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First recall the following definitions and results :

Our overall aim in this section is the study of the compactness and completeness properties of a subsetF of the set
Y X of all maps from a spaceX into a spaceY . To do this a usable topology must be introduced onF (presumably
related to the structures ofX andY ) and when this is has been doneF is called a fu n c t i o n s p a c e .

N13.1 . ( T h e T o p o l o g y o f P o i n t w i s e C o n v e r g e n c e2) Let X be any set,Y be any topological
space and letfn : X → Y , n ∈ N, be a sequence of maps. We say that the sequence(fn)n∈N is p o i n t w i s e
c o n v e r g e n t , if for everypointx ∈X, the sequencefn(x) , n∈N, in Y is convergent.

a). The (Tychonoff) product topology onY X is determined solely by the topology ofY (even ifX is a topological
space) the structure onX plays no part.A sequence fn : X→Y , n∈N , in Y X converges to a function f in Y X if
and only if for every point x ∈X, the sequence fn(x) , n∈N , in Y is convergent. This provides the reason for the
name thet o p o l o g y o f p o i n t w i s e c o n v e r g e n c e ;this topology is also simply called thep o i n t w i s e
t o p o l o g y and isdenoted byTptc . Suppose thatY is a Hausdorff topological space, then the map

f = lim
n→∞

fn with f (x) := lim
n→∞

fn(x)

is called the l i m i t m a p or thel i m i t of the sequencefn , n∈N. Note that for eachx ∈ X, f (x) is uniquely
determined, sinceY is Hausdorff.

b). ( C o m p a c t s u b s e t s o f i n t h e t o p o l o g y o f p o i n t w i s e c o n v e r g e n c e ) LetX be a set and
let Y be a Hausdorff topological space and letF ⊆ Y X with the topology of pointwise convergence. ThenF is
compact if and only (i) F is pointwise closed, i.e.F is closed in the topology of pointwise convergence on
Y X. (ii) For eachx ∈ X , πx(F) = {f (x) | f ∈ F } has a compact closure inY , whereπx : Y X → Y is
thex-th projectionf �→ f (x) .

1) The study of sets or spaces of functions began with the work ofAscoli in 1883 [“Le curve Limite di una
Varietá Data di Curve,”Mem. Accad. Lincei (3) 18, 521-586 (1883)],Arzela in 1889 [“Funzioni di Linee,”
Atti della Reale Accademia dei Lincei, Rendiconti , 5, 342-348 (1889)] andHadamard in 1898. These papers
mark the beginning , not only of function space theory, but of general topology itself, for it was the questions
which they raised that men likeFrechet, Riesz, Weyl and finallyHausdorff were trying to answer.
Coherent attempts to study topologies on spaces of functions in their own right began in 1935 withTychonoff,
who pointed out that his product topology onY X is just the topology of pointwise convergence. The termfunction
space is used much earlier in connection with questions of a topological nature about sets of functions.

2) The study of pointwise convergence of (sequences of) functions is as old as the calculus. The study of uniform
convergence began hard on the heels of the formalization of the notion of limit byCauchy. Cauchy in 1821
published a faulty proof of the false statement that the pointwise limit of a sequence of continuous functions is
always continuous.Fourier andAbel found counter examples in the context of Fourier series.Dirichlet
then analyzed Cauchy’s proof and found the mistake: the notion of pointwise convergence had to be replaced by
uniform convergence. In the last half of the 19th century, in the hands ofHeine, Weierstrass, Riemann and
others, uniform convergence came into its own in applications to integrations theory and Fourier seris.
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13.2 MA-231 Topology / August-December 2004 13. Function Spaces

c). Let X be a set and letY be a Hausdorff topological space and letF ⊆ Y X. Let T be a topology onF . If
T is compact and larger thanTptc, then the identity map id :(F, T) → (F, Tptc) is continuous and therefore a
homeomorphism! (note that(F, Tptc) is Hasudorff, sinceY is).

compact topology

N13.2 . ( U n i f o r m c o n v e r g e n c e ) LetX be any set,(Y, d) be a metric space. Then in addition to the
above pointwise convergence, we also define the uniform convergence : A sequencefn : X→Y , n∈N, of maps
from X into Y c o n v e r g e s u n i f o r m l y to a mapf : X→Y , if for everyε>0, there exits an0 ∈N such that
d
(
f (x) , fn(x)

)≤ε for all n ≥ n0 and allx ∈X.

a). The uniform convergence offn : X→Y , n∈N, implies the pointwise convergence. Moreover, ifY is complete
then we have the following Cauchy’s criterion for the uniform convergence :

b). ( C a u c h y ’s c r i t e r i o n f o r u n i f o r m c o n v e r g e n c e ) Aseqeunce(fn) of functionsfn : X→Y from
a setX into a complete metric spaceY converges uniformly if and only if for everyε > 0, there exists an0 ∈ N

such that for allm, n≥n0 and allx ∈X, we haved
(
fm(x), fn(x)

)≤ε.

c). Let fn : X → Y , n ∈ N, be a uniformly convergent sequence of continuous maps from the topological space
X into the metric spaceY . Then the limit functionf = lim fn is also continuous. ( Proof : Let a ∈ X

and ε > 0 be given. Then there exits an ∈ N and a nhoodU of a such thatd
(
f (x), fn(x)

) ≤ ε/3 for all
x ∈ X and d

(
fn(a) , fn(x)

) ≤ ε/3 for all x ∈ U . Then forx ∈ U , we haved
(
f (a) , f (x)

) ≤ d
(
f (a) , fn(a)

) +
d
(
fn(a), fn(x)

) + d
(
fn(x), f (x)

) ≤ ε .
)

d). Let fn : X → Y , n ∈ N, be alocally uniformly convergent sequence of continous maps from the topological
spaceX in the metric spaceY . Then the limit function limfn is also continuous. (Hint : Immediate from the fact
that continuity is a local property. — Recall that a sequencefn : X→Y l o c a l l y u n i f o r m l y c o n v e r g e n t ,
if for everyx ∈X, there exists a nhoodU of x in X such that the sequencefn|U , n∈N, is uniformly convergent
onU .)

N13.3 . (The t o p o l o g y (or m e t r i c ) o f t h e u n i f o r m c o n v e r g e n c e o nY X) Let X be any set and
let (Y, d) be a metric space. Then on the setY X of all maps fromX into Y , there is a natural metric defined by :
ρ(f, g) := Sup

{
Min

(
d
(
f (x) , g(x)

)
, 1

) ∣∣ x ∈X
}

for f, g ∈Y X. 3) Then : ρ is a metric Y X and the sequence
fn ∈Y X, n∈N, uniformly converges to a map f ∈Y X if and only if the sequence fn ∈Y X, n∈N, in the metric space
Y X converges to f . Therefore the topology ofY X defined by the metricρ is called thet o p o l o g y (or m e t r i c )
o f t h e u n i f o r m c o n v e r g e n c e o nY X or just the u n i f o r m to p o l o g y and isdenoted byTuc .

a). Let X be a topological space and letY be a metric space. Then the set C(X, Y ) of all continuous maps from
X into Y is a closed subset ofY X. Further, ifY is complete thenY X is also complete and in particular, the set
C(X, Y ) is a complete metric space with respect to the metric of uniform convergence.(Hint : Use 13.1-c) and
the Cauchy’s criterion for uniform convergence 13.1-b))
b). If X is a compact topological space, then in this case we choose the natural distance between two continuous
functionsf, g : X → K as the s u p r e m u m n o r m or T s c h e b y s c h e v n o r mdefines a distance function
‖g−f ‖ = ‖g−f ‖X = Sup

{|g(x)− f (x)| ∣∣ x ∈ X
}
. Moreover, ifX 	= ∅, then there exists ax0 ∈ X such that

‖g−f ‖X = |g(x0)−f (x0)| .
In addition to the topology of pointwise convergence and the topology of uniform convergence, there are other
interesting and useful topologies onY X and C(X, Y ) , for example, thetopology of compact convergence and the
compact-open topology. We shall recall these below :

N13.4 . (The t o p o l o g y o f c o m p a c t c o n v e r g e n c e o nY X) Let X be any topological space and let
(Y, d) be a metric space. Forf ∈ Y X , a real numberε > 0 and a compact subsetK of X, let BK(f ; ε) :=
{g ∈ Y X | supx∈K d (f (x), g(x)) < ε } . The subsets{ BK(f ; ε) | f ∈ Y X, ε > 0 and a compact subsetK ⊆ X }
form a basis for a topology onY X; this topology is called thet o p o l o g y o f c o m p a c t c o n v e r g e n c e or
the t o p o l o g y o f u n i f o r m c o n v e r g e n c e o n c o m p a c t s e t s . Thejustification for the choice of this
terminology comes from the following :A sequence fn : X→Y , n∈N , in Y X converges to a function f in Y X in
the topology of compact convergence if and only if for every compact subset K of X , the sequence fn|K ,n∈ Y K

converges uniformly to f |K in Y K .

3) The choice of Min
(
d
(
f (x) , g(x)

)
, 1

)
gurantee thatρ(f, g) is finite; this can also be achieved by assuming

(see ???) that the metricd on Y is bounded. In the case whenX is a compact topological space andcontinuous
mapsf, g : X→Y it is immediate thatρ(f, g) is finite. In both these cases therefore forρ(f, g) we will make the
choice Sup

{
d
(
f (x) , g(x)

) ∣∣ x ∈X}.
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N13.5 . The relation between the above three topologies is the following :Tuc ⊇ Tcc ⊇ Tptc . Moreover, if X

is compact, then the first two coincise and ifX is discrete, then the second two coincide. ( Remark : The
definitions of the uniform topology and the compact convergence topology made specific use of the metricd of the
metric space(Y, d). But the topology of pointwise convergence did not, in fact, it is defined for any topological
spaceY . It is natural to ask whether either of these other topologies can be extended to the case whereY is
an arbitrary topological space.There is no satisfactory answer for this question for the space Y X. But for the
subspace C(X, Y ) of continuous functions fromX into Y , one can prove something. It turns out that there is in
general a topology on C(X, Y ) , called thecompact-open topology (see below), that coincides with the compact
convergence topology whenY is a mteric space. This topology is important in its own right.)

N13.6 . (The c o m p a c t - o p e n t o p o l o g y4) o n Y X) Let X andY be any topological spaces. For a compact
subsetK ⊆ X and an open subsetU ⊆ Y , let (K, U) := {f ∈ Y X | f (K) ⊆ U } . the topology generated
by the subsets{(K, U) | K compact subset ofX andU an open subset ofY } is called thec o m p a c t - o p e n
t o p o l o g y ork- t o p o l o g y onY X and is denoted byTco . In the case whenY is a metric space, it is clear from
the definition that the compact-open topology is finer than the topology of pointwise convergence, i.e.Tco ⊇ Tptc .

a). LetX be any topological space and let(Y, d) be a metric space. Then the compact-open topology on C(X, Y )

and the topology of compact convergence coincide, i.e.Tco = Tcc on C(X, Y ) . In particular, The topology of
compact convergence on C(X, Y ) does not depend on the metricd onY . Therefore ifX is compact, the uniform
topology on C(X, Y ) does not depend on the metricd onY .

The fact that the definition of the compact-open topology does not involve a metric is just one of the useful
features. Another is the fact that it satisfies the requirement of “joint continuity” – roughly speaking this means
that the expressionf (x) is continuous not only in the single “variable”x, but it is continuous jointly in both the
“variables”x andf . More precisely :

b). Let X be a locally compact (Hausdorff) topological space and consider C(X, Y ) with the compact-open
topology. Then the evaluation map e : X × C(X, Y ) → Y defined by (x, f ) �→ f (x) is continuous.

N13.7 . ( S t o n e -W e i e r s t r a s s t h e o r e m s ) For acompact topological spaceX we consider theK-algebra
CK(X) of all continuousK-valued functions onX with the metric of uniform convergence. We proved the
following generalisation of the classical aproximation theorem of Weierstrass :

(1) (A p p r o x i m a t i o n t h e o r e m o f S t o n e - W e i e r s t r a s s f o rR - v a l u e d f u n c t i o n s )Let X

be a compact topological space and let A be a R-subalgebra of the algebra CR(X) of all continuous real valued
functions on X. If the algebra A seperates points of X, i.e. for every two distinct points x, y ∈ X, there exists a
function f ∈ A with f (x) 	=f (y). Then A is dense in CR(X) .

(2) (A p p r o x i m a t i o n t h e o r e m o f S t o n e - W e i e r s t r a s s f o rC - v a l u e d f u n c t i o n s )Let X

be a compact topological space and let A be a C-subalgebra of the algebra CC(X) of all continuous real valued
functions on X. Suppose that (i) the algebra A seperates points of X, i.e. for every two distinct points x, y ∈X,
there exists a function f ∈ A with f (x) 	=f (y). (ii) If f ∈ A , then the real and imaginary parts Ref and
Imf of f also belong to A. Then A is dense in CR(X) .
5) Let X = B(0; 1) = {z ∈ C | |z ≤ 1} be the closed unit disc inC and letA be the set of all functions in CC(X)

which are analytic in the open unit disc B(0; 1), i.e. A := {f ∈ CC(X) | f is analytic in B(0; 1)} . ThenA is a
closedC-subalgebra of CC(X) andA separates points ofX, but A 	= CC(X) . (Hint : UseMorera’s theorem
to conclude thatA is closed in CC(X). The complex conjugation belongs CC(X), but is not inA, since it is not
diferentiable at any point.)

N13.8 . (A r z e l à-A s c o l i t h e o r e m )Let F be a subset of the space (with the uniform metric, see N13.3) of
K- valued functions on a compact topological space X. Suppose that F satisfies the following conditions :

(1) For every x ∈X, the set {f (x) | f ∈F } ⊆ K is bounded. (2) F is equicontinuous.

Then every sequence (fn) with fn ∈ F has a uniformly convergent subsequence (the limit function lim fn neend
not belong to F ) , i.e. F is relatively compact in CK(X) .

Let F be a subset of the space (with the uniform metric, see N13.??) of K- valued functions on a compact
topological space X. Then F is compact if and only if the follwoing conditions are fullfilled :

(1) For every x ∈ X, the set {f (x) | f ∈ F } ⊆ K is bounded. (2) F is equicontinuous. (3) F is closed in
CK(X) .

4) The compact-open topology was first systematically defined and studied byFox in 1945 andArens in 1946.
5) This simpleset example requires a little knowledge of the theorey of analytic functions
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13.1. Let (X, d) be a metric space and leta ∈ X be a fixed. For eachy ∈ X , let fy : X → R be the
function defined byfy(X) := d(x, y) − d(x, a) , x ∈ X. Then

a). fy ∈ CR(X) for every y ∈ X and ‖fy − fz‖ = d(y, z) for all y, z ∈ X .

b). The map� : X → CR(X) defined byy �→ fy is an isometry (a distance preservaing map, — the
metric on CR(X) is the metric of uniform convergence, see Exercise 13.2).

c). The closure of�(X) in CR(X) is a complete metric space. In particular,(X, d) is isometric to a
dense subset of a complete metric spaceY = �(X) . ( Remark : This give a different proof of the fact
thatevery metric space has a completion.)

13.2. (A p p l i c a t i o n s o f W e i e r s t r a s s t h e o r e m )

a). If f : [0, 1] → R is a coninuous function and if
∫ 1

0 f (x)xn dx = 0 for all n = 0, 1, 2, . . . , , then
show thatf (x) = 0 for everyx ∈ [0, 1] . (Hint : It is enough to prove that

∫ 1
0 f 2(x) dx = 0 .

The integral of the product off with any polynomial is zero. Now, use Weierstrass theorem to conclude that∫ 1
0 f 2(x) dx = 0 .)

b). The metric space CR([0, 1]) is separable.

13.3. Let X be a topological space and letF ⊆ CK(X) be an equicontinuous set ofK-valued (conti-
nuous) functions onX. If for everyx ∈ X, the set{f (x) | f ∈ F } is bounded, then for every compact
subsetK ⊆ X the set{‖f ‖K | f ∈ F } is bounded.

13.4. Prove the following generalisation of Arzela-Ascoli theorem (see N13.8): LetX be a compact
topological space and letY be a complete metric space. A subsetF of the space C(X, Y ) of continuous
maps fromX into Y is compact if and only if the following conditions are fullfilled:
(1) For everyx ∈X, the set{f (x) | f ∈F } ⊆ Y is relatively compact. (2)F is equicontinuous. (3)F is
closed in C(X, Y ) .

13.5. Let I ⊆ R be a compact interval and leta ∈ I . Further, letC, L ∈ R+ . The setF of all
differentiable functionsf : I →K with |f (a)|≤ C and‖f ′‖I ≤ L is relatively compact in CK(I ) . IsF

also closed, i.e. compact?

13.6. Let X be a compact metric space. Then theK-Banach-algebra CK(X) is separable, i.e. it has a
countable dense subset. In particular, the uniform topology CK(X) on is second countable. (Hint : It is
enough to consider the caseK = R. LetA⊆X be a countable dense subset ofX (why does such a subset exists!).
The functionsfa : x �→ d(x, a) , a ∈ A, separates the points inX and hence generate a denseR- subalgebra of
CR(X) .)

13.7. For a topological spaceX, the following statements are equivalent : (1)X is metric and compact.
(2) X is compact and there exists a countable familyfi ,i ∈I , of continous functionsfi : X→R, which
separates the points inX. (3) X is homeomorphic to a closed subspace of [0, 1]N. (4) X is compact
and second countable. (Hint : For (1) ⇒ (2) see Exercise 13.??. For a proof of(2) ⇒ (3) we
may assume thatfi(X)⊆ [0, 1] for all i ∈ I . Thenx �→ (

fi(x)
)
i∈I

is an injective continuous mapX → [0, 1]I .
The implication(3)⇒ (1) is immediate from (countable) Tychonoff theorem. The implication(4)⇒ (2) follows
immediately from the Urysohn’s separation lemma. – By passing to the one-point compactfication we get the
following important Cr i t e r i on fo r me t r i sab i l i t y :A locally compact topological space X with a countable
topology is metrisable. Note that the one-point compcatificationX always has a countable topology.)

† K a r l T h e o d o r W i l h e l m W e i e r s t r a s s ( 1 8 1 5 - 1 8 9 7 ) was born on Oct 1815 in Ostenfelde, Westphalia (now Germany) and died on 19 Feb
1897 in Berlin, Germany. While at the Gymnasium Weierstrass certainly reached a level of mathematical competence far beyond what would have been expected. He regularly read Crelle’s
Journal and gave mathematical tuition to one of his brothers. However Weierstrass’s father wished him to study finance and so, after graduating from the Gymnasium in 1834, he entered the
University of Bonn with a course planned out for him which included the study of law, finance and economics. However, Weierstrass suffered from the conflict of either obeying his father’s
wishes or studying the subject he loved, namely mathematics. The result of the conflict which went on inside Weierstrass was that he did not attend either the mathematics lectures or the
lectures of his planned course. He reacted to the conflict inside him by pretending that he did not care about his studies, and he spent four years of intensive fencing and drinking.

He did study mathematics on his own, however, reading Laplace’s Méchanique céleste and then a work by Jacobi on elliptic functions. He came to understand the necessary methods in
elliptic function theory by studying transcripts of lectures by Gudermann. In a letter to Lie, written nearly 50 years later, he explained how he came to make the definite decision to study
mathematics despite his father’s wishes around this time.
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... when I became aware of [a letter from Abel to Legendre] in Crelle’s Journal during my student years, [it] was of the utmost importance. The immediate derivation of the
form of the representation of the function given by Abel ..., from the differential equation defining this function, was the first mathematical task I set myself; and its fortunate
solution made me determined to devote myself wholly to mathematics; I made this decision in my seventh semester ...

Now Weierstrass had made a decision to become a mathematician but he was still supposed to be on a course studying public finance and administration. After his decision, he spent one
further semester at the University of Bonn, his eighth semester ending in 1838, and having failed to study the subjects he was enrolled for he simply left the University without taking the
examinations. Weierstrass’s father was desperately upset by his son giving up his studies. He was persuaded by a family friend, the president of the law courts at Paderborn, to allow Karl
to study at the Theological and Philosophical Academy of Münster so that he could take the necessary examinations to become a secondary school teacher.

On 22 May 1839 Weierstrass enrolled at the Academy in Münster. Gudermann lectured in Münster and was the reason that Weierstrass was so keen to study there. Weierstrass attended
Gudermann’s lectures on elliptic functions, some of the first lectures on this topic to be given, and Gudermann strongly encouraged Weierstrass in his mathematical studies. Leaving Münster
in the autumn of 1839, Weierstrass studied for the teacher’s examination which he registered for in March 1840. Gudderman Weierstrass’s teacher, in his evaluation wrote: “With this
work the candidate enters the ranks of famous inventors as co-equal.” Gudderman urged publication of the exam project as soon as possible and that would have happened had the
philosophy faculty of the royal academy at Münster/Westphalia at that time had the authority to grant degrees. “Then we would have the pleasure of counting Weierstrass amoung our
doctoral graduates”, so was written in 1887 rector’s address of Weierstrass’ formal pupil W. Killing (whose name was later immortalized in Lie theory). Not until 1894, fifty-four
years after it was written, did Weierstrass publish his exam work.

1842-1848 teacher at the Progymnasium in Deutsch-Krone, West Prussia, of mathematics, penmanship and gymnastics; 1848-1855 teacher at the Gymnasium in Braunsberg, East
Prissia;1854 publication of trail-blazing results (gotten already in 1849) “Zur Theorie der Abelschen Functionen” in Journal für Reine und Angew. Math., thereupon honorary doctorate from
the University of Königberg and promotion to assistant headmaster; 1856 at the instigation of A. Von Humbolt and L. Crele appointment as professor at the Industrial Institute (later
Techinal University) at Berlin; 1857 adjunct professor at the University of Berlin; after 1860 lectures often with more than 200 auditors; 1861 breakdown from over work; 1864 at the age of
almost fifty appointmnet to an ordinary professorship, created for him, at the University of Berlin; 1873/74 rector magnificus there, member of numerous academies at home and abroad;1885
stamping of Weierstrass medal (for his 70th birthday); 1890 teaching activity halted by serious illness, confinement to wheelchair; 1895 festive unveilling his image in the national gallery
(80th birthday); 1897 died in Berlin.

Unfortunately, unlike Cauchy, Weierstrass never wrote his lectures out in the book form , but there are transcriptions by his various puplis, for example, from H. A. Schwarz’s hand
there is an elaboration of his lectures on Differentialrechnung held at the Royal Industrial Institute in the 1861 summer semester. There is also a transcription by A. Hurwitz of his
summer semester 1878 lectures on Einleitung in die theorie der analytischen Funktionen and another by W. Killing. Weierstrass’s lectures became world famous; when in 1873
–two years after the Franko-Prussian War –Mittag-Leffler came to Paris to study, Hermite told him: “you have made a mistake, sir; you should have attended Weierstrass’
course in Berlin. He is the master of us all”.

There is no exhaustive biography of Weierstrass, but in the personal remarks made by A. Kneser describes the mathematical life in the 1880’s thus: The undisputed master of the
whole opeartion was without doubt Weierstrass, a regal and in every way imposing figure. All knew the magnificent white-locked head, the shining blue eyes slightly dropping
at the corners which belonged to the country boy of pure Westphalian stock. By this time his lectures had evolved to a high level of perfection in presentation as well as content
and only seldom were those tense minutes experienced where the great man flatered and even the promptings of his faithful assistant at the balckboard, perhaps my friend
Richard Müller, couldn’t get him back on the track; then he would sink into majestic silence for few minutes; two hundred pairs of young eyes were riveted on the splendid
brow with the devout conviction that behind that shining facade the greatest intellect was at work. There were in fact, two hundred youths who attended and listened intently
to Weierstrass’s lectures on elliptic functions, fully aware that at that time such things never came up on any state examination, a dazzling testimonial to intellectual sprit of
times. People even knew very little about the applications of these things, although there were already available some very beautiful ones. The doctrine of the primacy of
applied mathematics, of the greater worth of applications as against pure mathematics, had not yet been discovered. The humor of the young was unleashed even on this
great man: he was considered a connoisseur of wine and the Berliners, who mocked his westphalian pronunciation, claimed to have actually heard from him the following
quintessential example: I’d kladly kulp a kood klass of Burkundy. – the k’s here should be read as g’s.

Weierstrass by his lectures in Berlin, influenced mathematics in Germany like no one else. The assistant headmaster from East prussia became the “praeceptor mathematicus Germaniae”.

†† M a r s h a l l H a r v e y S t o n e was born on 8 April 1903 in New York, USA and died on 9 Jan 1989 in Madras, India Marshall Stone’s father was a distinguished lawyer
and the family tradition would have had him follow his father’s subject. He studied at Harvard from 1919 to 1922, then was appointed an instructor at Harvard for session 1922/23 to see
whether he would enjoy teaching mathematics and whether he would take his mathematical studies further.

Indeed he did rapidly decide that he wanted to pursue a career in mathematics and studied for his doctorate under Birkhoff. His doctorate was awarded in 1926 for a thesis entitled Ordinary
Linear Homogeneous Differential Equations of Order n and the Related Expansion Problems. By 1925 he was appointed to Columbia University, in 1927 to Harvard. During this period
Stone’s interests followed very much those of his research supervisor Birkhoff. He published eleven papers on the theory of orthogonal expansions between 1925 and 1928. In these papers
a special role is played by expansions in terms of the eigenfunctions of linear differential operators.

Although he would return to Harvard again in 1933, Stone first accepted a post at Yale from 1931 to 1933. Back at Harvard in 1933 he was promoted to full professor there in 1937.

During these years Stone’s research took a number of directions. From 1929 he worked on self-adjoint operators in Hilbert space and included his results in a major publication of a 600
page book Linear transformations in Hilbert space and their applications to analysis.

In 1932 he proved results on spectral theory, arising from group theoretical methods in quantum mechanics, which had been conjectured by Weyl. Then in 1934 he published two papers on
Boolean algebras. He made this study while attempting to understand more deeply the basics underlying his results on spectral theory.

One particularly important result proved by Stone during this period was a substantial generalisation of Weierstrass’s results on uniform approximation of continuous functions by polynomials.
This result is now known as the Stone-Weierstrass theorem.

During World War II Stone undertook secret war work and then in 1946 he left Harvard to take up the chairmanship of the mathematics department at the University of Chicago. He did an
outstanding job in returning this famous research school to the eminence it had attained earlier by making appointments such as Weil, Chern and Mac Lane.

From 1952 Stone stepped down as head of department in favour of Mac Lane but he remained at Chicago until he retired in 1968. His interests, which included cooking, are described: Of
all Stone’s many interests his love of travel was surely dominant. He began to travel when he was quite young and was on a trip to India when he died. ... Marshall Stone
was a man with a very broad outlook and a wide range of interests who seems to have thought rather deeply about a number of issues. ... here was an unusually thoughtful
man with a high degree of penetration and insight. ... he seemed well endowed with a quality which I can only describe as wisdom.
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