MA 315 Galois Theory / January-April 2014

(Int PhD. and Ph. D. Programmes)

Download from : http://www.math.iisc.ernet.in/patil/courses/courses/Current Courses/...

TAs/Corrections by : A	ritra Sen (john.ga]	t.105519900	gmail.com)/ Pa	lash Dey (palash	csa.iisc.ern	et.in)
Midterms: Thu. Feb 27 (14:00-16:30);		Quiz	zes: (Wed-Lect)	eb 05 ; Mar 12 ;	(Sat-Lect) April
Final Examination : 9 A	M-12 Noon, Thursday	, April 24, 2014				
Evaluation Weightage : Quizzes : 10%		Seminar: 10%		dterms: 30%	Final Exa	mination: 50
	Ran	ge of Marks for	Grades (Total 100	Marks)		
	Grade S	Grade A	Grade B	Grade C	Grade D	Grade F
Marks-Range	> 90	76–90	61–75	46-60	35–45	< 35
		MII	D TERM			
Thursday, February 27, 2014		14:00 to 16:30		Maximum Points: 50 Poin		

T1.1 Let $K \mid k$ be a field extension and let $x, y \in K$.

(a) If $x \in K$ is algebraic over k with deg $\mu_{x,k}$ is odd, then show that deg $\mu_{x^2,k}$ is also odd and $k(x) = k(x^2)$. [3 points]

(b) If $x, y \in K$ are algebraic over k, then $[k(x, y) : k] \leq \deg \mu_{x,k} \cdot \deg \mu_{y,k}$. Moreover, if $\deg \mu_{x,k}$ and $\deg \mu_{y,k}$ are relatively prime i. e., $\gcd(\deg \mu_{x,k}, \deg \mu_{y,k}) = 1$, then the equality holds. [3 points]

(c) Suppose that K | k is finite of degree m and $f \in k[X]$ is an irreducible polynomial over k of degree n. If gcd(m,n) = 1, then show that f is also irreducible over K. (Hint : Let x be a zero of f in a field extension L | K. Then observe that $deg f \leq [K(x) : K]$.) [4 points]

T1.2 Let k be a field of characteristic $\neq 2$.

(a) Let K | k be a field extension of degree [K : k] = 2. Show that K = k(x) with $x^2 = a \in k$. Moreover, show that K | k is Galois extension with Galois group Gal $(K | k) \approx \mathbb{Z}^{\times}$. [3 points]

(b) Let K | k be a field extension and let $x, y \in K$ with $x^2 = a \in k$ and $y^2 = b \in k$. Determine necessary and sufficient condition so that there exists a k-algebra isomorphism $k(x) \xrightarrow{\sim} k(y)$. (Hint : The required necessary and sufficient condition is there exists $c \in k^{\times}$ such that $b = c^2 a$. To verify this use the k-bases 1, x and 1, y of k(x) and k(y), respectively.) [5 points]

(c) Show that the Q-vector spaces Q(i) and $Q(\sqrt{2})$ are isomorphic, but they are not isomorphic as fields. (Hint : Use the criterion in part (b).) [2 points]

T1.3 Let $K \mid k$ be a field extension.

(a) Show that the following statements are equivalent:

(i) $K \mid k$ is algebraic.

(ii) For every intermediary subfield $L \in \mathfrak{F}(K|k)$, every k-algebra homomorphism $\sigma: L \to L$ is an automorphism. [5 points]

(b) Suppose that K | k is finite. Then show that # Gal(K | k) divides [K : k]. (Hint : Use the fixed field $K^{\text{Gal}(K | k)}$.) [5 points]

T1.4 Let K = k(x) be a finite simple extension of a field k of degree n.

(a) Let *L* be an intermediary subfield of K | k and let $\mu_{x,L} = b_0 + b_1 X + \dots + b_{m-1} X^{m-1} + X^m \in L[X]$ be the minimal polynomial of *x* over *L*. Show that $L = k(b_0, \dots, b_{m-1})$. (Hint : Put $L' := k(b_0, \dots, b_{m-1})$. Then $L' \subseteq L$, L'(x) = L(x) = K and $\mu_{x,L} = \mu_{x,L'}$.) [5 points]

(b) Show that the number of intermediate fields L with $k \subseteq L \subseteq K$ is at most 2^{n-1} , i. e. $\#\mathfrak{F}(K|k) \leq 2^{[K:k]-1}$.(Hint : Use part (a).) Give an example to show that this inequality can be very strict. [5 points]

T1.5 Let \mathbb{F}_q be a finite field with q elements.

(a) Let $f \in \mathbb{F}_q[X]$ be an irreducible polynomial of degree *m*. Show that the following statements are equivalent:

(i) f divides $X^{q^n} - X$ in $\mathbb{F}_q[X]$. (ii) f has a zero in \mathbb{F}_{q^n} . (iii) m divides n. [6 points] (**Hint**: Use the fact that any two finite fields with the same cardinality are isomorphic as fields.)

(b) Let p, q be two distinct prime numbers. Verify that q is not a square in the field $\mathbb{Q}(\sqrt{p})$ and deduce that $[\mathbb{Q}(\sqrt{p}, \sqrt{q}) : \mathbb{Q}] = 4$. [4 points]

* T1.6 Let <i>p</i> be an odd prime number, $\zeta_p := e^{2\pi i/p}$ and let $\mathbb{Q}^{(p)} := \mathbb{Q}(\zeta_p) \subseteq \mathbb{C}$. Sh	ow that
(a) $\mathbb{Q}(\cos(2\pi/p)) = \mathbb{R} \cap \mathbb{Q}^{(p)}$.	[2 points]
(b) The minimal polynomial $\mu_{\zeta_p, \mathbb{Q}(\cos(2\pi/p))}$ is $X^2 - 2\cos(2\pi/p)X + 1$.	[2 points]
(c) Find the degrees $[\mathbb{Q}^{(p)}:\mathbb{Q}(\cos(2\pi/p))]$ and $[\mathbb{Q}(\cos(2\pi/p)):\mathbb{Q}]$.	[3 points]

(d) The field extension $\mathbb{Q}^{(n)} | \mathbb{Q}(\cos(2\pi/p))$ is a Galois extension. Compute the Galois group $\operatorname{Gal}(\mathbb{Q}^{(p)} | \mathbb{Q}(\cos(2\pi/p)))$. [3 points]

GOOD LUCK