A note on
 The Bicharacteristic Theorem

Phoolan Prasad

Aim of This Brief Note: We shall first give a basic back ground of "The Bicharacteristic Theorem" and then state the theorem.

Physical Basis of Hyperbolic Equations: In a hyperbolic system of partial differential equations (PDEs), one independent variable plays a distinctive. We denote this time-like variable by t and other spatial variables by $\boldsymbol{x}=\left(x_{1}, x_{2}, \cdots, x_{d}\right) \in \mathbb{R}^{d}$. The hyperbolic nature of the system is due to the fact that the system has a sufficient number (or full set) of families of curves in the space-time which carry information with finite speeds from the initial plane $t=0$ to solve an initial value problem (a Cauchy problem). For two independent variables $(d=1)$ these curves are characteristic curves and for more than two independent variables $(d>1)$ they are bicharacteristic curves (which can be identified with rays in physical \boldsymbol{x}-space). Single first order PDEs are the simplest examples of hyperbolic equations.
See also Chapter 2. Finite Speed of Propagation in "P. D. Lax, On hyperbolic partial differential equations, Courant Inst. of Math. Sci. and AMS, 2006".

Hyperbolic System of First Order Quasilinear Equations in Multi-Space Dimensions: We consider n equations in $d+1$ independent variables

 \boldsymbol{x} and $t$$$
\begin{equation*}
A(\boldsymbol{x}, t, \boldsymbol{u})) \boldsymbol{u}_{t}+B^{(\alpha)}(\boldsymbol{x}, t, \boldsymbol{u}) \boldsymbol{u}_{x_{\alpha}}+\boldsymbol{C}(\boldsymbol{x}, t, \boldsymbol{u})=0 \tag{1}
\end{equation*}
$$

where $\boldsymbol{u} \in \mathbb{R}^{n}, A \in \mathbb{R}^{n \times n}, B^{(\alpha)} \in \mathbb{R}^{n \times n}$ and $\boldsymbol{C} \in \mathbb{R}^{n}$.
Summation convention: A repeated symbol in subscripts and superscripts in a term will mean summation over the range of the symbol. The range of the symbols α, β, and γ will be $1,2, \cdots, d$ and those of i, j, and k will be $1,2, \cdots, n$.
Note: Since we discuss a system of quasilinear equations (1), we choose a solution $\boldsymbol{u}(\boldsymbol{x}, t)$ on the domain D of (\boldsymbol{x}, t)-space and all results will be valid locally for the given solution $\boldsymbol{u}(\boldsymbol{x}, t)$.

Definition 1. We define the system (1) as hyperbolic in D with t as time-like variable if, given an arbitrary unit vector \boldsymbol{n}, the characteristic equation

$$
\begin{equation*}
Q(\boldsymbol{x}, t, \boldsymbol{u}, \boldsymbol{n}) \equiv \operatorname{det}\left[n_{\alpha} B^{(\alpha)}-c A\right]=0 \tag{2}
\end{equation*}
$$

has n real roots (called eigenvalues) and eigenspace is complete at each point of D.
We denote the eigenvalues as

$$
\begin{equation*}
c_{1}, c_{2}, \ldots, c_{n} \tag{3}
\end{equation*}
$$

and left and right eigenvectors by $\boldsymbol{\ell}^{(i)}$ and $\boldsymbol{r}^{(i)}$, which satisfy

$$
\begin{equation*}
\boldsymbol{\ell}^{(i)}\left(n_{\alpha} B^{(\alpha)}\right)=c_{i} \boldsymbol{\ell}^{(i)} A, \quad\left(n_{\alpha} B^{(\alpha)}\right) \boldsymbol{r}^{(i)}=c_{i} A \boldsymbol{r}^{(i)} \tag{4}
\end{equation*}
$$

Suppose an eigenvalue $c_{i}(\boldsymbol{x}, t, \boldsymbol{u}, \boldsymbol{n})$ is repeated p_{i} times in the set (3), completeness of eigenspace at each point of D implies that the number of linearly independent left eigenvectors (and hence also right eigenvectors) corresponding to c_{i} is p_{i}.

Definition 2. Any quantity associated with the i th eigenvalue c_{i} will be referred to as the quantity belonging to i th or c_{i} characteristic field.

Eikonal Equation for a Wavefront: Let $\Omega: \varphi(\boldsymbol{x}, t)=\alpha, \alpha=$ constant be a one parameter family of characteristic surfaces in a characteristic field of an eigenvalue c of the system (1). Since

$$
\begin{equation*}
n_{\alpha}=\varphi_{x_{\alpha}} /|\nabla \varphi|, \quad \text { and } \quad c=-\varphi_{t} /|\nabla \varphi| \tag{5}
\end{equation*}
$$

characteristic equation (2) takes the form of a first order PDE, called eikonal equation,

$$
\begin{equation*}
Q\left(\boldsymbol{x}, t ; \boldsymbol{\nabla} \varphi, \varphi_{t}\right) \equiv \operatorname{det}\left(A \varphi_{t}+B^{(\alpha)} \varphi_{x_{\alpha}}\right)=0 . \tag{6}
\end{equation*}
$$

- A surface Ω satisfying (6) is a characteristic manifold in space-time:

$$
\begin{equation*}
\Omega:=\varphi(\boldsymbol{x}, t)=0 . \tag{7}
\end{equation*}
$$

Its section by the plane $t=$ constant is also represented by $\varphi(\boldsymbol{x}, t)=0$, where $t=$ is kept constant.

- Projection of the section of Ω by $t=$ constant on the physical space \boldsymbol{x} is a wavefront. It is denoted by

$$
\begin{equation*}
\Omega_{t}:=\varphi(\boldsymbol{x}, t)=0 \quad t=\text { constant } . \tag{8}
\end{equation*}
$$

Unit normal \boldsymbol{n} of the wavefront is given by

$$
\begin{equation*}
\boldsymbol{n}=\frac{\nabla \varphi}{|\nabla \varphi|} . \tag{9}
\end{equation*}
$$

- Velocity of propagation of the wavefront (i.e. the normal velocity) is given by

$$
\begin{equation*}
c=-\varphi_{t} /(|\nabla \varphi|) . \tag{10}
\end{equation*}
$$

When $|\boldsymbol{n}|=1$ in (2), the eigenvalue c is the normal velocity or simply velocity of a wavefront $\Omega_{t}: \varphi(\boldsymbol{x}, t)=\alpha,(t$ and $\alpha=$ constant $)$ in \boldsymbol{x}-space.

Another Form of the Eikonal Equation for a Wavefront Belonging to a Particular
Characteristic Field c : It is simple to show that $\varphi(\boldsymbol{x}, t)$ satisfies

$$
\begin{equation*}
\tilde{Q}\left(\boldsymbol{x}, t, \boldsymbol{\nabla} \varphi, \varphi_{t}\right):=(\boldsymbol{\ell} A \boldsymbol{r}) \varphi_{t}+\left(\boldsymbol{\ell} B^{(\alpha)} \boldsymbol{r}\right) \varphi_{x_{\alpha}}=0 . \tag{11}
\end{equation*}
$$

We use this form (11) to prove
The Bicharacteristic Theorem: For the hyperbolic system (1) of n first order PDEs we state the Bicharacteristic Theorem as:
The ray equations are

$$
\begin{gather*}
\frac{d x_{\alpha}}{d t}=\frac{\boldsymbol{\ell} B^{(\alpha)} \boldsymbol{r}}{\boldsymbol{\ell} A \boldsymbol{r}} \equiv \chi_{\alpha} \quad \text { and } \tag{12}\\
\frac{d n_{\alpha}}{d t}=-\frac{\ell}{\boldsymbol{\ell} A \boldsymbol{r}} \ell\left\{n_{\beta}\left(n_{\gamma} \frac{\partial B^{(\gamma)}}{\partial \eta_{\beta}^{\alpha}}-c \frac{\partial A}{\partial \eta_{\beta}^{\alpha}}\right)\right\} \boldsymbol{r} \equiv \psi_{\alpha} . \tag{13}
\end{gather*}
$$

The transport equation along a ray is

$$
\begin{equation*}
\boldsymbol{\ell} A \frac{d \boldsymbol{u}}{d t}+\boldsymbol{\ell}\left(B^{(\alpha)}-\chi_{\alpha} A\right) \frac{\partial \boldsymbol{u}}{\partial x_{\alpha}}+\boldsymbol{\ell} C=0 \tag{14}
\end{equation*}
$$

In (13)

$$
\begin{equation*}
\frac{\partial}{\partial \eta_{\beta}^{\alpha}}=n_{\beta} \frac{\partial}{\partial x_{\alpha}}-n_{\alpha} \frac{\partial}{\partial x_{\beta}} \tag{15}
\end{equation*}
$$

This operator is tangential to the wavefront Ω_{t} which is projection of a section of the characteristic manifold Ω and hence also to Ω.
The vector $\boldsymbol{\chi}=\left(\chi_{1}, \cdots, \chi_{m}\right)$ is called the ray velocity and the operator tangential to the characteristic manifold Ω

$$
\begin{equation*}
\frac{d}{d t}=\frac{\partial}{\partial t}+\chi_{\alpha} \frac{\partial}{\partial x_{\alpha}} \tag{16}
\end{equation*}
$$

represents differentiation in a bicharacteristic direction.
An interesting property of $\frac{\partial}{\partial \eta_{\beta}^{\alpha}}$ in (15): Define

$$
\begin{equation*}
L_{\alpha}=n_{\beta} \frac{\partial}{\partial \eta_{\beta}^{\alpha}}, \quad \alpha=1,2, \ldots, d \tag{17}
\end{equation*}
$$

The operator L_{α} can also be written in the form

$$
\begin{gather*}
L_{\alpha}=n_{\beta}\left(n_{\beta} \frac{\partial}{\partial x_{\alpha}}-n_{\alpha} \frac{\partial}{\partial x_{\beta}}\right)=\frac{\partial}{\partial x_{\alpha}}-n_{\alpha}\left(n_{\beta} \frac{\partial}{\partial x_{\beta}}\right), \text { i.e. } \tag{18}\\
\boldsymbol{L}=\boldsymbol{\nabla}-\boldsymbol{n}\langle\boldsymbol{n}, \boldsymbol{\nabla}\rangle . \tag{19}
\end{gather*}
$$

Thus we see a beatiful result " \boldsymbol{L} is obtained from $\boldsymbol{\nabla}$ by subtracting from $\boldsymbol{\nabla}$ its component normal to the wavefront Ω_{t} ".

