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Beautiful Wave of Translation

Report by John Scott-Russel, British Association for the Advancement of
Science, York, September 1844 (London 1845), pp 311-390
I was observing the motion of a boat which was rapidly drawn along a
narrow channel by a pair of horses, when the boat suddenly stopped - not
so the mass of water in the channel which it had put in motion; it
accumulated round the prow of the vessel in a state of violent agitation,
then suddenly leaving it behind, rolled forward with great velocity,
assuming the form of a large solitary elevation, a rounded, smooth and
well-defined heap of water, which continued its course along the channel
apparently without change of form or diminution of speed. I followed it on
horseback, and overtook it still rolling on at a rate of some eight or nine
miles an hour, preserving its original figure some thirty feet long and a foot
to a foot and a half in height. Its height gradually diminished, and after a
chase of one or two miles I lost it in the windings of the channel. Such, in
the month of August 1834, was my first chance interview with that singular
and beautiful phenomenon which I have called the Wave of Translation.
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Approximate Shape of Wave Observed by
Scott-Russell

First wave of translation.

Figure: Solitary Wave
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Solitary Wave Became Soliton in 1967
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KdV Equation - Lecure 1
General Comments & Waves of Permanent Form

PHOOLAN PRASAD
Department of Mathematics

INDIAN INSTITUTE OF SCIENCE, BANGALORE
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My Choice of Talk

I have chosen to talk on developments, which took place some 50
years back and is avilable in:

“Nonlinear Waves in One-dimensional Dispersive Systems” BY
PLB, carefully edited by me, OUP, 1979 and Drazin and
Johnson, CUP, 1989.

I have chosen this because
1 Most of the teachers and students in mathematics

departments in India have no idea of this topic and physicists
here are interested only in computational aspects of solitons
(not yet defined).

2 Every PDE course covers “Laplace and diffusion equations”,
but sadly neglects “KdV equation”, theory of which much
deeper (shown in these lectures) and application wise at
least as important.

3 In my opinion we should cover this much neglected topic in
every course on PDE
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My Choice of Talk KdV E

Kruskal writes in 1978, ”KdV equation is arguably the simplest
PDE equation · · · not covered by classical methods.”

In my opinion, it is also the most beautiful one.

See Miles (1981) [4] for history, KdV E first appeared in thesis of
de Vries (1894).

KdV equation, in most explicit form showing all parameters,
α, c and K > 0, which are constants, is

ut + cux + αuux +Kuxxx = 0, (1)

c uniform velocity in unperturbed medium, α amplitude and K
dispersion coefficient.

Looks innocently simple.
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KdV Equation

Extensively quoted paper is by D. J. Korteweg & G. de Vries in
1895 [2]. They also obtained expression of above solitary wave
and cnoidal wave, which we shall give later.

Next significant contribution started coming from numerical work
work of

1 Fermi, Pasta & Ulam (1955) and

2 Zabuski & Kruskal1 (19665).

Then, there was an explosion of research not just in KdV
equation but many having same properties - P.D. Lax giving a
new direction in 1968.

I kept on watching.

1M. D. Kruskal was my guest at IISc
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I Kept on Watching

I was a research student since 1965 and kept on watching these
beautiful developments since 1966.

I desired to work on KdV equation but isolated in India, I had no
mentor to show what to learn and where to begin.

Subject, pursued by great physicists and mathematicians, was
almost completed by 1974.

But I had collected about 50 most important reprints, which
formed material which PLB read and wrote first draft of book at
MRI (no library there) and passed away in 1976.

After returning to IISc I, with help of my some colleagues, edited
the draft over a period of one year.

See the foreword by Lighthill and my note.
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KdV E derivation

It first appeared as an approximate equation - governing surface water
waves in which wave length is large compared to depth of water with
dispersion included.

Without dispersion it becomes Burgers’ equation, solutions of which
are waves coming towards a beach.

Later it appeared as an approximation of a large number of quasilinear
hyperbolic systems to which higher order dispersion terms are added.

Let me not mention more, please see PLB [3].

But I just mention important contribution of Boussinesq (1871, 1872
and 1877), for which refer to [4]. Use it to see local effects of other
modes on solitons.

A comprehensive discussion and extension of derivation of Boussinesq
in 2-D is available in PP-RR (1977), [5].
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Material a Compact Course or a Part of PDE Course

It is very important to cover these developments in every
graduate course in PDE, these are at least as much important as
other classical equations - not just for mathematics but also for
applications in many other sciences.

Theory of KdV equation and associated developments is quite
involved - concepts from physics are also mixed with KdV
presentation.

Hence we must do it at least with KdV equation first up to
soliton interaction and second general equations of evolution by
Lax.

There is also an opportunity to present KdV as an abstract
theory.
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Suggestion for Material in a PDE Course

I shall suggest two topics for a course:

KdV equation, inverse scattering method and derivation of
solution of initial value problem leading one soliton and double
soliton solution
4 lectures.

Introduction to a general nonlinear evolution equations as
developed by Lax (1968) and as presented by Bhatnagar (1979)
[3]
2 to 3 lectures.

In above topics give some brief background from physics but
axiomatic presentation of theory is necessary in a mathematics
course.

Carefully separate where there is physics and where there is
mathematics.
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Aim

Historically, first evolution equation for which Inverse
Scattering method was developed is KdV Equation.

I shall very briefly describe it in second lecture.

Details are available in [1] and [3].

Derivation of KdV Equation and other equations
where solitons (not yet defined) is also available in
many books, including above two books.
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Simplest wave equation - A Part of the Wave
Equation Waves - Second Wave of Translation

How do you solve it
ut + c ux = 0 , c = real constant ? (2)

Method of characteristics for first order PDE gives

u = f(x− ct), f : R→ R (3)

When f ∈ C1(R)⇒ Genuine solution

t = 0 t > 0

ct

Figure: Wave of translation in which every point of pulse gets moved by the same
distance ct, which is also true for KdV solitary wave. This figure does not reprent
a genuine solution. Why?.
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Nonlinear deformation due to genuine nonlinearity

Airy (by Bona) or Euler (by Arnold) equation (common name
Burgers equation)

ut + uux = 0 (4)

This quasi-linear equation has genuine nonlinearity.

Note that I have said it has, we shall see when we do hyperbolic
equations.

What do you get from its general solution u = f(x− ut) ?

u|t at x is same as what u was at t = 0 but −ut behind it.

Not easy to solve. why?
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Nonlinear deformation due to genuine nonlinearity

The pulse now deforms (why?) as t increases, at t = tc = 1.166 here
the slope at a point becomes infinite and at t = 3, the graph does not
represent any solution.
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Conservation Law and Shock

When solution ceases to exist after some time, we need to
change meaning of solution.

For this we need a need a new mathematical formulation:
original conservation law from which (4) is derived.

One conservation law is (to be discussed in great detail by Arun)

ut + (
1

2
u2) = 0. (5)

Burgers’ equation can be derived from it if u is smooth.

We shall have to look for its distributional solution, which may
have discontinuities.

Now a discontinuity appears at time t > tc. This discontinuity is
called shock - mathematical concept.
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Nonlinear deformation contd..

u

x

(x,u l)
(x0+,u+)

(x,ur)
(x0-,u-)

(t)

(t)

x1 (t) x2 (t)

A+

A-

When the graph folds at a large time, we need to interpret the solution as
a weak solution with a discontinuity which is a shock. Discussion involves
mathematical concepts which I do not pursue.
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Simplest Solution with Shock

Example 1

O

ul

ur

Figure: Initial data with a discontinuity at x = 0.

ul

ur

1
2
(ul + ur)t

Figure: Solution, which is unique, remains discontinuous. The discontinuity
moves with velocity S = 1

2 (ul + ur).
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Equation with diffusion and Diffusion with Genuine
Nolinearity

Simplest example with diffusion is the heat conduction equation

ut = νuxx, ν = real and > 0. (6)

As time increases, concentration of u diffuses. Discussed in great

detail by Baskar.

However, I shall mention here Burgers equation with viscosity (1948)

ut + u ux = νuxx (7)

In this both genuine nonlinearity and diffusion are present.

When diffusion balances accumulative effect of genuine nolinearity, we
get third wave of translation.
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Diffusion: Shock Structure. This is third Wave of
Translation in my Presentation.

We look for solution u = f(x− ct) - travelling wave of permanent form,
with condition u→ u±∞ as x→ ±∞. Equation for f is ODE.

u(x, t) =
1

2
(u−∞ + u+∞)

− 1

2
(u−∞ − u+∞) tanh

[
u−∞ − u+∞

4ν

{
x− 1

2
(u+∞ + u−∞)t

}] (8)

Figure: The genuine nonlinearity and diffusion balance each other and the
discontinuous shock profile becomes a steady C∞(R) solution.

Explain why C∞(R).
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Dispersion

Simplest example is

ut = Kuxxx , K = constant > 0. (9)

Substitution u = ei(ωt−kx) gives, for ω = frequency, k = wave number,

dispersion relation ω = Kk3 (10)

phase velocity
ω

k
= Kk2 (11)

group velocity
dω

dk
= 3Kk2 (12)

Initially, different frequency components tend to separate due to
different phase speeds. Ultimately the wave moves with the group
velocity.
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Travelling Waves of Permanent Form of KdV E

In KdV equation dispersion balances effect of genuine
nonlinearity, giving entirely new type of waves.

We consider KdV E in the form

ut + uux +Kuxxx = 0, K > 0 (13)

and look for its solution in the form

u(x, t) = h(ξ), ξ = x− ct. (14)

Above KdV E gives

− chξ + hhξ +Khξξξ = 0 (15)
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Travelling Waves of Permanent Form of KdV E · · · cont.

Integrate twice with special care in second integration, we get
with A and B as arbitrary constants(

dh

dξ

)2

=
1

3K
f(h), f(h) = −h3 + 3ch2 + 6Ah+ 6B. (16)

Note lim
h→∓∞

f(h)→ ±∞.

Let α, β and γ be three zeroes of f(h), then(
dh

dξ

)2

=
1

3K
(α− h)(h− β)(h− γ). (17)

When a zero, say δ, is real. h = δ is a constant solution. Not
interested in it.
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Graph of Function f(u)

Figure: 7a Vertical axis f(h). f(h) with only one real zero.

Figure: 7b Vertical axis f(h). f(h) with three distinct real zeroes.

Prasad (IISc) KdV Equation 25 / 43



Travelling Waves of Permanent Form of KdV E · · · cont.

Please work out your self the following results.

We can have a real solution of the ODE only for those cases
where the right hand side is positive. But the graph of h(u)
where h→∞ is not important.

When there is only one real zero. Nonzero solution h of (17) is
unbounded as ξ → ±∞ - not relevant - wave can not have
unbounded amplitude.

When all three zeroes are equal, Nonzero solution h→ ±∞ at a
finite value of ξ. Not relevant to us.

When γ < β = α, no part of the graph is relevant.

Only case important for us is γ = β < α, which we shall discuss.
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Travelling Waves of Permanent Form of KdV E · · · cont.
Model Examples

To be rewritten
Model equation 1:

dh

dξ
= d(α− h), d = const > 0.

In this case rhs is positive, so ξ increases and h→ α− at a finite
value of ξ.
Model equation 2:

dh

dξ
= −d(h− β), d = const > 0.

In this case ξ decreases and h→ β+ at a finite value of ξ.
Model equation 3:(

dh

dξ

)2

= d(h− s)2, d = const > 0.

In this case h→ s at as ξ → ∓∞.
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Travelling Waves of Permanent Form of KdV E · · · cont.
Model Examples

To be rewritten
Model equation 1:

dh

dξ
= d(α− h), d = const > 0.

Here α− h = cons.edξ. In this case rhs is positive, so ξ increases
and h→ α− at a finite value of ξ.
Model equation 2:

dh

dξ
= −d(h− α), d = const > 0.

In this case ξ decreases and h→ α+ at a finite value of ξ.
Model equation 3:(

dh

dξ

)2

= d(h− β)1/2, d = const > 0.

In this case h→ β at as ξ → ∓∞.Prasad (IISc) KdV Equation 28 / 43



Travelling Waves of Permanent Form of KdV E · · · cont.

Case 2: All three zeroes are real, let γ < β < α. f(h) > 0 for
β < h < α.

Graph shows that value of solution h(ξ) oscillates between β and
α.

When h reaches α− for a value of ξ, the value of h reverses its
direction on the graph of h against ξ and reaches β+ for another
finite value of ξ.

Both these values are attained at the end of a closed bounded
interval, which will turn out to be period oscillation of h(ξ) on
ξ-axis.
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Travelling Waves of Permanent Form of KdV E · · · cont.

Case 2 continued - all three zeroes are are real.

Define s2 = (α− β)/(α− γ).
Solution is a periodic function defined on (−∞ < ξ <∞) by

u(x, t) ≡ h(ξ) = β + (α− β)Cn2

[
ξ

√
α− γ
12K

, s

]
(18)

where Cn is Jacobian elliptic function, which is a periodic
function. ξ-period of u(x, t) is

P = 4

√(
3K

α− β

)
K(s2), (19)

where K(s2) is complete elliptic integral.
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Case 2: Cnoidal Wave

Here we get a bounded periodic solution, period defined
above. K&dV called it Cnoidal wave.

Figure: Cnoidal wave on the surface of water.
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Case 2: Cnoidal Wave Experimentally Observed

Figure: Cnoidal wave observed by US airforce.
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Case 2: Cnoidal Wave Features Over one Period

Figure: 10. Graph of Cn(x) looks almost like a cos(x) with maximum
and minimum values 1 and −1. Cnoidal wave Features over one
period, h is depth of undisturbed water, λ is the wavelength and

H is the hight of the wave.
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Solitary Wave Solution of KdV E

A limiting case of Cnoidal wave - Case 2A:
When β is very close to α but α− γ is not small, set
α−β
α−γ ≡ s2 = ε.

For small ε,

Cn2

[
ξ

√
α− γ
12K

, s

]
≈ cos2

[
ξ

√
α− γ
12K

, s

]
(20)

and the cnoidal wave solution (18) becomes

u(x, t) ≈ α− (α− β) sin2

[
ξ

√
α− γ
12K

]
. (21)

In the limit β → α− period tends to

P → 2π

√
3K

α− γ
. (22)
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Solitary Wave Solution of KdV E

The only case left out for f(ξ) to be positive is
Case C: γ = β < α. We can choose γ = u∞,

In this case, the velocity of propagation (or translation) c, of
wave turns out to be

c = u∞ +
a

3
(23)

where a = α− γ, is the amplitude of the wave.

(28) becomes (
dh

dξ

)2

=
1

3k
(α− h)(h− γ)2. (24)

Solution of this is discussed in [1].
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Solitary Wave Solution Expression

u(x, t) ≡ h(x− ct) = u∞ + a sech2
[√( a

12K

){
x−

(
u∞ +

a

3

)
t
}]

(25)
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Solitary Wave Shape

Figure: Solitary Wave - an appropriate name given by Scott-Russell. In this
lecture, by solitary waves we shall refer only to KdV solitary wave (SW).
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Solitary Wave Solution Characteristics

Velocity of SW relative to uniform velocity u∞ at infinity is
proportional to amplitude.

Its width 2π
√

12K
a

is inversely proportional to square root of

amplitude.

Its width is proportional square root of dispersion coefficient K,
whose role is to spread the wave profile. In this process K
balances the accumulating effect of nonlinearity.

Amplitude a is independent of the uniform velocity at infinity on
both sides.
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Superpostion of Linear Waves

1 Sum u1 + u2 of two solutions u1 and u2 of a linear homogeneous
equation is also a solution.

2 This means if there are two localised waves governed by linear
equations and moving in opposite directions interact and come
out unchanged later.

3 Can you imagine this also for waves moving in same direction?

4 What do you for waves governed by a wave equation

(
∂

∂t
+ 5

∂

∂x
)(
∂

∂t
+ 2

∂

∂x
)u = 0? (26)

Prasad (IISc) KdV Equation 39 / 43



Soliton

1 This is not imaginable for waves governed by nonlinear equations
as principle of linear superposition is not valid.

2 KdV solitary wave would not have attracted so much attention
but for a special property first observed in numerical experiments
in 1965.

3 Note that a bigger solitary wave moves faster than a smaller
solitary wave

4 It was observed that
“a bigger solitary wave initially behind a smaller one, overtakes,
interacts and moves ahead. Both emerge unchanged, smaller one
moving behind the bigger one”.

Prasad (IISc) KdV Equation 40 / 43



Interaction of Two Solitons

The method of solution of KdV equation and the properties of solutions,
are amongst most important developments in mathematics in 20th
century. First discovered numerically by Zabusky and Kruskal in 1965.

Persitence and reimergence led to coining of a new word soliton, which
was later found to appear in solutions of many equations.
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Thank You for Your Attention!
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