

MA224 HOMEWORK ASSIGNMENT 5

Due Date: April 11 (Sun.) by 11:59 pm

1. **Mode of submission.** Assignments must be submitted via teams (as discussed in class). Your assignment may be hand-written or typed, but the final submission must be in the form of a **PDF document**.
2. **Grading scheme.** You are expected to submit solutions to all the problems. The grader will grade selected problems.
3. **What can I use?** As much as possible, use definitions/theorems/facts stated in class. Avoid heavy machinery — you'll be alerted when it is needed.
4. **On collaborative efforts.** Teamwork is absolutely discouraged. These assignments are meant to test your individual understanding of the course material.

Problem 1. Let $\Omega \subset \mathbb{C}$ be an open set. Suppose $\gamma_0, \gamma_1 : [0, 1] \rightarrow \Omega$ are curves with the same endpoints. Let $\gamma : [0, 1] \rightarrow \Omega$ be the curve

$$\gamma(t) = \begin{cases} \gamma_0(2t), & 0 \leq t \leq \frac{1}{2}, \\ \gamma_1(2 - 2t), & \frac{1}{2} \leq t \leq 1. \end{cases}$$

Show that γ_0 and γ_1 are f.e.p. homotopic in Ω if and only if γ is nullhomotopic in Ω .

Problem 2. Recall that the stereographic projection

$$\Psi : (x, y, t) \mapsto \begin{cases} \frac{x+iy}{1-t}, & \text{when } (x, y, t) \neq (0, 0, 1), \\ \infty, & \text{when } (x, y, t) = (0, 0, 1), \end{cases}$$

identifies the unit sphere S^2 in \mathbb{R}^3 with the extended complex plane $\hat{\mathbb{C}}$. Given a matrix $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \text{GL}(2; \mathbb{C})$, the fractional linear transformation $M_A : \hat{\mathbb{C}} \rightarrow \hat{\mathbb{C}}$ is defined as

$$M_A : z \mapsto \begin{cases} \frac{az+b}{cz+d}, & \text{if } z \neq -\frac{d}{c}, \infty, \\ \infty, & \text{if } z = -\frac{d}{c}, \\ \frac{a}{c}, & \text{if } z = \infty, \end{cases} \quad (c \neq 0),$$

and as $M_A = (az + b)/d$ with $M_A(\infty) = \infty$, when $c = 0$.

(a) The spherical distance on $\hat{\mathbb{C}}$ is given by $d_s(z, w) := \|\Psi^{-1}(z) - \Psi^{-1}(w)\|_{\mathbb{R}^3}$. Compute an expression for $d_s(z, w)$ (including an expression for $d_s(z, \infty)$, $z \in \mathbb{C}$).

(b) Now show that if $\det A = 1$, then M_A preserves the spherical distance on $\hat{\mathbb{C}}$ if and only if $d = \bar{a}$ and $c = -\bar{b}$.

Problem 3. Let $f : \mathbb{C} \rightarrow \mathbb{C}$ be an analytic function satisfying an estimate

$$|f(z)| \leq C e^{\alpha |\operatorname{Im} z|},$$

for some $C > 0$ and $\alpha \in (0, \pi)$. Show that

$$f(z) = \lim_{n \rightarrow \infty} \sum_{n=-N}^{n=N} f(n) \frac{\sin(\pi(z-n))}{\pi(z-n)}$$

for all $z \in \mathbb{C}$. Here, one interprets $\frac{\sin(z)}{z}|_{\{z=0\}}$ as 1.

For any noninteger $z \in \mathbb{C}$, apply the residue theorem to the function $g(w) = \frac{f(w)}{(w-z)(\sin(\pi w))}$ on the boundaries of appropriate rectangles.