

MA224 HOMEWORK ASSIGNMENT 2

Due Date: March 10 (Wed.) by 11:59 pm

1. **Mode of submission.** Assignments must be submitted via teams (as discussed in class). Your assignment may be hand-written or typed, but the final submission must be in the form of a **PDF document**.
2. **Grading scheme.** You are expected to submit solutions to all the problems. The grader will grade selected problems.
3. **What can I use?** As much as possible, use definitions/theorems/facts stated in class. Avoid heavy machinery — you'll be alerted when it is needed.
4. **On collaborative efforts.** Teamwork is absolutely discouraged. These assignments are meant to test your individual understanding of the course material.

Problem 1. Determine (with brief justifications) which of the following identities are true.

- (a) $\log(zw) = \log(z) + \log(w)$, where \log denotes the principal branch of the logarithm.
- (b) $|\cos(z)|^2 = \cos^2(\operatorname{Re} z) + \sin^2(i \operatorname{Im} z)$.

Problem 2. Let $f : \mathbb{R} \rightarrow \mathbb{R}$ be a real-analytic function. We abuse notation and also denote the line $\{z \in \mathbb{C} : \operatorname{Im} z = 0\}$ by \mathbb{R} below.

- (a) Suppose $F : U \rightarrow \mathbb{C}$ is a complex-analytic function on some neighborhood U of \mathbb{R} in \mathbb{C} such that $F|_{\mathbb{R}} = f$. Show that the radius of convergence of the (complex) Taylor series of F about any $x + i0 \in \mathbb{R}$ coincides with the radius of convergence of the (real) Taylor series of f about x .
- (b) For any fixed $x_0 \in \mathbb{R} \setminus \{0\}$, give lower and upper bounds (in terms of x_0) on the radius of convergence of the Taylor series of $f(x) = \frac{1}{1+x^2}$ about x_0 .

Remark. You may assume the fact that $1/(1+z^2)$ is complex-analytic on $\mathbb{C} \setminus \{\pm i\}$.

Problem 3. A twice-differentiable function $u : U \rightarrow \mathbb{C}$ on an open set $U \subset \mathbb{C}$ is said to be *harmonic* on U if

$$\Delta u := \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \equiv 0 \quad \text{on } U.$$

Convince yourself that the real and imaginary parts of a twice-differentiable holomorphic function on U are harmonic. Use this fact to determine which of the following choices of u cannot be the

real part of a holomorphic function (on any domain). For the other function, produce an explicit holomorphic function F such that $\operatorname{Re} F = u$ and $F(0) = 0$.

$$(a) \quad u(x, y) = \frac{x^2 + y^2}{1 + 2x + x^2 + y^2}.$$

$$(b) \quad u(x, y) = \frac{x(1 + x^2 + y^2)}{1 + 2x^2 - 2y^2 + (x^2 + y^2)^2}.$$

(Hint. You may find it convenient to express everything (including Δ) in terms of z and \bar{z} .)

Problem 4. Show that if a function $f : D(0; R) \rightarrow \mathbb{C}$ is Fréchet-differentiable on $D(0; R)$ for some $R > 0$, then

$$\lim_{r \rightarrow 0} \frac{1}{r^2} \int_{\{|z|=r\}} f(z) dz = 2\pi i \frac{\partial f}{\partial \bar{z}}(0).$$