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3.1. Let (X, ≤) be an ordered set in which every subset has a least upper bound and has a greatest lower
bound. Further, letf : X → X be an increasing map and letF be the fixed points off . Show that:

a). If {x ∈ X | f (x) < x} �= ∅ and ifa is its greatest lower bound, then eithera ∈ F or f (a) ∈ F .

b). If {x ∈ X | x < f (x)} �= ∅ and if z is its least upper bound, then eitherz ∈ F or f (z) ∈ F .

c). F is non-empty. Further, the least upper bound and the greatest lower bound ofF belong toF .

3.2. Let (X, ≤) be a lattice (see T3.2) with a largest element and a smallest element.

a). Suppose thatX has the following property : ifx, y ∈ X and if Sup{x, y} is adirect successer 1) of
x, then Inf{x, y} is adirect predecesser of y. Prove the followingC h a i n t h e o r e m :If X has a finite
maximal chain, then every chain in X is finite and the lengths 2) of all maximal chains in X are equal.
(Hint : It is enough to prove that: ifX has a finite maximal chainx0 < · · · < xn of lengthn, then every finite
chainy0 < · · · < ym in X has lengthm ≤ n. Induction onn: if n ≥ 1, m ≥ 1, then apply induction hypothesis
on the lattice{x ∈ M : x ≤ xn−1}. In the caseym−1 �≤ xn−1 consider the element Inf{ym−1, xn−1}. This element is
≤ xn−1 and is a direct predecesser ofym−1. If ym−2 �≤ Inf {ym−1, xn−1}, then consider Inf{ym−2, Inf {ym−1, xn−1}}
and so on... (Induction onm). Note thatx0 resp.xn is the smallest resp. greatest element inX.) — Give an
example of a (with 5 elements) in which there are maximal chains of different lengths.

b). ( D e d e k i n d ’s C h a i n T h e o r e m )Suppose thatX is artinian and noetherian and thatX has the
following property: ifx, y ∈ X and if Sup{x, y} is a direct successer ofx andy, then Inf{x, y} is a direct
predecesser ofx andy. Show that: All maximal chains inX have the same (finite) lengths. (Hint :
Similar to that of part a).)

3.3. a). ( D i l w o r t h ’s T h e o r e m ) Let(X, ≤) be a finite ordered set and letm be the cardinality
of a largest possibleanti-chain 3) in X. Show thatX can be partitioned intom chains andX cannot be
partitioned intor chains withr < m. — This natural numberm is called the Di l w o r t h ’s n u m b e r
of X. (Proof. By induction on the cardinality ofX. Let Y ⊆ X be an anti-chain inX of cardinalitym. Let
A := {a ∈ X | a < y for some y ∈ Y } and letB := {b ∈ X | y < b for some y ∈ Y }. ThenX = A � B � Y .
We divide the proof in the following four cases. i).A = ∅ = B . ii). A �= ∅, B �= ∅ . iii). A �= ∅, B = ∅ . iv).
A = ∅, B �= ∅ . The proof in the case i) is trivial. For case ii) : PutXA := Y ∪ A andXB := Y ∪ B. Then by
induction bothXA andXB can be partitioned intom chains. ThenX can also be partitioned intom chains. For the
case iii) : Lety ∈ Y and letC be a chain of maximal length withy ∈ C. LetX′ := X \ C. Note that the extremal
elements ofC are also extremal elements ofX. Letm′ denote the the maximal number of pairwise uncomparable
elements inX′. Thenm − 1 ≤ m′ ≤ m, sinceY \ {y} ⊆ X′. Choose an anti-chainY ′ in X′ with card(Y ′) = m′ .
We now further consider the following two cases : iii.a) :m′ = m. In this case replaceY by Y ′ and then apply
the case ii) to complete the proof. iii.b) :m′ = m − 1. In this case apply induction hypothesis toX′ to complete
the proof. Proof in the case iv) is similar to that of case iii).)

b). ( E . S p e r n e r ) LetX be a finite set withn elements. Show that the Dilworth’s number of the
ordered set(P(X), ⊆) is

(
n

[n/2]

)
, where [n/2] is the integral part ofn/2. (Hint : Use the maps

fi , 0 ≤ i < n/2 andgi , n/2 < i ≤ n of Exercise 2.1 to give an explicit partition ofP(X) into
(

n

[n/2]

)
chains.

Variant : if S ⊆ P(X) be an anti-chain inP(X) then|S| ≤ (
n

[n/2]

)
as follows : ForY ∈ S, let CY be the set of

all maximal chains inP(X) in which Y appears as an element. Then|CY | = (n − |Y |)! · |Y |! andCY ∩ CZ = ∅
if Y, Z ∈ S , Y �= Z . Since there aren! maximal chains, it follows that

∑
Y ∈ S(n − |Y |)! · |Y |! ≤ n! and so

|S|) ≤ (
n

[n/2]

)
.) For 1≤ i ≤ n, what is the Dilworth’s number ofP≤i (X) := {Y ∈ P(X) | |Y | ≤ i} ?

On the other side one can see (simple) test-exercises ; their solutions need not be submitted.

1) Let a, b be two elements in an ordered set(X, ≤). If a < b and(a, b) := {x ∈ X | a < x < b} = ∅, then we
say thatb is a d i r e c t s u c c e s s o r ofa and we say thata is a d i r e c t p r e d e c e s s o r ofb.
2) By the l e n g t h of afinite chainC in an ordered set(X, ≤), we mean|C| − 1.
3) An a n t i - c h a i n in anordered set(X,≤) is a subset ofX consisting of pairwise uncomparable elements.
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Test-Exercises
T3.1. a). Let (X, ≤) be a finite non-empty ordered set. Show thatX has (at least one) a minimal and (at least
one) a maximal element.

b). Let (X, ≤) be a finite totally ordered set withn elements. Show that there exists exactly one isomorphism of
the interval [1, n] = {1, . . . , n} ⊆ N (with the natural order) ontoX.

c). Let (X, ≤) be an inductively ordered set and letx ∈ X. Show that there is a maximal elementz ∈ X such that
x ≤ z. (Apply Zorn’s † lemma 4) to the subset{y ∈ X | x ≤ y}.)
T3.2. ( L a t t i c e ) Anordered set(X, ≤) is called al a t t i c e if for every twoelementsx, y in X, Sup{x, y} and
Inf {x, y} exist. The power set of a set with respect to the natural inclusion is a lattice. Every totally ordered set is
a lattice. IfXi, i ∈ I , is a family of lattices, then so is the product set

∏
i∈I Xi with respect to the product order.

If X is a lattice, thenX is also lattice with respect to the inverse order; this lattice is called the( d u a l l a t t i c e ) .

T3.3. Let X be a set. Then the power setP(X) of X is (with respect to the natural inclusion) noetherian resp.
artinian if and only ifX is finite.

T3.4. Let (X, ≤) be a well-ordered set.

a). Every element inX which is not the largest element inX has a direct successer inM. Is it true that every
element inX which is not the smallest element inX necessarily have a direct predesser inX ?

b). Let g be strictly increasing map fromX into itself. Show that:x ≤ g(x) for all x ∈ X. If im g is a section
of X, theng = idX. In particular, idX is the only isomorphism ofX onto itself. Further, ifX, Y are well-ordered
subsets, then there is atmost one isomorphism ofX onto a section ofY .

T3.5. Let (X, ≤) be an ordered set. As e c t i o n ofX is a subsetA of X with the following property: if
x ∈ A, y ∈ X with y ≤ x, theny ∈ A. — The subsets∅ andX are sections ofX. Arbitrary intersections and
arbitrary unions of sections ofX are again sections ofX. For a ∈ X, the subsetsAa := {x ∈ X | x < a} and
Aa := {x ∈ X | x ≤ a} are sections ofX.

a). The mapa �→ Aa from X into P(X) is a strictly monotone increasing (whereP(X) is ordered by the natural
inclusion) and induces an isomorphism ofX onto a subset ofP(X).

b). Suppose further that(X, ≤) is well-ordered. Then show that: IfA is a section ofX, A �= X, then there exists
exactly onea ∈ X such thatA = Aa . The mapa �→ Aa is an isomorphism ofX onto the set of sections different
from X which is ordered by the natural inclusion. The set of sections ofX is well-ordered and has a greatest
element.

† M a x A u g u s t Z o r n ( 1 9 0 6 - 1 9 9 3 ) Max Zorn was born on 6 June 1906 in Krefeld, Germany and died on 9 March 1993 in Bloomington,
Indiana, USA. Max Zorn was born in Krefeld in western Germany, about 20 km northwest of Dusseldorf. He attended Hamburg University where he studied
under Artin. Hamburg was Artin ’s first academic appointment and Zorn became his second doctoral student. He received his Ph.D. from Hamburg in April
1930 for a thesis on alternative algebras. His achievements were considered outstanding by the University of Hamburg and he was awarded a university prize.
He was appointed as an assistant at Halle but he did not have the opportunity to work there for long since, in 1933, he was forced to leave Germany because
of the Nazi policies. He was not, however, Jewish. Zorn emigrated to the United States and was appointed a Sterling Fellow at Yale University. He worked
there from 1934 to 1936 and it was during this period that he proposed "Zorn’s Lemma" for which he is best known. Since Zorn is best known for "Zorn’s
Lemma" it is perhaps appropriate that we should begin a discussion of his mathematical achievements by considering this contribution. Of course Zorn did
not call his result "Zorn’s Lemma", rather it was given by him as a "maximum principle" in a short paper entitled A remark on method in transfinite algebra
which he published in the Bulletin of the American Mathematical Society in 1935. Perhaps in passing we should note that the name "Zorn’s Lemma" was due
to John Tukey . Zorn’s aim in this paper was to study field theory and in particular to improve on the method used for obtaining results in the subject. Methods
used up to that time had depended heavily on the well- ordering principle which Zermelo had proposed in 1904, namely that every set can be well-ordered.
What Zorn proposed in the 1935 paper was to develop field theory from the standard axioms of set theory, together with his maximum principle rather than
Zermelo’s well-ordering principle.

The form in which Zorn stated his maximum principle was as follows. The principle involved chains of sets. A chain is a collection of sets with the property
that for any two sets in the chain, one of the two sets is a subset of the other. Zorn defined a collection of sets to be closed if the union of every chain is in
the collection. His maximum principle asserted that if a collection of sets is closed, then it must contain a maximal member, that is a set which is not a proper
subset of some other in the collection. The paper then indicated how the maximum principle could be used to prove the standard field theory results.

Today we know that the Axiom of Choice, the well-ordering principle, and Zorn’s Lemma (the name now given to Zorn’s maximum principle by Tukey and now
the standard name) are equivalent. Did Zorn know this when he wrote his 1935 paper? Well at the end of the 1935 paper he did say that these three are
all equivalent and promised a proof in a future paper. Was Zorn’s idea entirely new? Well similar maximum principles had been proposed earlier in different
contexts by several mathematicians, for example Hausdorff, Kuratowski and Brouwer. Paul Campbell. Following his years at Yale, he moved to the University
of California at Los Angeles where he remained until 1946. During this time Herstein was one of his doctoral students. He left the University of California
to become professor at Indiana University, holding this position from 1946 until he retired in 1971. After 1947 Zorn stopped publishing mathematical papers.
This does not mean that he gave up mathematics. In recent years Max became fascinated by the Riemann Hypothesis and possible proofs using techniques
from functional analysis . He read and studied and talked about mathematics nearly every day of his life. From time to time he published a slim newsletter.
He was a gentle man with a sharp wit who, during nearly half a century, inspired and charmed his colleagues at Indiana University.

Max Zorn married Alice Schlottau and they had one son Jens and one daughter Liz.

4) Zorn’s Lemma Let (X, ≤) be an inductively ordered set, i.e. every chain in X has an upper bound in X. Then
X has (at least one) a maximal element.
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