MA 315 Galois Theory / January-April 2014

(Int PhD. and Ph. D. Programmes)
Download from : http://www.math.iisc.ernet.in/patil/courses/courses/Current Courses/...
Tel : +91-(0)80-2293 3212/(CSA 2239)
Lectures : Monday and Wednesday ; 11:30-13:00
E-mails : patil@math.iisc.ernet.in / dppatil@csa.iisc.ernet.in

Midterms : Thu. Feb 27 (14:00-16:30); Final Examination : 9 AM-12 Noon, Thursday, April 24, 2014			Quizzes: (Wed-Lect) Feb 05 ; Mar 12 ; (Sat-Lect) April 05			
Evaluation Weightage : Quizzes : 10\%		Seminar :		Midterms : 30\%	Final E	ation : 50\%
Range of Marks for Grades (Total 100 Marks)						
	Grade S	Grade A	Grade B	Grade C	Grade D	Grade F
Marks-Range	> 90	76-90	61-75	46-60	35-45	< 35

MID TERM

Thursday, February 27, $2014 \quad$ 14:00 to 16:30 \quad Maximum Points : 50 Points

- Question T1.6 is C OMP ULS ORY. - Attempt ONLY FIVE Questions.

T1.1 Let $K \mid k$ be a field extension and let $x, y \in K$.
(a) If $x \in K$ is algebraic over k with $\operatorname{deg} \mu_{x, k}$ is odd, then show that $\operatorname{deg} \mu_{x^{2}, k}$ is also odd and $k(x)=k\left(x^{2}\right)$.
[3 points]
(b) If $x, y \in K$ are algebraic over k, then $[k(x, y): k] \leq \operatorname{deg} \mu_{x, k} \cdot \operatorname{deg} \mu_{y, k}$. Moreover, if $\operatorname{deg} \mu_{x, k}$ and $\operatorname{deg} \mu_{y, k}$ are relatively prime i. e., $\operatorname{gcd}\left(\operatorname{deg} \mu_{x, k}, \operatorname{deg} \mu_{y, k}\right)=1$, then the equality holds. [3 points]
(c) Suppose that $K \mid k$ is finite of degree m and $f \in k[X]$ is an irreducible polynomial over k of degree n. If $\operatorname{gcd}(m, n)=1$, then show that f is also irreducible over K. (Hint : Let x be a zero of f in a field extension $L \mid K$. Then observe that $\operatorname{deg} f \leq[K(x): K]$.)
[4 points]

T1.2 Let k be a field of characteristic $\neq 2$.
(a) Let $K \mid k$ be a field extension of degree $[K: k]=2$. Show that $K=k(x)$ with $x^{2}=a \in k$. Moreover, show that $K \mid k$ is Galois extension with Galois group $\operatorname{Gal}(K \mid k) \approx \mathbb{Z}^{\times}$.
[3 points]
(b) Let $K \mid k$ be a field extension and let $x, y \in K$ with $x^{2}=a \in k$ and $y^{2}=b \in k$. Determine necessary and sufficient condition so that there exists a k-algebra isomorphism $k(x) \xrightarrow{\sim} k(y)$. (Hint : The required necessary and sufficient condition is there exists $c \in k^{\times}$such that $b=c^{2} a$. To verify this use the k-bases $1, x$ and $1, y$ of $k(x)$ and $k(y)$, respectively.)
(c) Show that the \mathbb{Q}-vector spaces $\mathbb{Q}(i)$ and $\mathbb{Q}(\sqrt{2})$ are isomorphic, but they are not isomorphic as fields. (Hint : Use the criterion in part (b).)

T1.3 Let $K \mid k$ be a field extension.
(a) Show that the following statements are equivalent:
(i) $K \mid k$ is algebraic.
(ii) For every intermediary subfield $L \in \mathfrak{F}(K \mid k)$, every k-algebra homomorphism $\sigma: L \rightarrow L$ is an automorphism.
[5 points]
(b) Suppose that $K \mid k$ is finite. Then show that $\# \operatorname{Gal}(K \mid k)$ divides $[K: k]$. (Hint : Use the fixed field $K^{\operatorname{Gal}(K \mid k)}$.)
[5 points]

T1.4 Let $K=k(x)$ be a finite simple extension of a field k of degree n.
(a) Let L be an intermediary subfield of $K \mid k$ and let $\mu_{x, L}=b_{0}+b_{1} X+\cdots+b_{m-1} X^{m-1}+X^{m} \in$ $L[X]$ be the minimal polynomial of x over L. Show that $L=k\left(b_{0}, \ldots, b_{m-1}\right)$. (Hint : Put $L^{\prime}:=$ $k\left(b_{0}, \ldots, b_{m-1}\right)$. Then $L^{\prime} \subseteq L, L^{\prime}(x)=L(x)=K$ and $\mu_{x, L}=\mu_{x, L^{\prime}}$.) [5 points]
(b) Show that the number of intermediate fields L with $k \subseteq L \subseteq K$ is at most 2^{n-1}, i. e. \# $\mathcal{F}(K \mid k) \leq$ $2^{[K: k]-1}$.(Hint : Use part (a).) Give an example to show that this inequality can be very strict. [5 points]

T1.5 Let \mathbb{F}_{q} be a finite field with q elements.
(a) Let $f \in \mathbb{F}_{q}[X]$ be an irreducible polynomial of degree m. Show that the following statements are equivalent:
(i) f divides $X^{q^{n}}-X$ in $\mathbb{F}_{q}[X]$.
(ii) f has a zero in $\mathbb{F}_{q^{n}}$.
(iii) m divides n. [6 points]
(Hint : Use the fact that any two finite fields with the same cardinality are isomorphic as fields.)
(b) Let p, q be two distinct prime numbers. Verify that q is not a square in the field $\mathbb{Q}(\sqrt{p})$ and deduce that $[\mathrm{Q}(\sqrt{p}, \sqrt{q}): \mathrm{Q}]=4$.
[4 points]
*T1.6 Let p be an odd prime number, $\zeta_{p}:=e^{2 \pi \mathrm{i} / p}$ and let $\mathbb{Q}^{(p)}:=\mathbb{Q}\left(\zeta_{p}\right) \subseteq \mathbb{C}$. Show that
(a) $\mathrm{Q}(\cos (2 \pi / p))=\mathbb{R} \cap \mathbb{Q}^{(p)}$.
(b) The minimal polynomial $\mu_{\zeta_{p}, Q(\cos (2 \pi / p))}$ is $X^{2}-2 \cos (2 \pi / p) X+1$.
(c) Find the degrees $\left[\mathbb{Q}^{(p)}: \mathbb{Q}(\cos (2 \pi / p))\right]$ and $[\mathbb{Q}(\cos (2 \pi / p)): \mathbb{Q}]$.
[3 points]
(d) The field extension $\mathbb{Q}^{(n)} \mid \mathbb{Q}(\cos (2 \pi / p))$ is a Galois extension. Compute the Galois group $\operatorname{Gal}\left(\mathbb{Q}^{(p)} \mid \mathbb{Q}(\cos (2 \pi / p))\right)$.
[3 points]

GOOD LUCK

