

MA221 HOMEWORK ASSIGNMENT 3

Due date: September 17 (Fri.) by 11:59 pm

1. Only the five problems marked with a * will be graded.
2. Your assignment may be hand-written or typed, but it must be submitted via MS Teams in the form of a **single PDF document**.
3. Unless otherwise stated, you may only use definitions/theorems/facts stated in class.

Problem A. Consider the following claims for a metric space (X, d) . For each claim, determine whether it is true or false. You must justify your answer in either case.

- (a) Suppose $S \subseteq T \subseteq X$. Then, S is compact in the metric space (X, d) if and only if S is compact in $(T, d|_T)$, where $d|_T$ is the subspace metric on T .
- (b*) The set of limit points of a set is always closed.
- (c*) The interior of a connected set is always connected.

Problem B. In class, we showed that limit-point compactness implies compactness for subsets of \mathbb{R}^n . Complete the following steps to establish this result for general metric spaces.

Let (X, d) be a metric space. Suppose every infinite subset of X has a limit point in X .

- (a) Show that X has a countable dense subset, i.e., there is a countable set $S \subseteq X$ such that $\overline{S} = X$.
- (b) Show that there is a countable collection $\{U_n\}_{n \in \mathbb{N}}$ of open sets such that for any open subset $U \subseteq X$ and any $x \in U$, there is an $n \in \mathbb{N}$ such that $x \in U_n \subseteq U$.
- (c*) Now, let $\mathcal{V} = \{V_\alpha\}_{\alpha \in \Lambda}$ be an arbitrary open cover of X . Using Parts (a) and (b), argue that \mathcal{V} admits a countable subcover of X . Now, argue that this countable subcover admits a finite subcover of X .

You do not need to submit the proofs of (a) and (b). You may invoke them directly in your proof for (c).

Problem C. In each case below, produce an example (with justifications).

- (a*) A metric space (X, d) where $\overline{B(a; r)} \neq \{x \in X : d(x, a) \leq r\}$ for some $a \in X, r > 0$.
- (b) A metric space (X, d) with a closed and bounded, but non-compact set $E \subseteq X$.
- (c) A metric space (X, d) that does not contain a countable dense subset.

Problem D*. Let $C \subset [0, 1]$ be the Cantor set (as constructed in class). Show that $C + C = [0, 2]$.

Problem E. Let $r > 0$. Let $\{x_n\}_{n \in \mathbb{N}}$ be a sequence of real numbers such that $x_0 = r$ and

$$(1) \quad x_{n+1} = x_n - \frac{x_n^2 - r}{2x_n}, \quad n \geq 1.$$

Show that $\lim_{n \rightarrow \infty} x_n = \sqrt{r}$. *Note. As part of this proof, you must also confirm that the sequence $\{x_n\}_{n \in \mathbb{N}}$ is well-defined, i.e., you are not dividing by 0 in (1).*

Problem F*. Let $\{x_n\}_{n \in \mathbb{N}}$ be a convergent sequence in \mathbb{R} , with $x_n \geq 0$, for all $n \in \mathbb{N}$. Let $k \in \mathbb{N}_{>0}$. Show that

$$\lim_{n \rightarrow \infty} (x_n)^{\frac{1}{k}} = \left(\lim_{n \rightarrow \infty} x_n \right)^{\frac{1}{k}}.$$