MA-231 Topology

2. Finite Sets

August 13, 2004 ; Submit solutions before 10:00 AM ; August 23, 2004.

2.1. Let X be a finite set with n elements. For $i \in \mathbb{N}$, let $\mathfrak{P}_{i}(X)$ be the set of all subsets Y of X with $|Y|=i$. Show that: If $i \in \mathbb{N}$ with $0 \leq i<n / 2$ (resp. with $n / 2<i \leq n$), then there exists an injective map $f_{i}: \mathfrak{P}_{i}(X) \rightarrow \mathfrak{P}_{i+1}(X)$ such that $Y \subseteq f_{i}(Y)$ for all $Y \in \mathfrak{P}_{i}(X)$ (resp. an injective map $g_{i}: \mathfrak{P}_{i}(X) \rightarrow \mathfrak{P}_{i-1}(X)$ such that $g_{i}(Y) \subseteq Y$ for all $Y \in \mathfrak{P}_{i}(X)$). (Hint: Let $0 \leq i<n / 2$. A pair $\left(Y, Y^{\prime}\right) \in \mathfrak{P}_{i}(X) \times \mathfrak{P}_{i+1}(X)$ is called amicable if $Y \subseteq Y^{\prime}$. Let \mathfrak{R} be a subset of $\mathfrak{P}_{i}(X)$ with $|\mathfrak{R}|=: r$. Further, let \mathfrak{R}^{\prime} be the set of all those $Y^{\prime} \in \mathfrak{P}_{i+1}(X)$ which are amicable to at least one $Y \in \mathfrak{R}$. Put $s:=\left|\mathfrak{R}^{\prime}\right|$. Then $r(n-i) \leq s(i+1)$ and hence $r \leq s$. Now use the Marriage-theorem ${ }^{1}$))
2.2. Let X_{1}, \ldots, X_{n} be finite sets. For $J \subseteq\{1, \ldots, n\}$, let $X_{J}:=\bigcap_{i \in J} X_{i}$ with $X_{\emptyset}:=\bigcup_{i=1}^{n} X_{i}$. Generalize the formula $|Y \cup Z|=|Y|+|Z|-|Y \cap Z|$ for finite sets Y, Z, prove the well-known Sylvester's (Sieve-) formula ${ }^{2}$):

$$
\sum_{J \in \mathfrak{P}(\{1, \ldots, n\})}(-1)^{|J|}\left|X_{J}\right|=0, \text { i.e. }|X|=\sum_{\emptyset \neq J \in \mathfrak{P}(\{1, \ldots, n\})}(-1)^{|J|-1}\left|X_{J}\right| .
$$

(Hint: By induction on n. - Variant: For $k=1, \ldots, n$, let Y_{k} be the set of elements $x \in X_{\emptyset}$ which belong to exactly k of the sets X_{1}, \ldots, X_{n}. Then $Y_{k}, 1 \leq k \leq n$ are pairwise disjoint. Using Exercise T2.2b) show that

$$
\left.\sum_{\substack{J \in \mathfrak{F}(111, n) \\|,| l e v e n}}\left|X_{J}\right|=\sum_{k=1}^{n} 2^{k-1}\left|Y_{k}\right|=\sum_{\substack{J \in \mathfrak{P}(111, n) \\|J| \text { odd }}}\left|X_{J}\right| .\right)
$$

2.3. a). Let X be a finite set with m elements. Let p_{m} denote the number of permutations of X which donot have fixed points and let $s_{m}=m$! be the number of all all permutations of X. Show that:

$$
\frac{p_{m}}{s_{m}}=\frac{1}{0!}-\frac{1}{1!}+\cdots+(-1)^{m} \cdot \frac{1}{m!} .
$$

(Hint: Let $X=\left\{x_{1}, \ldots, x_{m}\right\}$. Set $X_{i}:=\left\{\sigma \in \mathfrak{S}(X): \sigma\left(x_{i}\right)=x_{i}\right\}$ and compute $s_{m}-p_{m}=\left|\bigcup_{i=1}^{m} X_{i}\right|$ using the Sieve formula in Exercise 2.2. - Remark : Note that $\lim _{m \rightarrow \infty}\left(p_{m} / s_{m}\right)=e^{-1}$, where $e=2,718 \ldots$ is the base of the natural logarithm.) - The number of permutations of X with exactly r fixed points is $\binom{m}{r} p_{m-r}, 0 \leq r \leq m$. (Proof!)
b). Let X be a finite set with m elements and let Y be a finite set with n elements. The number of surjective maps from X in Y is

$$
n^{m}-\binom{n}{1}(n-1)^{m}+\binom{n}{2}(n-2)^{m}-\cdots+(-1)^{n}\binom{n}{n}(n-n)^{m}
$$

(Hint: Let $Y=\left\{y_{1}, \ldots, y_{n}\right\}$. Set $P_{i}:=\left\{f \in Y^{X}: y_{i} \notin \operatorname{im} f\right\}$ and compute the number $\left|\bigcup_{i=1}^{n} P_{i}\right|$ of non-surjective maps using the Sieve formula in Exercise 2.2.)
2.4. Let I be a finite index set with n elements and let $\sigma_{i} \in \mathbb{N}$ for $i \in I, \pi:=\prod_{i \in I} \sigma_{i}, \sigma:=\sum_{i \in I} \sigma_{i}$ and $\sigma_{H}:=\sum_{i \in H} \sigma_{i}$ for $H \subseteq I$. Then

$$
\sum_{H \subseteq I}(-1)^{|H|}\binom{\sigma_{H}}{n}=(-1)^{n} \pi \quad \text { and } \quad \sum_{H \subseteq I}(-1)^{|H|}\binom{\sigma_{H}}{n+1}=\frac{(-1)^{n}}{2}(\sigma-n) \pi,
$$

(Hint: Let $X=\bigcup_{i \in I} X_{i}$, where X_{i} are pairwise disjoint subsets with $\left|X_{i}\right|=\sigma_{i}$. For a proof of the first formula consider the set $\mathfrak{P}_{n}(X)$ and its subsets $Y_{i}:=\left\{A \in \mathfrak{P}_{n}(X) \mid A \cap X_{i}=\emptyset\right\}$ and use the Sieve formula in Exercise 2.2 to find $\left|\bigcup_{i \in I} Y_{i}\right|$.)

On the other side one can see (simple) test-exercises ; their solutions need not be submitted.

[^0]
Test-Exercises

T2.1. (Indicator functions) Let I be a set. For a subset $J \in \mathfrak{P}(I)$, let $e_{J}: X \rightarrow\{0,1\}$ be the indicator function of J (with respect to I), i.e. $e_{J}(i)=\left\{\begin{array}{ll}1, & \text { if } i \in J, \\ 0, & \text { if } i \in I \backslash J .\end{array}\right.$. Note that $e_{I}=1$ and $e_{\emptyset}=0$. Show that
a). The map $J \mapsto e_{J}$ is a bijective map from the poer set $\mathfrak{P}(I)$ onto the set $\{0,1\}^{I}$ of all maps $I \rightarrow\{0,1\}$.
b). For subsets $J, K \subseteq I$, prove that: $e_{J \cap K}=e_{J} e_{K}, \quad e_{J \cup K}=e_{J}+e_{K}-e_{J} e_{K}, \quad e_{J \backslash K}=e_{J}\left(1-e_{K}\right)$. In particular, $e_{I \backslash J}=1-e_{J}$ and $e_{J \Delta K}=e_{J}+e_{K}-2 e_{J} e_{K}$.
c). For $J, K \in \mathfrak{P}(I)$, let $J+K:=J \Delta K:=(J \cup K) \backslash(J \cap K)$ denote the symmetric difference of J and K. Then show that

1) $J+K=K+J$ and $J+\emptyset=J, J+J=\emptyset$.
2) $(J+K)+L=J+(K+L)$ for all $J, K, L \in \mathfrak{P}(I)$.
3) For every $J, L \in \mathfrak{P}(I)$, there exists a unique K such that $J+K=L$.
4) $(J+K) \cap L=(J \cap L)+(K \cap L)$ for all $J, K, L \in \mathfrak{P}(I)$.
—Remark : For verification of these properties use indicator functions and their rules given in b). These properties of the symmetric difference Δ show that the power set $\mathfrak{P}(I)$ with the symmetric difference Δ as addition and the intersection \cap as multiplication is a commutative ring with \emptyset as the zero element 0 and I as the unit element 1 . This ring is called the set-ring of I. If $|I|=1$, then this ring is a field with two elements; in the other case the set-ring of I is not a field.

T2.2. Let X be a finite set with n elements.
a). The number of subsets of X is 2^{n} (Induction).
b). If $n \in \mathbb{N}^{*}$, then the number of subsets of X with an even number of elements is equal to the number of subsets of X with an odd number of elements. Moreover, this number is equal to 2^{n-1}. (Hint: Let $a \in X$. The map defined by $A \mapsto A \cup\{a\}$, if $a \notin A$, resp. $A \backslash\{a\}$, if $a \in A$, is a bijective map from the set of subsets with an even number of elements onto the set of subsets with an odd number of elements.)
T2.3. a). From 1a) deduce that: For $n \in \mathbb{N},\binom{n}{0}+\binom{n}{1}+\cdots+\binom{n}{n}=2^{n}$.
b). From 1b) deduce that: For $n \in \mathbb{N}^{*},\binom{n}{0}-\binom{n}{1}+\cdots+(-1)^{n}\binom{n}{n}=0$.
c). Let X be a finite set with n elements. The number of pairs $\left(X_{1}, X_{2}\right)$ in $\mathfrak{P}(X) \times \mathfrak{P}(X)$ with $X_{1} \cap X_{2}=\emptyset$ is 3^{n} (Induction). General: The number of r-tuples $\left(X_{1}, \ldots, X_{r}\right)$ of pairwise disjoint subsets $X_{1}, \ldots, X_{r} \subseteq X$ is equal $(r+1)^{n}, r \in \mathbb{N}$.
d). For $m, n, k \in \mathbb{N},\binom{m+n}{k}=\binom{m}{0}\binom{n}{k}+\binom{m}{1}\binom{n}{k-1}+\cdots+\binom{m}{k}\binom{n}{0}$. In particular, $\binom{2 n}{n}=\binom{n}{0}^{2}+\binom{n}{1}^{2}+\cdots+\binom{n}{n}^{2}$ for $n \in \mathbb{N}$. (Hint: Let X, Y be disjoint sets with $|X|=m,|Y|=n$. The assignment $A \mapsto(A \cap X, A \cap Y)$ defines a bijective map $\mathfrak{P}(X \cup Y) \rightarrow \mathfrak{P}(X) \times \mathfrak{P}(Y)$.)
T2.4. Let m be a natural number (resp. a positive natural number) and let n be another natural number. Let a(m, n) (resp. $\mathrm{b}(m, n)$) denote the number of m-tuples $\left(x_{1}, \ldots, x_{m}\right) \in \mathbb{N}^{m}$ with $x_{1}+\cdots+x_{m} \leq n$ (resp. $x_{1}+\cdots+x_{m}=n$). Show that

$$
\mathrm{a}(m, n)=\binom{n+m}{m}, \quad \mathrm{~b}(m, n)=\binom{n+m-1}{m-1} .
$$

(Hint: Note that $\mathrm{a}(m-1, n)=\mathrm{b}(m, n)$ and $\mathrm{a}(m, n)=\mathrm{a}(m, n-1)+\mathrm{a}(m-1, n)$ if $m \geq 1$ and use induction on $n+m$. - Variant: The map $\left(x_{1}, \ldots, x_{m}\right) \mapsto\left\{x_{1}+1, x_{1}+x_{2}+2, \ldots, x_{1}+\cdots+x_{m}+m\right\}$ maps the set of m-tuples $\left(x_{1}, \ldots, x_{m}\right) \in \mathbb{N}^{m}$ with $x_{1}+\cdots+x_{m} \leq n$ bijectively onto the set of m-element subsets of $\{1,2, \ldots, n+m\}$.)

T2.5. Let $\mathfrak{X}=\left(X_{1}, \ldots, X_{r}\right)$ and let $\mathfrak{Y}=\left(Y_{1}, \ldots, Y_{r}\right)$ be partitions of the set X into r pairwise disjoint subsets each of them with $n \geq 1$ elements (i.e. $\bigcup_{i=1}^{r} X_{i}=X$ and $X_{i} \cap X_{j}=\emptyset$ for $i \neq j$ and analogously for \mathfrak{Y}). Show that: \mathfrak{X} and \mathfrak{Y} has a common representative system, i.e. there exist r distinct elements x_{1}, \ldots, x_{r} in X such that each x_{i} belongs to exactly one of the subset X_{1}, \ldots, X_{r} and exactly one of the subset Y_{1}, \ldots, Y_{r}. (Hint: Using the Marriage-theorem find a permutation $\sigma \in \mathfrak{S}_{r}$ such that $X_{i} \cap Y_{\sigma(i)} \neq \emptyset$ for every $1 \leq i \leq r$.)

[^0]: ${ }^{1}$) Marriage-theorem: Let $Y_{x}, x \in X$, be a finite family of sets. For every subset N of X assume that the set $Y_{N}:=\cup_{x \in N} Y_{x}$ has atleast $|N|$ elements. Then there exists an injective choice function $f: X \rightarrow Y_{X}$ with $f(x) \in Y_{x}$ for every $x \in X$.
 ${ }^{2}$) This is also called the Inclusion-Exclusion principle

