

MA224 HOMEWORK ASSIGNMENT 4

Due Date: April 02 (Fri.) by 11:59 pm

1. **Mode of submission.** Assignments must be submitted via teams (as discussed in class). Your assignment may be hand-written or typed, but the final submission must be in the form of a **PDF document**.
2. **Grading scheme.** You are expected to submit solutions to all the problems. The grader will grade selected problems.
3. **What can I use?** As much as possible, use definitions/theorems/facts stated in class. Avoid heavy machinery — you'll be alerted when it is needed.
4. **On collaborative efforts.** Teamwork is absolutely discouraged. These assignments are meant to test your individual understanding of the course material.

Problem 1. Let $v \in \mathbb{C}$ and $w \in \mathbb{C}$ be linearly independent over \mathbb{R} . Let $\Lambda = \{mv + nw : m, n \in \mathbb{Z}\}$. Suppose $f \in \mathcal{O}(\mathbb{C})$ is such that $f(z + \lambda) = f(z)$ for every $z \in \mathbb{C}$ and $\lambda \in \Lambda$. Show that f is a constant function on \mathbb{C} .

Problem 2. Let $\Omega \subset \mathbb{C}$ be a domain and $f \in \mathcal{O}(\Omega)$ be a nonvanishing function such that

$$\frac{1}{2\pi i} \int_{\gamma} \frac{f'(z)}{f(z)} dz \equiv 0 \pmod{2}$$

for all closed curves $\gamma \subset \Omega$.

- (a) Does the above condition guarantee the existence of a holomorphic logarithm of f , i.e., a $g \in \mathcal{O}(\Omega)$ such that $e^g = f$ on Ω ?
- (b) Show that the above condition guarantees the existence of a holomorphic square root of f , i.e., there is an $h \in \mathcal{O}(\Omega)$ such that $h^2 = f$.

Hint. For (b), try to construct an h of the form e^p , where p involves an integral of f'/f .

Problem 3. Given $f \in \mathcal{C}(\Omega)$, let

$$(f)_r := \left(\frac{1}{2\pi} \int_0^{2\pi} |f(re^{i\theta})|^2 d\theta \right)^{\frac{1}{2}}.$$

Let

$$H^2(\mathbb{D}) = \left\{ f \in \mathcal{O}(\mathbb{D}) : \|f\|_{H^2} := \sup_{0 < r < 1} (f)_r < \infty \right\}.$$

(a) Characterize the functions in $H^2(\mathbb{D})$ in terms of the coefficients of their power series expansions around 0, i.e., when does $f(z) = \sum_{n=0}^{\infty} a_n z^n$ belong to $H^2(\mathbb{D})$? Further, write $\|f\|_{H^2}$ in terms of $\{a_n\}_{n \geq 0}$.

(b) Show that, for any compact set $K \subset \mathbb{D}$, there is a constant $C_K > 0$ such that

$$\sup_{z \in K} |f(z)| \leq C_K \|f\|_{H^2}, \quad \forall f \in H^2(\mathbb{D}).$$

(c) Assuming $d(f, g) := \|f - g\|_{H^2}$ is a metric on $H^2(\mathbb{D})$, show that if $\{f_n\}_{n \in \mathbb{N}} \subset H^2(\mathbb{D})$ is Cauchy with respect to the metric d , then there is an $f \in \mathcal{O}(\mathbb{D})$ such that $\{f_n\}_{n \in \mathbb{N}}$ converges uniformly on compacts to f on \mathbb{D} .

(d) In (c) above, must f belong to $H^2(\mathbb{D})$?