

## MA221 PRACTICE PROBLEMS FOR TEST II

**Problem A.** Let  $X = \{\{x_n\}_{n \in \mathbb{N}} : x_n \in \{0, 1\} \text{ for all } n \in \mathbb{N}\}$ . Define  $d : X \times X \rightarrow [0, \infty)$  as follows

$$d(\{x_n\}, \{y_n\}) = \max_{n \in \mathbb{N}} |x_n - y_n|.$$

Check that  $d$  is a metric on  $X$ . Is  $X$  a compact metric space?

**Problem B.** Let  $(X, d)$  be a complete metric space. Suppose  $E \subset X$  is endowed with the subspace metric  $d|_E$ . Show that  $(E, d|_E)$  is a complete metric space if and only if  $E$  is closed in  $X$ .

**Problem C.** Recall that a set  $E \subset \mathbb{R}$  is said to be *dense* in  $\mathbb{R}$  if  $\overline{E} = \mathbb{R}$ . Using the Nested Interval Property of  $\mathbb{R}$  prove the following: if  $\{U_n\}_{n \in \mathbb{N}}$  is a collection of open, dense subsets of  $\mathbb{R}$ , then

$$U = \bigcap_{n \in \mathbb{N}} U_n$$

is dense in  $\mathbb{R}$ .

**Problem D.** Let  $\{x_n\}_{n \in \mathbb{N}} \subset \mathbb{R}$  be a sequence. Define

$$X_n = \sup\{x_k : k \geq n\}, \quad n \in \mathbb{N}.$$

Show that  $\{X_n\}_{n \in \mathbb{N}}$  admits a limit in the extended real line, and that

$$\limsup_{n \rightarrow \infty} x_n = \lim_{n \rightarrow \infty} X_n.$$

**Problem E.** Let  $\{x_n\}_{n \in \mathbb{N}}$  be a sequence in a metric space  $(X, d)$ . Suppose  $x \in X$  is such that every subsequence of  $\{x_n\}_{n \in \mathbb{N}}$  has a subsequence that converges to  $x$ . Show that, then

$$\lim_{n \rightarrow \infty} x_n = x.$$

**Problem F.** Let  $x > 0$  and  $q \in \mathbb{R}$ . Suppose  $\{q_n\}_{n \in \mathbb{N}}$  is a sequence of rational numbers such that  $\lim_{n \rightarrow \infty} q_n = q$ . Show that, then  $\{x^{q_n}\}_{n \in \mathbb{N}}$  is a convergent sequence. **Note.** This allows us to define  $x^q$  for irrational  $q$ .

**Problem G.** Let  $\{x_n\}_{n \in \mathbb{N}}$  be a sequence of **positive** real numbers such that  $x_n \neq 1$  for any  $n \in \mathbb{N}$ . Show that

$$\sum_{n=1}^{\infty} x_n < \infty \iff \sum_{n=1}^{\infty} \frac{x_n}{1+x_n} < \infty.$$