MA-231 Topology

2. Finite Sets

August 13, 2004 ; Submit solutions before 10:00 AM ; August 23, 2004.

2.1. Let X be a finite set with *n* elements. For $i \in \mathbb{N}$, let $\mathfrak{P}_i(X)$ be the set of all subsets Y of X with |Y| = i. Show that: If $i \in \mathbb{N}$ with $0 \le i < n/2$ (resp. with $n/2 < i \le n$), then there exists an injective map $f_i : \mathfrak{P}_i(X) \to \mathfrak{P}_{i+1}(X)$ such that $Y \subseteq f_i(Y)$ for all $Y \in \mathfrak{P}_i(X)$ (resp. an injective map $g_i : \mathfrak{P}_i(X) \to \mathfrak{P}_{i-1}(X)$ such that $g_i(Y) \subseteq Y$ for all $Y \in \mathfrak{P}_i(X)$). (Hint: Let $0 \le i < n/2$. A pair $(Y, Y') \in \mathfrak{P}_i(X) \times \mathfrak{P}_{i+1}(X)$ is called *amicable* if $Y \subseteq Y'$. Let \mathfrak{R} be a subset of $\mathfrak{P}_i(X)$ with $|\mathfrak{R}| =: r$. Further, let \mathfrak{R}' be the set of all those $Y' \in \mathfrak{P}_{i+1}(X)$ which are amicable to at least one $Y \in \mathfrak{R}$. Put $s := |\mathfrak{R}'|$. Then r(n-i) < s(i+1) and hence r < s. Now use the Marriage-theorem¹)

2.2. Let X_1, \ldots, X_n be finite sets. For $J \subseteq \{1, \ldots, n\}$, let $X_J := \bigcap_{i \in J} X_i$ with $X_{\emptyset} := \bigcup_{i=1}^n X_i$. Generalize the formula $|Y \cup Z| = |Y| + |Z| - |Y \cap Z|$ for finite sets Y, Z, prove the well-known Sylvester's (Sieve-) formula²):

$$\sum_{\substack{\in \mathfrak{P}(\{1,\dots,n\})}} (-1)^{|J|} |X_J| = 0, \quad \text{i.e.} \quad |X| = \sum_{\substack{\emptyset \neq J \in \mathfrak{P}(\{1,\dots,n\})}} (-1)^{|J|-1} |X_J|.$$

(**Hint**: By induction on n. — Variant: For k = 1, ..., n, let Y_k be the set of elements $x \in X_{\emptyset}$ which belong to exactly k of the sets $X_1, ..., X_n$. Then $Y_k, 1 \le k \le n$ are pairwise disjoint. Using Exercise T2.2 b) show that

$$\sum_{\substack{J \in \mathfrak{P}(\{1,\dots,n\})\\|J| \text{ even}}} |X_J| = \sum_{k=1}^n 2^{k-1} |Y_k| = \sum_{\substack{J \in \mathfrak{P}(\{1,\dots,n\})\\|J| \text{ odd}}} |X_J|.$$

2.3. a). Let *X* be a finite set with *m* elements. Let p_m denote the number of permutations of *X* which do not have fixed points and let $s_m = m!$ be the number of all all permutations of *X*. Show that:

$$\frac{p_m}{s_m} = \frac{1}{0!} - \frac{1}{1!} + \dots + (-1)^m \cdot \frac{1}{m!} \; .$$

(Hint: Let $X = \{x_1, ..., x_m\}$. Set $X_i := \{\sigma \in \mathfrak{S}(X) : \sigma(x_i) = x_i\}$ and compute $s_m - p_m = |\bigcup_{i=1}^m X_i|$ using the Sieve formula in Exercise 2.2. — **Remark**: Note that $\lim_{m\to\infty} (p_m/s_m) = e^{-1}$, where e = 2, 718... is the base of the natural logarithm.) — The number of permutations of X with exactly r fixed points is $\binom{m}{r}p_{m-r}, 0 \le r \le m$. (Proof!)

b). Let X be a finite set with m elements and let Y be a finite set with n elements. The number of surjective maps from X in Y is

$$n^{m} - \binom{n}{1}(n-1)^{m} + \binom{n}{2}(n-2)^{m} - \dots + (-1)^{n}\binom{n}{n}(n-n)^{m}.$$

(**Hint**: Let $Y = \{y_1, \ldots, y_n\}$. Set $P_i := \{f \in Y^X : y_i \notin \text{ im } f\}$ and compute the number $|\bigcup_{i=1}^n P_i|$ of non-surjective maps using the Sieve formula in Exercise 2.2.)

2.4. Let *I* be a finite index set with *n* elements and let $\sigma_i \in \mathbb{N}$ for $i \in I$, $\pi := \prod_{i \in I} \sigma_i$, $\sigma := \sum_{i \in I} \sigma_i$ and $\sigma_H := \sum_{i \in H} \sigma_i$ for $H \subseteq I$. Then

$$\sum_{H \subseteq I} (-1)^{|H|} \binom{\sigma_H}{n} = (-1)^n \pi \quad \text{and} \quad \sum_{H \subseteq I} (-1)^{|H|} \binom{\sigma_H}{n+1} = \frac{(-1)^n}{2} (\sigma - n) \pi ,$$

(**Hint**: Let $X = \bigcup_{i \in I} X_i$, where X_i are pairwise disjoint subsets with $|X_i| = \sigma_i$. For a proof of the first formula consider the set $\mathfrak{P}_n(X)$ and its subsets $Y_i := \{A \in \mathfrak{P}_n(X) \mid A \cap X_i = \emptyset\}$ and use the Sieve formula in Exercise 2.2 to find $|\bigcup_{i \in I} Y_i|$.)

On the other side one can see (simple) test-exercises; their solutions need not be submitted.

¹) **Marriage-theorem**: Let Y_x , $x \in X$, be a finite family of sets. For every subset N of X assume that the set $Y_N := \bigcup_{x \in N} Y_x$ has atleast |N| elements. Then there exists an injective choice function $f : X \to Y_X$ with $f(x) \in Y_x$ for every $x \in X$.

²) This is also called the Inclusion-Exclusion principle

2. Finite Sets

Test-Exercises

T2.1. (Indicator functions) Let *I* be a set. For a subset $J \in \mathfrak{P}(I)$, let $e_J : X \to \{0, 1\}$ be the indicator function of *J* (with respect to *I*), i.e. $e_J(i) = \begin{cases} 1, & \text{if } i \in J, \\ 0, & \text{if } i \in I \setminus J. \end{cases}$ Note that $e_I = 1$ and $e_{\emptyset} = 0$. Show that

a). The map $J \mapsto e_J$ is a bijective map from the poer set $\mathfrak{P}(I)$ onto the set $\{0, 1\}^I$ of all maps $I \to \{0, 1\}$.

b). For subsets $J, K \subseteq I$, prove that: $e_{J\cap K} = e_J e_K$, $e_{J\cup K} = e_J + e_K - e_J e_K$, $e_{J\setminus K} = e_J(1 - e_K)$. In particular, $e_{I\setminus J} = 1 - e_J$ and $e_{J \triangle K} = e_J + e_K - 2e_J e_K$.

c). For $J, K \in \mathfrak{P}(I)$, let $J + K := J\Delta K := (J \cup K) \setminus (J \cap K)$ denote the symmetric difference of J and K. Then show that

1) J + K = K + J and $J + \emptyset = J$, $J + J = \emptyset$.

2) (J + K) + L = J + (K + L) for all $J, K, L \in \mathfrak{P}(I)$.

3) For every $J, L \in \mathfrak{P}(I)$, there exists a unique K such that J + K = L.

4) $(J + K) \cap L = (J \cap L) + (K \cap L)$ for all $J, K, L \in \mathfrak{P}(I)$.

— **Remark :** For verification of these properties use indicator functions and their rules given in b). These properties of the symmetric difference \triangle show that the power set $\mathfrak{P}(I)$ with the symmetric difference \triangle as addition and the intersection \cap as multiplication is a commutative ring with \emptyset as the zero element 0 and *I* as the unit element 1. This ring is called the set-ring of *I*. If |I| = 1, then this ring is a field with two elements; in the other case the set-ring of *I* is not a field.

T2.2. Let *X* be a finite set with *n* elements.

a). The number of subsets of X is 2^n (Induction).

b). If $n \in \mathbb{N}^*$, then the number of subsets of X with an even number of elements is equal to the number of subsets of X with an odd number of elements. Moreover, this number is equal to 2^{n-1} . (Hint: Let $a \in X$. The map defined by $A \mapsto A \cup \{a\}$, if $a \notin A$, resp. $A \setminus \{a\}$, if $a \in A$, is a bijective map from the set of subsets with an even number of elements onto the set of subsets with an odd number of elements.)

T2.3. a). From 1a) deduce that: For $n \in \mathbb{N}$, $\binom{n}{0} + \binom{n}{1} + \cdots + \binom{n}{n} = 2^n$.

b). From 1b) deduce that: For $n \in \mathbb{N}^*$, $\binom{n}{0} - \binom{n}{1} + \cdots + (-1)^n \binom{n}{n} = 0$.

c). Let X be a finite set with *n* elements. The number of pairs (X_1, X_2) in $\mathfrak{P}(X) \times \mathfrak{P}(X)$ with $X_1 \cap X_2 = \emptyset$ is 3^n (Induction). General: The number of *r*-tuples (X_1, \ldots, X_r) of pairwise disjoint subsets $X_1, \ldots, X_r \subseteq X$ is equal $(r + 1)^n$, $r \in \mathbb{N}$.

d). For $m, n, k \in \mathbb{N}$, $\binom{m+n}{k} = \binom{m}{0}\binom{n}{k} + \binom{m}{1}\binom{n}{k-1} + \dots + \binom{m}{k}\binom{n}{0}$. In particular, $\binom{2n}{n} = \binom{n}{0}^2 + \binom{n}{1}^2 + \dots + \binom{n}{n}^2$ for $n \in \mathbb{N}$. (**Hint :** Let *X*, *Y* be disjoint sets with |X| = m, |Y| = n. The assignment $A \mapsto (A \cap X, A \cap Y)$ defines a bijective map $\mathfrak{P}(X \cup Y) \to \mathfrak{P}(X) \times \mathfrak{P}(Y)$.)

T2.4. Let *m* be a natural number (resp. a positive natural number) and let *n* be another natural number. Let a(m, n) (resp. b(m, n)) denote the number of *m*-tuples $(x_1, \ldots, x_m) \in \mathbb{N}^m$ with $x_1 + \cdots + x_m \leq n$ (resp. $x_1 + \cdots + x_m = n$). Show that

$$\mathbf{a}(m,n) = \binom{n+m}{m}, \ \mathbf{b}(m,n) = \binom{n+m-1}{m-1}.$$

(Hint: Note that a(m-1, n) = b(m, n) and a(m, n) = a(m, n-1) + a(m-1, n) if $m \ge 1$ and use induction on n+m. —Variant: The map $(x_1, \ldots, x_m) \mapsto \{x_1+1, x_1+x_2+2, \ldots, x_1+\cdots+x_m+m\}$ maps the set of *m*-tuples $(x_1, \ldots, x_m) \in \mathbb{N}^m$ with $x_1 + \cdots + x_m \le n$ bijectively onto the set of *m*-element subsets of $\{1, 2, \ldots, n+m\}$.)

T2.5. Let $\mathfrak{X} = (X_1, \ldots, X_r)$ and let $\mathfrak{Y} = (Y_1, \ldots, Y_r)$ be partitions of the set *X* into *r* pairwise disjoint subsets each of them with $n \ge 1$ elements (i.e. $\bigcup_{i=1}^r X_i = X$ and $X_i \cap X_j = \emptyset$ for $i \ne j$ and analogously for \mathfrak{Y}). Show that: \mathfrak{X} and \mathfrak{Y} has a common representative system, i.e. there exist *r* distinct elements x_1, \ldots, x_r in *X* such that each x_i belongs to exactly one of the subset X_1, \ldots, X_r and exactly one of the subset Y_1, \ldots, Y_r . (Hint: Using the Marriage-theorem find a permutation $\sigma \in \mathfrak{S}_r$ such that $X_i \cap Y_{\sigma(i)} \ne \emptyset$ for every $1 \le i \le r$.)