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Solitary Wave Solution of KdV E

When we consider KdV E in the form

ut + uux +Kuxxx = 0, K > 0, (1)

the solitary wave solution, with c = u∞ + a
3

, is

u(x, t) = u∞ + a sech2

[√( a

12K

){
x−

(
u∞ +

a

3

)
t
}]

(2)

Figure: Solitary Wave
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Solitary Wave Solution of KdV E Which Decays to Zero at
Infinity

When we take solitary wave solution of KdV E which → 0 as
x→ ∓∞, we get

u(x, t) = a sech2

[√( a

12K

){
x− a

3
t
}]

(3)

Prasad (IISc) KdV Equation August 1, 2019 3 / 60



Transformation of KdV E Used in Inverse Scattering
Method

We make following transformation:

x = K1/3x′, u = −6K1/3u′, t = t′

then (1) becomes

u′t′ − 6u′u′x′ + u′x′x′x′ = 0. (4)

Solution (3) becomes

u′(x, t) = −A
2

2
sech2

[
A

2
(x′ − A2t′)

]
, (5)

where we have used A2 = a
3K1/3 .
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Convenient Form of KdV E Used for Further Development
of Theory and Method of Solution

We remove ′ from the new variables. We shall now use KdV E in the
form

ut − 6uux + uxxx = 0. (6)

Solitary wave solution vanishing at infinity is

u(x, t) = −A
2

2
sech2

[
A

2
(x− A2t)

]
, (7)

where −A2

2
is amplitude and A2 is velocity of propagation of the

solitary wave.

Note: This gives an inverted shape of a solitary wave but still moving
in positive x-direction.
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Integral of Motion of Motion

An integral of motion of an equation of evolution is a function I(u),
which remains constant as solution u evolves.

KdV E has infinity of integrals of motion. We shall meet many of
these in this lecture.
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Conservation laws and Integrals of Evolution

KdV E has infinity of conservation laws of form

Tt +Xx = 0 (8)

where T , conserved quantity, and −X, flux, are functions of u and
derivatives of u wrt to x only and not t.

Conservation laws are important to derive integrals of motion and
many other properties.

If flux X → 0 as |x| → ∞ sufficiently rapidly, then

d

dt

∫ ∞
−∞

Tdx = X|∞ −X|−∞ = 0

which implies
∫∞
−∞ Tdx = const.

Thus
∫∞
−∞ Tdx is an integral of motion.

We shall not pursue it further but go to method of solution.
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Conservation laws and Integrals of Evolution · · · conti.

For periodic solution of KdV E, limits can be two ends of a period i.e.,∫ λ/2

−λ/2
Tdx = constant

where λ is the period.

First three of infinity of conservation laws from KdV E:
1 ut + (−3u2 + uxx)x = 0,

2 (u2)t + (−4u3 + 2uuxx − u2
x)x = 0,

3 (u3 + 1
2
u2
x)t + (−9

2
u4 + 3u2uxx − 6uu2

x + uxuxxx − 1
2
u2
xx)x = 0.
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Conservation laws and Integrals of Evolution · · · conti.

Physical interpretation of integrals of evolution obtained from conservation
laws:

For water waves, first integral of evolution
∫∞
−∞ udx represents

conservation of mass of water above the constant depth.

Second integral of evolution
∫∞
−∞ u

2dx represents conservation of
horizontal momentum.

Third integral of evolution
∫∞
−∞(u3 + 1

2u
2
x)dx represents conservation

of energy.

We shall not pursue it further but go to method of solution.
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Schroedinger Equation Associated with KdV E

Solution of initial value problem KdV E had eluded mathematicians
for more than 60 years since it was derived.

But for a class of solutions decaying rapidly at infinity, a very
innovative method was discovered by Gradener, Greene, Kruskal
and Miura (1967)(see for review [6]).

In this method we consider the time-independent Schroedinger
equation (SE) which is linear containing solution u of KdV E:

ψxx + {λ− u(x, t)}ψ = 0, λ = independent of x (9)

and t appears only as a parameter.

We may suppress dependence of u on t and consider eigenvalue
problem for (9).
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Eigenvalue Problem for SE

For u tending to 0 sufficiently rapidly at ±∞, solve

ψxx + {λ− u}ψ = 0 (10)

for smooth ψ with conditions
1

ψ → 0 as x→ ∓∞ (11)

or2

ψ → a(k) exp(−ikx) as x→ −∞, (12)

ψ → exp(−ikx) + b(k) exp(ikx) as x→∞ (13)

where k is constant with respect to x.

Values of λ for which conditions (11) or (12) and (13) are
satisfied are defined as eigenvalues of boundary value problems in
(10) - (13).

All eigenvalues constitute spectrum of eigenvalue problem.
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Discrete and Continuous Spectrum

We state some results without proof, well studied in literature:
Spectrum of eigenvalue problem (10) and (11) contains discrete
eigenvalues which are negative. We denote them as

λ = −κ2
1, −κ2

2, · · · ,−κ2
n; κi > 0; (14)

−κ2
1 < −κ2

2 < · · · < −κ2
n;

Eigenvector (to be shown unique) corresponding to −κ2
i has

following behaviour at infinity

ψi(x)→ c′ie
κix as x→ −∞; ψi(x)→ cie

−κix as x→∞.
(15)

Spectrum of eigenvalue problem (10) with (12) and (13) is
continuous and positive

λ = k2, k > 0. (16)
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Physical Interpretation from Quantum Mechanics

In quantum mechanics we see following interpretation of functions
appearing in (9) when u decays to zero sufficiently rapidly:

ψ is wave function of a moving particle under an external field
whose potential energy is u.

λ is energy eigenvalue.

In classical mechanics, a particle with energy E will not be able
to penetrate a region where E < u(x).

In quantum mechanics a particle may be found in region where
E < u(x), though the probability, denoted by |ψ|, of finding the
particle is small (but nonzero) and it rapidly tends to zero as the
distance into such regions increases.

What interpretation for continuous spectrum?
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Physical Interpretation 2

For continuous spectrum, wave function ψ is “spatially dependent
part exp(−ikx)” of a steady stream of plane wave ψ being sent from
∞ to interact with potential u.

ψ = e−ikx−iωt = ψe−iωt

Result of interaction consists of reflection b(k) exp(ikx) of a part
going to ∞ and remainder a(k) exp(−ikx) transmitted through
potential, represented by (11) and (12) i.e.,

ψ → a(k) exp(−ikx) as x→ −∞, and (17)

ψ → exp(−ikx) + b(k) exp(ikx) as x→∞, (18)

where e−ikx and eikx represent left-going and right-going waves
respectively. How?
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Physical Interpretation 3

Law of conservation of energy:

energy of incident wave = energy transmitted + reflected waves

gives 1 = |a|2 + |b|2. (19)

We shall use (19) later in mathematical formulation. It also
works as nomalization of ψ.
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Inverse Scattering Method for KdV E

Now, as in many cases such as “shock”, we borrow the word
“potential” from physics for u in mthematics.

This method, appropriately called Inverse scattering transform
method - ISTM, is method for solving some non-linear PDEs.

It is one of most important developments in mathematical
physics in last century. Method is a non-linear analogue, and in
some sense generalization, of the Fourier transform (FT), which
is applied to solve many linear PDEs.

In order to convince beginners of this analogue and help him to
understand ISTM, we first sketch FTM.
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Fourier Transform Method for Linear PDEs

Consider an initial value problem for a linear evolution equation:

ut = L(D)u, D = ∂
∂x
, (20)

u(x, 0) = u0(x). (21)

Substituting of u = ei(kx−ωt) in (20), we get

ω = iL(ik) (22)

Assume that the linear operator L is such that

Ω(k) := iL(ik) is a real function of k. (23)

Then equation (19) leads to a real dispersion relation

ω = Ω(k). (24)

Problem: Compare dispersion relations when L(D) = D2 and
L(D) = D3.
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Fourier Transform (FT) Method · · · conti.

Conditions on u not mentioned.
FT û(k, t) of u(x, t) and inverse FT of û(k, t) leading to recovery
of u(x, t), are defined respectively as

û(k, t) :=

∫ ∞
−∞

u(x, t)e−ikxdx, u(x, t) :=
1

2π

∫ ∞
−∞

û(k, t)eikξdξ.

(25)
Note that in these two equations, t only plays role of a
parameter.

To solve IVP (20 -21), take FT of these equations note that
FT (Du) = ikû, to get

dû

dt
= −iΩ(k)û, (26)

û(k, 0) = FT (u0(x)) = û0(k), say. (27)
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Fourier Transform (FT) Method · · · conti.

Crucial steps involved in FT method are
1 to solve initial value problem (26-27) and
2 to recover solution u(x, t) using the inverse FT formula i.e.,

second part of (25).

Solution of (26-27) is

û(k, t) = û0e
−iΩ(k)t. (28)

FT method is schematically shown in Figure 12

Figure: 12 FT Mathod, here A(k) = û0(k) and ω(k) = Ω(k).
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Discrete Eigenvalues of Schoedinger Equation (SE)

We arrange the finite number of discrete eigenvalues as

λ = −κ2
1 < −κ2

2, < − · · · , < −κ2
n; κi > 0. (29)

We state a

Theorem

A discrete eigenvalue λ is simple i.e., the eigenvector ψ corresponding
to it is unique except for a constant multiplying factor.

Proof.

Let ψ1 and ψ2 be two eigenvectors, then

ψ1xx

ψ1

= u− λ =
ψ2xx

ψ2

=⇒ (ψ1xψ2 − ψ2xψ1)x = 0

ψ1xψ2 − ψ2xψ1 = const. = 0, since ψ1,2 → 0 as |x| → ∞.

From this it follows we can derive ψ1 = constant times ψ2.
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Continuous Eigenvalues Are Degenerate

For a continuous eigenvalue k2 in the spectrum, we have already
seen two independent solutions → exp(±ikx) at infinity.
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Normalysing Eigenvectors of SE

Discrete eigenvalue −κ2:

We have mentioned that mth eigenvector ψm of discrete
eigenvalu −κ2

m vanishes at infinity sufficiently rapidly, which we
shall see when we calculate ψ.
We make eigenvector ψm unique by normalysing it by∫ ∞

−∞
ψ2
mdx = 1, (30)

which determines cm and c′m.

Continuous eigenvalue k2:

We used from physics conservation of energy to derive

|a|2 + |b|2 = 1. (31)

But this can be deduced purely by mathematical steps, see
deivation of (3.9), page 43 in [2].
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Scattering Data of u

Set S(t) := {κ1, · · · , κn; c1, · · · , cn; a(k), b(k)} is called
scattering data associated with potential u.

The scattering data for u is found by solving time independent
eigenvalue problem for SE.

In eigenvalue problem, t appearing in u(x, t) is only a parameter.
All elements of scattering data depend on t.
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Scattering Data of u · · · conti.

We look at one natural problem and an unusual question:
1 Direct Scattering Problem - Given u, find the scattering data by

solving the eigenvalue problem for SE.

2 Question - Given scattering parameters of u, can we find u?

Problem in (2) was solved (before 1950 [2], author?) and above
question was answered positively - known as inverse Scattering
Method by Gel’fand and Levitan (1951) [4] and Marcenko (1957).
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Scattering Transform Method

Now we ask another question. When u(x, t) evolves according
KdV E, can we determine evolution of scattering data?

If the answer is positive, we can formulate now scattering
transform method see figure

Figure: 13 ST method is similar to FT method. S(0) and S(t) are scattering data
at t = 0 and t.
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Scattering Transform Method - Completion

To complete ST method, we just need to find a method to find
evolution of S(0) to S(t).

This was answered positively in 1967 by Gardner etal [3].

We describe the complete method once more and fill in the gaps
in steps.
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KdV - Nature of Initial Data

We consider IVP

ut − 6uux + uxxx = 0 (32)

u(x, 0) = u0(x). (33)

Assume that initial data u0 satisfies conditions:

4∑
i=0

∫ ∞
−∞
|∂

iu0(x)

∂xi
|2dx < 0. (34)

Bona1 and Smith (1975) showed that it ensures existence of a
classical solution solution of IVP.∫ ∞

−∞
(1 + |x|)|u0(x)|dx < 0. (35)

1A fried of mine
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KdV - Nature of Initial Data · · · cont.

Faddeev (1958) showed that (35) ensures existence of a solution of
eigenvalue problem of SE. This rules out data already like cnoidal
wave - not vanishing up to ±∞.

Lax (1968) proved uniqueness of the above IVP.

Lax’s paper, containing may more mathematical ideas, opened up
new areas of research both in pure and applied mathematics.

Inverse scattering method of KdV E during 1967-68 and general
theory of Lax (1968) together form one of the most important
development in mathematics in 20th century.
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KdV Solution Method - Scattering Data

As in case with FT method, associate with u a suitable
transform.

In this case the transform of u is not just one function but a set
of functions.

This set S(t) consists of eigenvalues and eigenfunctions of time
independent Schroedinger operator

d2ψ

dx2
+ (λ− u)ψ

.

For an arbitrary u satisfying the conditions (34-36), it is not easy
to find the evolution of S(t) from S(0).

However, since u(., t)→ 0 sufficiently rapidly at infinity, it is easy
to determine S(t), see [1] and [2].
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Reminder - Normalization of Eigenvectors

For discrete eigenvalue λ = −κ2
i , we nomalized the eigenvector

by ψi in (30) by ∫ ∞
−∞

ψ2
i dx = 1

For continuous eigenvalue k2 we normalized the eigenvectore in
(30) by

|a|2 + |b|2 = 1.
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Scattering Data - Information for Evolution Theorem

Solution u(x, t) of KdV E evolves with time but so far in
eigenvalue problem for SE, we did not show dependence
of S(t) on t.

For a discrete eigenvalue λ(t) = −κ2
i (t), normalised eigenvector

ψi(x, t)→ ci(t)e
−κi(t)x as x→∞.

For a continuous eigenvalue λ(t) = k2(t) normalised eigenvector
satisfies

ψ(x, t)→ a(k, t) exp(−ikx) as x→ −∞,
and

ψ(x, t)→ exp(−ikx) + b(k, t) exp(ikx) as x→∞.

Now we state Evolution Theorems without proof, for proof see [1]
and [2].
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Scattering Data - Evolution Theorem

Theorem

Theorem 1: When u(x, t) evolves according to KdV E, the discrete
eigenvalues are independent of t and a continuous eigenvalue may be
assumed to be constant. this means

κi(t) = κi(0) and k(t) = k(0). (36)

Theorem

Theorem 2: When u(x, t) evolves according to KdV E, evolution of
ci(t), a(k, t) and b(k, t) is given by

ci(t) = ci(0)e4k3i t, (37)

a(k, t) = a(k, 0) and (38)

b(k, t) = b(k, 0)e8ik3t. (39)
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Review So Far

1 KdV E has solitary wave solution, which was named “Soliton” for
its special interaction property.

2 Challange: a) To find solution having n solitons and see the
interaction property. b) To solve IVP.

3 Direct solution not posible. To develop a transform method
similar to FTM.

4 It has been possicle by associating Shroedinger equation

ψxx + (λ− u(x, t))ψ = 0

where u(x, t) is a solution of the KdV E. How time indepedent?
5 To find scattering data
S(t) := {κ1, · · · , κn; c1(k1, t), · · · , cn(kn, t); a(k, t), b(k, t)} at
t=0.

6 Evolution of scatteting data complted and got S(t).
7 To construct u(x, t) from S(t).
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Solution of KdV E IVP Main Steps

Given initial data u0(x), by direct scattering method, we can find
initial scattering data S(0).

From theorems on last slides, we can determine scattering data
S(t).

Inverse scattering method was already solved about 16 years
before it was required by Gardaner et al. for KdV E.

We only describe 3 main steps without any proof.
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Solution of KdV E IVP Main Steps

Scattering data consists of a number of functions and we have to
recover just one function of x and t.

Step 1: Given
S(t) := {κ1, · · · , κn; c1(k1, t), · · · , cn(kn, t); a(k, t), b(k, t)}, we
define function F (ξ; t) of transform variable ξ:

F (ξ; t) =
n∑
i=1

c2
i (κi, t)e

−κiξ +
1

2π

∫ ∞
−∞

b(k, t)eikξdk (40)

=
n∑
i=1

ci(0)e(8κ3i t−κiξ) +
1

2π

∫ ∞
−∞

b(k, 0)ei(8k
3t+kξ)dk. (41)

This function plays the role of Fourier transform function û(ξ, t).
Notice that all κ1, · · · , κn; k ∈ R+ join together to give one
transform variable ξ and they disappear.
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Solution of KdV E IVP Main Steps

We first transform back to a function K(x, z; t) of two independent
variables, t is simply a parameter here.

Step 2: In this step we solve Gel’fand-Levitan (and also Marcenko)
equation for K(x, z) (in integral equation x and t appear only as
parameters)

K(x, z; t) + F (x+ z; t) +

∫ ∞
x

K(x, y; t)F (y + z; t)dy = 0. (42)

Note that in the solution ξ disappears in integration process with
respect to y.
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Solution of KdV E IVP Main Steps · · · conti.

Step 3: In this step we find solution of IVP for KdV E and complete
inverse scattering transform method

u(x, t) = {−2
d

dx
K(x, z; t)}|z=x = −2

d

dx
K(x, x; t). (43)

Steps 2 and 3 are most uninteresting part of this lecture for
mathematicians - they need to learn these steps.

Proof will require too much of time.

My aim here is just to show a very interesting and important area
of study in a course in PDE.

ISTM is really a very innovative idea - our hats off to discoverers
of the method - Gardner, C. S., Greene, J.M., Kruskal, M. D.
and Miura, R. M.
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Schematic diagram Scattering Transform Method

We have completed description (not proof) of Scattering Transform
Method, which I again show in the following diagram.

Figure
13 ST method is similar to FT method. S(0) and S(t) are scattering

data at t = 0 and t.
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Example 1: One Soliton Solution of KdV E

We produce the steps without details of calculations.

Assume the intial data as a soliton:

u0(x) = −2 sech2x. (44)

Initial scattering data S(0) is obtained by solving the eigenvalue
problem for

ψxx + (λ+ 2 sech2x)ψ = 0 (45)

It can be shown that the problem has only one discrete eigenvalue
λ = −κ2

1 = −1 with eigenfunction

ψ =
1√
2
sech x =

√
2

e−x + ex
→
√

2e−x as x→∞. (46)
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Example 1: One Soliton Solution of KdV E · · · conti.

This implies
c1(0) =

√
2, c1(t) =

√
2e4t (47)

and it can be further shown that this u0 is a reflectionless potential
(a potential u for which b(k) = 0), which meants

b(k) = 0, a(k) = 1. (48)

Thus F (ξ; t) = 2e8t−ξ. (49)

Gel’fand-Levitan, Marchenko equation becomes

K(x, z; t) + 2e8t−(x+z) + 2

∫ ∞
x

K(x, y; t)e8t−(y+z)dy = 0. (50)

In this integral equation x and t appear only as parameters.
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Example 1: One Soliton Solution of KdV E · · · conti.

Multiplying by ez

K(x, z; t)ez + 2e8t−x + 2

∫ ∞
x

K(x, y; t)e8t−ydy = 0. (51)

Set K(x, z; t)ez = L, then

L+ 2e8t−x + 2e8t

∫ ∞
x

Le−2ydy = 0. (52)

Since 2nd and 3rd terms are independent of z, so must be L, hence
K(x, z; t)ez = L(x, t). Hence y does not appaer in integrand Le8t

and we get

L(x, t) = − 2e8t−x

1 + e8t−2x
so that K(x, z; t) = − 2e8t−x−z

1 + e8t−2x
. (53)
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Example 1: One Soliton Solution of KdV E -Final Step · · ·
conti.

Solution of IVP is

u(x, t) = −2
∂

∂x
K(x, x; t)|t=const = 2

∂

∂x

(
2e8t−2x

1 + e8t−2x

)
Hence finally

u(x, t) = −2 sech2(x− 4t) (54)

This is solitary wave of amplitude 2 (amplitude in the standing solitary
wave prescibed in the inital data) with velocity of propagation 4.

Here κ2
1 = 1, hence we do an extrapolation, 2 and 4t are replaced by

2κ2
1 and 4κ2

1t respectively.

u(x, t) = −2 sech2(x− 4t) = −2κ2
1 sech

2(x− 4κ2
1t). (55)
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Example 1: One Soliton Solution of KdV E - an Obervation

Comparing ψxx + (λ+ 2 sech2x)ψ = 0 and
ψxx(x; t) + (λ+ 2 sech2(x− 4t)ψ = 0,

ψ(x; t) =
1√
2
sech(x− 4κ2

1t), κ1(t) = κ1(0) = 1. (56)

We see for one soliton solution

u(x, t) = −4κ1ψ
2
1(x, t).

We verify now an astounding important possibility for n soliton
solution, (though such an expression has not been obtained),

u(x, t) = −4
n∑
1

κiψ
2
i (x, t). (57)
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Example 2: Two Soliton Solution of KdV E

In this case we produce still less steps without details of calculations.
For details see [1]

Assume the intial data as a soliton:

u0(x) = −6 sech2x, (58)

in which aplitude and width of pulse do not match with the solitary
wave solution.

Initial scattering data S(0) is obtained by solving the eigenvalue
problem for

ψxx + (λ+ 6 sech2x)ψ = 0 (59)

Potential u0(x) is again reflectionless with only two discrete
eigenvalues λ = −4 (which gives κ1 = 2) and λ = −1 (which gives
κ2 = 1).
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Example 2: Two Soliton Solution of KdV E · · · conti.

A bit long procedure gives solution of the IVP of the KdV E as

u(x, t) = −12
3 + 4 cosh(2x− 8t) + cosh(4x− 64t)

[cosh(3x− 36t) + 3 cosh(x− 28t)]2
. (60)

This expression does not reveal much about the wave - it has too
many expressions with arguments consisting of four forms αt− βx.

But it contains a most fascinating result discovered in 1967.

Discovery of first soliton in (60)
With ξ = x− 16t = x− 4κ2

1t, we write above expression in form

u(x, t) = −12
3 + 4 cosh(2ξ + 24t) + cosh(4ξ)

[cosh(3ξ + 12t) + 3 cosh(ξ − 12t)]2
. (61)

Prasad (IISc) KdV Equation August 1, 2019 45 / 60



Example 2: First Soliton in Solution

We take limit of (61) as t→∞.
When t >> 1

cosh(2ξ + 24t) =
1

2
{e(2ξ+24t) + e−(2ξ+24t)} ≈ 1

2
e(2ξ+24t). (62)

Using similar expression for other cosh functionsand neglecting terms
of O(1) in comarision with powers of et, we get

lim
x→∞

u(x, t) = −96
e2ξ

9e−4ξ + 6e2ξ + e6ξ

= 32
1(

1√
3
e2ξ +

√
3e−2ξ

)2

= 32
1(

1√
3
e2ξ−2ξ1 +

√
3e−2ξ+2ξ1

)2 , (63)

where e4ξ1 = 3.
Prasad (IISc) KdV Equation August 1, 2019 46 / 60



Example 2: First Soliton in Solution · · · conti.

Finally we get (κ1 = 2)

lim
x→∞

u(x, t) = −8sech2{2(2ξ − 2ξ1)},

= −8sech2{2(x− 16t− 2ξ1)},
= −2κ2

1sech
2{κ1(x− 4κ2

1t− 2ξ1)}, (64)

where ξ1 =
1

4
ln 3. (65)

Similarly we can show

lim
x→−∞

u(x, t) = −2κ2
1sech

2{κ1(x− 4κ2
1t+ 2ξ1)}, κ2

1 = 4. (66)

(64) and (66) show that a soliton, which starts at a large distance on
negative side of x-axis emerges in the solution later at a large
distance on positive side of x-axis but with a phase shift.
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Example 2: Second Soliton in Solution

Consider 2nd discrete eigenvalue λ = −κ2
2 = −1 Finally we get

lim
x→−∞

u(x, t) = −2sech2(x− 4t− ξ2) (67)

= −2κ2
2sech

2{κ2(x− 4κ2
2t− ξ2)}, (68)

where ξ2 =
1

2
ln 3. (69)

and

lim
x→∞

u(x, t) = −2κ2
2sech

2{κ2(x− 4κ2
1t+ ξ2)}, κ2

1 = 1. (70)

(67) and (68) show that , as in the case of first soliton, second
soliton starts at a large distance on negative side of x-axis emerges in
the solution later at a large distance on positive side of x-axis but
with a phase shift.
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Example 2: Interaction of 2 Solitons and Their Emergence

Above analysis shows that solution (60) contains two solitons at
large distance on netive x-axis and same two solitons at large
distance on positive x-axis.

At large negative-time, the bigger soliton with ampltude 8 is
bedind the smaller soliton with amplitude 2.

Bigger one moves faster than the smaller one and overtakes the
smaller one.

Intreraction is given by the solution (60) at any time. Figure is
drawn from graph of u(x, t), shows that bigger one swallows the
smaller one.

After some time smaller one comes out but is left behind. At
large positive-time, they emerge unchanged but with phase sifts
4ξ1 and 2ξ2.
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Interaction of Two Solitons Fig. 1

Interaction of two solitons is shown in (x, t, u)-space (-u axis is
vertically upward):
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Interaction of Two Solitons Fig. 2
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n-Soliton Solution

Problem: Can we express (60) in the form

u(x, t) = −4κ1ψ
2
1(x, t)− 4κ2ψ

2
2(x, t)?

We have seen that such a representation is true asymptotically as
t→ ±∞.

One of great success of inverse scattering method is explicite
form of n-soliton solution of KdV E by Gardner etal (1967), see
[1] and [2].

Can we express n-soliton solution in form:

u(x, t) = −4
n∑
1

κiψ
2
i (x, t)? (71)

Here each −4κiψ
2
i (x, t) represents ith soliton.

We show 3-soliton solution in figure on next slide.
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Interaction of Three Solitons
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Solution When Potential is not Reflectionless

There is no explicit solution and the solution is generally obtained
by asymptotic analysis or numerical solution of the IVP.

We present results on next few slides.
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When Inital Data is a Delta Function with -ve Aplitude
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Solution When Potential is Delta Function with +ve
Amplitude

When u0(x) = U0δ(x), U0 > 0, there is no discrete eighenvalue.

There is no soliton. Only dispersive wave components arise for
t > 0.

Delta function collapses and develops dispersive wave train.

Since this corresponds to dipression of water surface, result
corresponds to Russell’s obervation.

Russell great observation in 1844 is not only on great wave of
translation but he also observed correctly interaction of two
solitons, trails of oscillatory waves etc.

Great observational power and their interpretation - far ahead of
his time.
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Two Solitons with Dispersive Wave
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ith Soliton in n-soliton Solution

The ith soliton which emerges out of n-soliton solution at
∓∞ corresponding to discrete eigenvalue −κ2

i is

ui = −2κ2
i{κi(x− 4κ2

i t∓ ξi)} (72)
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Thank You for Your Attention!
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