : k]< [L : k] · [L′ : k] .
(d) If L ·L′ is finite over k and the equality [L ·L : k] = [L : k] · [L′ : k] hold, then show that L∩L′= k .
Further, show that the converse holds if either [L : k] = 2 or [L′ : k] = 2. Use Example in the Hint
of part (b) to check that L∩L′ = k , [L : k] = 3 = [L′ : k] = 2, but [L ·L′ : k]< 9.
(e) L ·L′ is algebraic over k if and only if both L|k and L′|k are algebraic.

Below one can see some supplements to the results proved in the class.
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Supplements
To understand and appreciate the Supplements which are marked with the symbol † one may possibly require
more mathematical maturity than one has! These are steps towards applications to various other branches of
mathematics, especially to Analysis, Number Theory and Algebraic Geometry.

T2.1 Let K|k be a field extension and let x ∈ K .
(a) Let x ⊆ K be an arbitrary subset. Show that y ∈ K is algebraic over k(x) if and only if y is
algebraic over k(x1, . . . ,xn) for some n ∈N∗ and x1, . . . ,xn ∈ x .
(b) Show that K|k is algebraic if and only if every subring R of K with k ⊆ R⊆ K is a field.
(c) Let p be a prime number and let x ∈R be the cube root 3

√
p of p (in R ), i. e. x3 = p . If the

subset {a+bx | a,b ∈Q} ⊆R of R a subfield?
(d) Let z ∈ C be a square root of 2 i . What is the degree of the field extension Q(z)|Q?
(e) If [K : k] = p is a prime number, then show that there is no intermediate field between k and K .
(f) If [K;k] is finite, then show that deg µx,k divides [K : k] .
(g) If x ∈ K is algebraic over k with deg µx,k is odd, then show that deg µx2,k is also odd and
k(x) = k(x2) .
(h) If x,y ∈ K are algebraic over k , then [k(x,y) : k]≤ deg µx,k ·deg µy,k . Moreover, if µx,k and
µy,k are relatively prime i. e., gcd(µx,k,µy,k) = 1, then the equality holds.
(i) Suppose that K|k is finite of degree m and f ∈ k[X ] is an irreducible polynomial over k of
degree n . If gcd(m,n) = 1, then show that f is also irreducible over K .

T2.2 Show that every non-constant rational function ϕ ∈ k(X1, . . . ,Xn) is transcendental over k .
(Remark : It follows that k is algebraically closed in every rational function field over k .)

T2.3 Show that the Q-vector spaces Q(i) and Q(
√

2) are isomorphic, but they are not isomorphic
as fields. See also Exercise 2.2-(b), (c).

T2.4 Let Q(X) be the rational functions field in one indeterminate X over Q and let L :=
Q(X2) , L′ := Q(X3) be two intermediary subfields of Q(X)|Q . Determine the Galois groups
Gal(Q(X)|L) and Gal(Q(X)|L′) .

T2.5 (R e g u l a r r e p r e s e n t a t i o n o f a f i n i t e f i e l d e x t e n s i o n) Let K|k be
a finite field extension. and let x ∈ K . Let λx : K→ K , y 7→ x · y be the left-multiplication by x .
Then λx is a k-endomorphism of the k-vector space K . Further,
(a) The map λ : K→ Endk K defined by x 7→ λx is an injective ring homomorphism. This ring
homomorphism λ is called the r e g u l a r r e p r e s e n t a t i o n of K|k , i. e. µλx,k = µx,k .
(b) The minimal polynomial µλx of λx ∈ Endk K is the minimal polynomial of the (algebraic)
element x ∈ K over k .
(c) Let χx ∈ k[X ] denote the characteristic polynomial of λx . Show that χx(x) = 0, in particular,
χx ∈ KerΦx , where Φx : k[X ]→ K is the substitution homomorphism. Therefore, this polynomial
is also known as the c h a r a c t e r i s t i c p o l y n o m i a l of x over k .
(d) Let x1, . . . ,xn ∈ K be a basis of K over k and let x ·x j = ∑

n
i=1 ai jxi , j = 1, . . . ,n ; ai j ∈ k . Then

χx =Det (X En−A) , where En denote the identity matrix in Mn(k) and A :=
(
ai j

)
1≤i, j≤n ∈Mn(k)

is the matrix of λx with respect to the basis x1, . . . ,xn .
(e) If K = k(x) , then χx = µx,k . More generally, if [K : k(x)] = m , then χx,k = µm

x,k .

(f) (T r a c e and N o r m) Let TrK|k(x) := Tr(λx) and NK|k(x) := Det λx . The maps Tr : K→ k
NK|k : K→ k are called the t r a c e and n o r m of the finite field extension K|k . In the situation
of the part (c), we have

TrK|k(x) =
n

∑
i=1

aii and NK|k(x) = Det
(
ai j

)
1≤i, j≤n .
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(g) Tr : K→ k is k-linear and NK|k : K→ k is multiplicative, i. e. NK|k(x · y) = NK|k(x) ·NK|k(y)
for all x,y ∈ K . Further, TrK|k(a) = [K : k] ·a and NrK|k(a) = a[K:k] for every a ∈ k .

(h) If χx = Xn +an−1Xn−1 + · · ·+a1X +a0 ,n := [K : k] , then TrK|k(x) =−an−1 and NK|k(x) =
(1)na0 .
(i) If µx,k = X r +br−1X r−1 + · · ·+b1X +b0 ,r := [k(x) : k] and if [K : k(x)] = m , then TrK|k(x) =
−m ·br−1 and NK|k(x) = (1)nbm

0 .

(j) For the field extension K :=Q(
√

d)|Q with q∈Q and the element x := a+b
√

d ∈K , a,b∈Q ,
compute χx,Q , µx,Q , TrK|Q(x) and NK|Q as functions of a and b .

†T2.6 (D e d e k i n d1) In this we give generalization of the Exercise 2.1-(c): Let f ,g ∈ k[X ]
be polynomials both without multiple zeroes (in an algebraic closure of k ) and let L = k(x) and
M = k(y) with f (x) = 0 and g(y) = 0. Show that if f = f1 · · · · · fr and g = g1 · · · · ·gr are prime
factorizations of f over k(y) and of g over k(x) , then r = s and there are (after reordering)
isomorphisms k(y)[X ]/( fi)−−−∼−−−−- k(x)[X ]/(gi) , in particular, [k(y) : k] ·deg fi = [k(x) : k] ·deggi for
all i = 1, . . . ,r . (Hint : )

†T2.7 Let L be an intermediary subfield of the field extension k(X)|k with k 6= L . Then we have
seen in Exercise 2.6-(b) that k(X)|L is finite. Further,
(a) Let

µX ,L := Y n + tn−1(X)Y n−1 + · · ·+ t1(X)Y + t0(X) ∈ L[Y ]

be the minimal polynomial of X over L. Multiplying µX ,L by a polynomial in k[X ] , we get a
polynomial

F(X ,Y ) = cn(X)Y n + cn−1(X)Y n−1 + · · ·+ c1(X)Y + c0(X) ∈ k[X ][Y ]

which is primitive over k[X ] , i. e. GCD (cn(X), . . . ,c0(X)) = 1.
(b) Let ϕ ∈ L\ k , ϕ = f/g with relatively prime f ,g ∈ k[X ] . Show that the polynomial F(X ,Y )
in the part (a) divides g(X) f (Y )− f (X)g(Y ) in k[X ][Y ] and hence using Exercise 2.6-(a) deduce
that

degX F(X ,Y )≤ [k(X) : k(ϕ)] .

Moreover, if deg f ,degg≤ degX F(X ,Y ) , then deduce that

g(X) f (Y )− f (X)g(Y ) = aF(X ,Y ) for some a ∈ k× and hence L = k(ϕ).

(c) (L ü r o t h) Using the part (b) above show that L|k is purely transcendental, i. e. L it self is a
field of rational functions in one indeterminate over k. (Hint : At least one of ti := ti(X) 6∈ k and for
each of such we have L = k(ti) . – Remarks: Lüroth proved this Theorem in 1876. It led to the following
rationality problem: If L is an intermediate subfield of k(X1, . . . ,Xn)|k with transcendence degree n , is L|k
is rational, i. e. is L a purely transcendental extension of k ?. In 1893 Castelnuovo proved that this is true for
n = 2 if k is algebraically closed. It was not until early 1970s, an example of an intermediate subfield of
C(X ,Y,Z)|C that is not rational over C was found.
A natural question is to ask what geometric information about a variety can be determined from the field
theoretic information about its function field.
A fundamental problem is Algebraic geometry is to determine when an algebraic variety V over a field k
is rational, i. e. the function field k(V ) of V is purely transcendental over k . We know from elementary
calculus that a curve in the real plane R2 can be parameterized in the form x = f (t) and y = g(t) where
f and g are real valued functions; i. e. the curve consists of the points {( f (t),g(t)) ∈ R2 | t ∈ R} . For
example, the unit circle is parameterized by x = cos t and y = sin t . In the case of algebraic varieties, we are
interested in parameterizations involving polynomial or rational functions.

1Incidently, it was Dedekind who baptized what we know as fields – with German word Körper which literally
mean “body”.
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The problem of rationality has a more geometric formulation. To relate the concept of parametrization to that
of rationality, first make the concept of parametrization precise, we restrict ro the case of algebraic curves; an
algebraic variety of dimension 1 is said to be a c u r v e. An algebraic curve C ⊆An

k
defined over a field k ,

where An
k

denote the affine n-space over the algebraic closure k of k , is said to be p a r a m e t e r i z e d if
there are rational functions f1, . . . , fn ∈ k(t) such that {( f1(t), . . . , fn(t)) ∈An

k | t ∈ k} is a dense subset of
C in the k-Zariski topology of C .
For example, the unit circle S1 = {(x,y) ∈ R2 | x2 + y2 = 1} is parameterized by x = (1− t2)/(1+ t2)
and y = 2t/(1+ t2) ; an easy calculation show that {

(
(1− t2)/(1+ t2),2t/(1+ t2)

)
| t ∈ C, t2 6= −1} =

S1 \{(−1,0)} . Intuitively, t = ∞ is needed to get x =−1 and y = 0.
Lüroth’s Theorem proves that : An irreducible algebraic curve C defined over a field k can be parameterized
if and only if the function field k(C ) is rational over k .
Some examples:
(a) The algebraic curve C : x2 + y2 + 1 = 0 := {(x,y) ∈ C2 | x2 + y2 + 1 = 0} is defined over R as well

as over C . The function field K(C ) of C |, over K is isomorphic to K(t)(
√

1− t2) , where K=R or C .
Therefore R(C ) is not rational over R , but C(C ) is rational over C . Find a parametrization of C over
C . Further, C has no parametrization over R; this can also be directly proved by showing that C has no
R-rational points, i. e. points (a,b) ∈R2 with (a,b) ∈ C .

(b) Let k be a field of characteristic 6= 2 and let a,b ∈ k×. Let C ′ : ax2 + by2− 1 = 0 := {(x,y) ∈ k
2 |

ax2 +by2−1 = 0} . Show that k(C ′) is rational over k if and only if C ′ has a k-rational point. Note that
the example in (a) is a special case of this.
(c) Let C ⊆ C2 be an irreducible non-singular algebraic curve over C . If C is rational over C , then the
coordinate ring C[C ] is not a factorial domain. We shall use this result to show that the elliptic curve
E : y2− x3 + x = 0. is not rational over C by verifying the following steps: Let K := C(E ) .
(i) The field extension K|C(X) has degree 2 . If σ ∈ Gal(K|C(X)) is a non-identity, then σ(y) =−y and
hence σ(C[E ])⊆ C[E ] .
(ii) NK|C(X)( f ) ∈ C[X ] for every f ∈ C[E ] , where NK|C(X) : K→ C(X) is the norm map.

(iii) C[E ]× = C× . (Hint : Use the above part (ii).) Show that x,y ∈ C[E ] are irreducible elements in C[E ]

and y2 = x(1− x) are two different irreducible factorizations in C[E ] . )
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