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The One-dimensional Wave Equation

utt − a2 uxx = 0, a = constant > 0. (1)

The characteristic PDE of (1) is

ϕt
2 − a2ϕx2 = 0. (2)

The equation (2) contains two first order equations

ϕt + aϕx = 0 and ϕt − aϕx = 0. (3)

Characteristic equations of these two characteric PDEs give the two
families of characteristic curves

x− at = constant = ξ say ; and x+ at = constant = η say . (4)

I am sure you will not be surprised to see too many use of the word
characteristic, because you have been taught this. But the wave
equation in 3 space dimensions will be an eye opener.

The Bicharacteristic Theorem P. Prasad Department of Mathematics 2 / 34



Solution of One-dimensional Wave Equation.

In terms of characteristic variables ξ and η in (4) the equation (1)
becomes

∂2u

∂ξ∂η
= 0, (5)

which immediately gives the general solution of (1) in the form

u = f(x− at) + g(x+ at). (6)

Given an initial value problem or Cauchy Problem for (1), we can use
(5) to give an explicit solution.

This is not our aim. We wish to say that the solution of the wave
equation in multi-space dimensions is very complex.
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One-dimensional wave equation contd..

Figure: 1 Characteristic curves through (0, 0). Replace c by a here.

These characteristics are solutions of the FO Characteristic PDE of (2)
and also of the Characteristic ODEs dx

dt = ±a of the (2).
Note that characteristics of characteristic PDE are also called
characteristics.
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Wave Equation in m-space Dimensions
Consider the wave equation in Rm+1:

utt − a2 ∆u = 0, (7)

where ∆ =
∑m

i=1
∂2

∂x2i
, a = constant > 0.

We need to distinguish between two gradient operators:

∇ = (
∂

∂x1
, · · · , ∂

∂xm
) and ∇(x,t) = (

∂

∂x1
, · · · , ∂

∂xm
,
∂

∂t
),

(8)

Characteristic PDE of (7) is a first order PDE for the
characteristic surfaces Ω : ϕ(x, t) = constant

Q(∇ϕ, ϕt) := ϕ2
t − a2 |∇.ϕ|2 = 0 (9)

Note symbol := means defined by.
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Wave Equation in m-space Dimensions ... continued

Equation (8) is equivalent to two first order PDEs:

Q̃1(∇ϕ, ϕt) := ϕt + a |∇ϕ| = 0 (10)

and

Q̃2(∇ϕ, ϕt) := ϕt − a |∇ϕ| = 0, (10a)

where |∇ϕ| =
√

(ϕ2
x1

+ ϕ2
x2

+ ...+ ϕ2
xm).

A particular solution of (10) representing the forward
characteristic conoid with vertex at the origin is

ϕ := t− a
√
x21 + x22 + · · ·+ x2m−1 + x2m = 0. (11)
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Wave Equation in m-space Dimensions ... continued

The characteristic ODEs of (10),

i.e. Q̃1(∇ϕ, ϕt) := ϕt + a |∇ϕ| = 0 are

dt

dσ
= Q̃1ϕt = 1,

dxα
dσ

= Q̃1ϕxα = a
ϕxα
|∇ϕ|

(12)

dϕt
dσ

= −Q̃1t = 0,
dϕxα
dσ

= −Q̃1xα = 0. (13)

In terms of unit normal n = ∇ϕ
|∇ϕ| of the wavefront, the

equations (12) and (13) become

dx

dt
= an,

dn

dt
= 0, (14)

which give totality of all straight lines (not parallel to t = 0)
in space-time.
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Wave Equation in m-space Dimensions · · · Conti.
Thus the characteristics of the characteristic PDE (i.e, a new name
bicharacteristics) passing through the origin are

x = ant. (15)

When n varies the lines given by (15) envelop the characteristic conoid
(14) with vertex at the origin.

Figure: 2 Characteristic conoid through (0, 0) of wave equation m-space
dimensions.
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Characteristic Coinoid of the Wave Equation

Bicharacteristics are always one-dimensional, i.e. curves in
space-time.

For m = 2, the characteristic coinoid is a 2-D manifold and
bicharacteristic on it form a one-parameter family of curves, since
we can choose n = (cos θ, sin θ).

For m = 3, the characteristic coinoid is a 3-D manifold in 4-D
space-time and bicharacteristic on it form a two-parameter family
of curves. You can easily
(i) visualise the geometry of a section of the characteristic coinoid
by t = constant and
(ii) find out a pair of parameters of the bicharacteristics.

For a general m, the characteristic coinoid is a m-D manifold and
bicharacteristic on it form a (m− 1)-parameter family of curves.
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Bicharacteristics

For 1-D wave equation characteristic curves and the
characteristic curves of the characteristic PDE are the same.

This is not so for the wave equation in multi-space dimensions
and it will be wise mathematically to adopt a new name
bicharacteristic.

In 1970 I could find reference to this word only in Courant
and Hilbert [2] as “Lemma on Bicharacteristic Directions”.

It attracted my attention and I started using this word in my
publications since 1973.

It is surprising that, the comprehensive book by C. M.
Dafermos [1] running into the third edition in 2016 and which
refers to our work in 3 places, does not have this word.
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References to Bicharacteristics

You can see details of bicharacteristics, significance and its use in
applications to physics in our 4 books, (apart from C&H).

PP & RR 1984 [3]

PP 1993 research monograph [4]

PP 2001 research monograph [5]

PP 2018 research monograph [6]

See also my article on the webpage:
http : //www.math.iisc.ernet.in/ ∼
prasad/prasad/MomentsOfSupremeHappinessAndSatifactionResearch.pdf
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Another Example of Bicharacteristics - Fig 3: Sections of the
characteristic conoid are shown in red and bicharacteristics in black

Two-D wave equation utt − a(uxx + uyy) = 0
with a(x, y) = a0 + a1(x− x0) + a2(y − y0)
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Figure: 3 Sections of the characteristic conoid are shown in red
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Backward Moving Wavefronts and Rays by Projection of Previous
Figure on x-space

From Arun, K.R., Kraft, M., Lukacov’a Medvidov’a, M., and Phoolan
Prasad, Finite volume evolution Galerkin method for hyperbolic
conservation laws with spatially varying flux functions, Journal of
Computational Physics, 228, 565-590, 2009. Wavefronts are shown in
red and rays in black.
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Figure: Wavefronts are shown in red and rays in black.

In this paper we develop a theory and present application.
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System of 1st Order PDE in m-space Dimensions

Consider a system of n first order PDE in (x, t) ∈ Rm+1- (the
m+ 1 dimensional space-time):

A(x, t,u)ut +B(α)(x, t,u)uxα +C(x, t,u) = 0, (16)

where the sum is over α is on (1, 2, · · · ,m); u ∈ Rn,
A ∈ Rn×n, B(α) ∈ Rn×n and C ∈ Rn.

Characteristic PDE of (16) is

Q(x, t;∇ϕ, ϕt) ≡ det(Aϕt +B(α)ϕxα) = 0, (17)

where we have not shown the dependence of Q on a known
solution u(x, t).
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Characteristic Manifold Ω and Wavefront Ωt

A surface satisfying (17) is a characteristic manifold in
space-time:

Ω := ϕ(x, t) = 0 (17a.)

Its section by the plane t = constant is also represented by
ϕ(x, t) = 0, where t = is kept constant.

Projection of the section by t = constant on the physical
space x is a wavefront, see slides 12 & 13. It is denoted by

Ωt := ϕ(x, t) = 0 t = constant. (17b)

Unit normal n of the wavefront is given by

n =
∇ϕ
|∇ϕ|

. (17c)

Velocity of propagation of the wavefront is given by

c = −ϕt/(|∇ϕ|). (17d)

The Bicharacteristic Theorem P. Prasad Department of Mathematics
15 /
34



Hyperbolic System of 1st Order PDE in m-space
Dimensions

In terms of the he unit normal n = ∇ϕ
|∇ϕ| of the wavefront Ωt

and its the normal velocity C = − ϕt
|∇ϕ| , the PDE (17) becomes

det
[
nαB

(α) − CA
]

= 0 (18)

Definition: We define the system (16) as hyperbolic in a
domain D ∈ Rm+1 with t as time-like variable if, given an
arbitrary unit vector n, the nth degree characteristic equation
(18) in C has n real roots (called eigenvalues) c1, c2, . . . , cn
and eigenspace is complete at each point of D.

We assume that at each point of D and for all n

c1 ≤ c2 ≤ c3 ≤ . . . ≤ cn. (19)

This means that the system (16) is hyperbolic with
characteristics of uniform multiplicity.
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Left and Right Eigen Vectors of a Hyperbolic System

We denote left and right eigenvectors satisfying

`(i) (nαB
(α)) = ci`

(i)A, (nαB
(α))r(i) = ciAr

(i). (20)

by `(i) and r(i).

Suppose an eigenvalue ci(x, t,u,n) is repeated pi times in
(19), completeness of eigenspace at each point of D implies
that the number of linearly independent left eigenvectors (and
hence also right eigenvectors) corresponding to ci is pi.

Each of the left and right eigenvectors `(i), r(i) is unique
except for a scalar multiplier.

We normalise the eigenvectors such that

|`(i)| = 1 and |r(i)| = 1. (20a)

Now these eigenvectors are unique.
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Characteristic PDE for a Particular Eigen Value ci
For simplicity in notation, we drop the subscript i from
ci and superscript (i) from `(i) and r(i).

We take the first relation in (20) (dropping the subscript i
and superscript (i)), post-multiply by r and use
nα = ϕxα/|∇ϕ| and c = −ϕt/|∇ϕ|.

This gives the relation satisfied by φt and φxα in the form
(another form of the characteristic PDE but only for one
mode c)

Q̃(x, t,∇ϕ, ϕt) := (`Ar)ϕt + (`B(α)r)ϕxα = 0. (21)

This is similar to one of the the characteristic PDEs in (10)
for the forward and (10a) for backward characteristic conoids
for the wave equation.
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Characteristic ODE of Characteristic PDE (21)

The characteristic ODE are the Charpit’s ODEs of (21) are

dt

dσ
=

1

2
Q̃ϕt ,

dxα
dσ

=
1

2
Q̃ϕα (22)

and
dϕt
dσ

= −1

2
Q̃t,

dϕxα
dσ

= −1

2
Q̃xα (23)

where we need to impose a condition Q̃(x, t,∇ϕ, ϕt) = 0.

The equations (22)and (23) give the bicharacteristic curves on the
characteristic manifold Ω, given by ϕ(x, t) = 0.

From theory of first order PDE, it follows that the surface Ω is
generated by a family of bicharacteristic curves. Thus the
bicharacteristic direction given by (22) is tangential to any Ω.
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Characteristic ODE of Characteristic PDE (21) conti· · ·

Since ` and r depend on ϕt and ϕxα in very involved way, the
partial derivatives of Q̃ on the right hand sides of (22) and
(23) will be quite complicated.

However the following lemma makes the results simple.

Lemma 1: The partial derivatives of Q̃ simplify as

Q̃ϕt = (`Ar), Q̃ϕxα = (`B(α)r). (24)

Q̃t = (`Atr)ϕt + (`B
(α)
t r)ϕxα , Q̃xα = (`Axαr)ϕt + (`B(β)

xα r)ϕxβ
(25)
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Proof of Lemma on Bicharacteristic ODEs

Proof of the lemma 1: We proof of the first part of the (24).
Other parts of the Lemma 1 fallow in similar way.

Q̃ϕt = `ϕt{Arϕt + (B(α)r)ϕxα}+ `Ar

+ {`Aϕt + (`B(α)ϕxα}rϕt (26)

Using (17c,d), i.e n = ∇ϕ
|∇ϕ| and c = −ϕt/(|∇ϕ|

`ϕt{Arϕt + (B(α)r)ϕxα} = |∇ϕ|`ϕt{−cA+B(α)nα}r,

which vanishes due to the second equation in (20). Similarly the
third term in (26) disappears and we get the first equation in (24).
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Bicharacteristic Equations - conti. · · ·
From equations (22 - 25) we get

dxα
dt

=
(`B(α)r)

(`Ar)
= χα , say (27)

dϕxα
dt

= −
(`Axαr)ϕt + (`B

(β)
xα r)ϕxβ

(`Ar)
= |∇ϕ|c(`Axαr)− (`B

(β)
xα r)nβ

(`Ar)
(28)

We shall transform (28) for a physically realistic variable, namely
normal n to the wavefront Ωt.

dnα
dt

=
d

dt
{ ϕxα
|∇ϕ|

} =
1

|∇ϕ|
{dϕxα
dt
− nαnβ

dϕxβ
dt
}

=
nβ
|∇ϕ|

{nβ
dϕxα
dt
− nα

dϕxβ
dt
}, using nβnβ = 1. (29)
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Bicharacteristic Equations - conti. · · ·
Substituting expressions from (28) in (29) and after
rearranging terms we get

dnα
dt

= − 1

`Ar
`

{
nβ

(
nγ
∂B(γ)

∂ηαβ
− c ∂A

∂ηαβ

)}
r = ψα, say,(30)

where ∂

∂ηαβ
= nβ

∂

∂xα
− nα

∂

∂xβ
. (31)

This operator is tangential to the wavefront Ωt which is
projection of a section of the characteristic manifold Ω and
hence also to Ω.
The vector χ = (χ1, · · · , χm) is called the ray velocity and the
operator tangential to Ω

d

dt
=

∂

∂t
+ χα

∂

∂xα
(32)

represents differentiation in a bicharacteristic direction.
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Dynamics of Wave Equations

Dynamics is an important aspect of wave equations and
“almost” independent of their kinematics, which we have been
discussing so far.

For the wave equation in multi-space dimensions, a good
discussion is available in our book PP-RR (1984) [3], first
edition available freely on http : //www.math.iisc.ernet.in/ ∼
prasad/prasad/book/PP −RR PDE book 1984.pdf

It is good to study the last chapter, specially Part-B of the
Chapter 3. It has a very good introduction to
bicharacteristics.

The other three research monographs [4, 5, 6] also contain
these aspects. A part of [6] is available on
http : //www.math.iisc.ernet.in/ ∼
prasad/prasad/book/2018 PP book cover & first 12 pages.pdf
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Dynamics of 1-D Wave Equation

We note(
∂2

∂t2
− a2 ∂

2

∂x2

)
u =

(
∂

∂t
+ a

∂

∂x

)(
∂

∂t
− a ∂

∂x

)
u. (33)

Define characteristic varaibles r = ut + aux and
s = ut − aux, then(

∂

∂t
− a ∂

∂x

)
r = 0 and

(
∂

∂t
+ a

∂

∂x

)
s = 0. (34)

These two equations are compatibility conditions and contain
the dynamics of the solution.

The first one tells that the part r moves unchanged along the
characteristic with velocity a. Similarly part s moves
unchanged along the characteristic with velocity −a.
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Dynamics of a Hyperbolic System of 1st Order PDEs

Pre-multiplying (16) by `, we get

`Aut + `B(α)uxα + `C = 0. (35)

From general theory it follows that in this scalar equation
every dependent variable is differentiated in a tangential
direction on Ω.

Therefore (35) represents a compatibility condition on the
characteristic surface Ω.

Using the expression (32) for d
dt

, the time rate of change along
a bicharacteristic, in (35) we rewrite it in the form

`A
du

dt
+ `(B(α) − χαA)

∂u

∂xα
+ `C = 0. (36)
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Dynamics of a Hyperbolic System of 1st Order PDEs
Conti. · · ·

We write (36) in the form

liAij
duj
dt

+ ∂̃juj + liCi = 0 (37)

where ∂̃j on uj, a special tangential derivative on the
characteristic surface Ω, is

∂̃j = sαj
∂

∂xα
≡ li(B

(α)
ij − χαAij)

∂

∂xα
. (38)

Since
nαs

α
j = liAij(c− nαχα) = 0, for each j, (39)

the derivative ∂̃j on uj is a tangential derivative also on the
wavefronts Ωt.
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Dynamics of a Hyperbolic System of 1st Order PDEs
Conti. · · ·

The n tangential derivatives ∂̃j (j = 1, 2, . . . , d) contains only
spatial derivatives and can be expressed in terms of any d− 1
of the d tangential derivatives Lα, defined in terms of ∂

∂ηαβ
in

(31) by

Lα = nβ
∂

∂ηαβ
, α = 1, 2, . . . , d. (40)

The operator Lα can also be written in the form

Lα = nβ

(
nβ

∂

∂xα
− nα

∂

∂xβ

)
=

∂

∂xα
− nα

(
nβ

∂

∂xβ

)
, i.e.

L = ∇− n〈n,∇〉. (41)

Thus L is obtained from ∇ by subtracting from ∇ its normal
component. Beautiful, only tangential component of the
spatial gradient ∇ remains.
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Bicharacteristic Theorem
Theorem: For the hyperbolic system (16) of n first order PDEs
we have the following results.
The ray equations are (see (22) and (30))

dxα
dt

=
`B(α)r

`Ar
≡ χα and (42)

dnα
dt

= − `

`Ar
`

{
nβ

(
nγ
∂B(γ)

∂ηαβ
− c ∂A

∂ηαβ

)}
r ≡ ψα. (43)

The transport equation along a ray is (see (36)

`A
du

dt
+ `(B(α) − χαA)

∂u

∂xα
+ `C = 0, (44)

We have not only derived but, on the previous slides, also given
the explanations and significance of the various terms in the three
equations of this theorem.
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A Few Comments

In 1970 when I was working on the stability of transonic
flows, I could find reference to the word bicharacteristic only
in Courant and Hilbert, Vol II.

C&H (1962) had only the equation (42) and called it “Lemma
on Bicharacteristic Directions”. It attracted my attention and
I started using this word in my publications since 1973.

Note a careful use of “Directions” in C&H, where Courant did
not pay attention to diffraction of the ray due to
inhomogeneities in the medium.

My bicharacteristic theorem also includes
(1) diffraction of the ray
and
(2) a transport equation for the amplitude of the wave along a
bicharacteristic.
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A Few Comments · · · Cont.

C&H has both a geometrical and an algebraic proof of (40).
But our algebraic proof is much simpler and is a part of the
general theorem.

Derivation of the full ray equations was given in my paper in
1975.

Full form of the theorem was given in research monograph [3].

The theorem not only has a significance as a mathematical
result but in applications, see [4,5].
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A Few Comments Conti. · · ·

The Bicharacteristic Theorem has led to the development of a
very active subject of research “Evolution Galerkin Method”.

Lukacov’a Medvidov’a M., Morton K. W., Warnecke G. Evolution
Galerkin methods for hyperbolic systems in two space dimensions,
Math. Comp., 69:1355–1384, 2000.

There are very nice incidences in 1992, when the development of
the subject started in Bangalore and Oxford.

A review article on this new area of research is available in

Lukacov’a Medvidov’a M., Morton K. W. Finite Volume Evolution
Galerkin Methods, Indian J. Pure Appl. Math., 41, 329-361, 2010.
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Thank You!

The Bicharacteristic Theorem P. Prasad Department of Mathematics
34 /
34


