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CONVEX FLOATING BODIES AS APPROXIMATIONS

OF BERGMAN SUBLEVEL SETS ON TUBE DOMAINS

PURVI GUPTA

(Communicated by Franc Forstneric)

Abstract. For a pseudoconvex tube domain, we prove estimates that relate
the sublevel sets of its diagonal Bergman kernel to the floating bodies of its
convex base. This allows us to associate a new affine invariant to any convex
body.

1. Introduction

The main objective of this paper is to establish a quantitative relationship be-
tween two collections of geometric objects associated with a given convex body in
Rn. One, its set of convex floating bodies — an equiaffine-invariant construction
studied by convex geometers, and the other, the collection of sublevel sets traced
by the Bergman kernel of a tube domain over the given body. The latter is a natu-
ral object in complex analysis. Although, the bridge between convex and complex
analysis on such domains has been exploited succesfully before — Nazarov’s paper
[8] is a noteworthy example — the role of floating bodies in this interplay is yet
to be explored. Before we state our main result, we describe the central objects of
this paper in some detail.

Let D ⊂ Rn be a bounded convex domain. For δ > 0, its convex floating body
Dδ is the intersection of all the half-spaces whose defining hyperplanes cut off a set
of volume δ from D. Specifically, if A denotes the set of all (v, t) ∈ R

n × R such
that vol{x ∈ D : x · v ≥ t} = δ, then

(1.1) Dδ =
⋂

(v,t)∈A

{x ∈ R
n : x · v < t}.

These are strictly convex and exhaust D as δ approaches zero. Inspired by a con-
struction due to Dupin, these were first introduced by Schütt and Werner (in [12])
as a tool for extending the notion of Blaschke’s surface area measure to nonsmooth
convex boundaries. Since its introduction, the floating body has made appearances
in the context of polyhedral approximations (see [11]), the homethety conjecture
(see [14] and [15]) and, more recently, the hyperplane conjecture (in [3]).

Now, let Ω := {x + iy ∈ Cn : y ∈ D}. Then, Ω is a pseudoconvex tube domain
in Cn. The Bergman kernel of Ω, KΩ : Ω×Ω → C, is the reproducing kernel of the
Bergman space A(Ω) — i.e., the space of Lebesgue square-integrable holomorpic
functions on Ω, with the L2-norm. It is known that A(Ω) is nonempty, consists of
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Fourier-Laplace transforms of certain functions on Rn, and

(1.2) KΩ(z, w) =
1

(2π)n

∫
Rn

ei(z−w)·t∫
D
e−2x·tdμ(x)

dμ(t),

where μ denotes the Lebesgue measure on Rn (see [10], and the references therein).
Estimates for the Bergman kernel and associated quantities are of great interest to
complex analysts and are the subject of many works. We will focus on the sets

(1.3) DM := {x ∈ D : KD(x) := KΩ(ix, ix) < M}.
These are strongly convex (this follows from the strict plurisubharmonicity of
logKΩ(z, z)) and exhaust D as M → ∞ (as discussed in Section 2). Although
(1.2) gives a formula for KD(x), it can be hard to compute, even for some very
simple examples (such as planar triangles). On the other hand, the convex floating
bodies are simpler to construct and visualize. This is part of our motivation for
establishing the following relation:

Theorem 1.1. Let D ⊆ Rn be a bounded convex domain. Let Dδ and DM be the
δ-convex floating body and the Bergman M -sublevel set of D, respectively (see (1.1)
and (1.3)). Then, there exist dimensional constants �n > 0 and un > 0 such that

D�nδ
−2 ⊆ Dδ ⊆ Dunδ

−2

for small enough δ.

Another reason to compare these two collections is their suitability for the fol-
lowing scheme. Suppose G is a group of volume-preserving transformations that
acts on Rn (or Cn), and D ⊂ Rn (or Cn) is a bounded domain. If {D(ε)}ε>0 is a
G-invariant collection of exhausting subsets of D, and

vol(D \D(ε)) ∼ f(ε) as ε → 0,

for some continuous f with f(0) = 0, then the weak-∗ limit (if it exists) of f(ε)−1

times the Lebesgue measure on D \ D(ε) yields a G-invariant measure on ∂D.
If D is strongly convex and D(ε) is chosen as the convex floating body Dε, then
this measure is the normalized affine surface area measure on ∂D (this is implicit in
Schütt and Werner’s paper [12]). For other convex domains, the floating bodies can
lead to ‘lower-dimensional’ affine measures (for instance, this measure is supported
on the vertices in the case of polygons — see [11]). If the above scheme is carried
out for a strongly pseudoconvex domain Ω � Cn, using the Bergman sublevel
sets, then one obtains the normalized Fefferman hypersurface measure on ∂Ω (see
[5, Prop. 1.5]). If D is strongly convex, the tube domain Ω := Rn + iD is strongly
pseudoconvex, and the Fefferman measure on ∂Ω reduces to the affine measure
along ∂D. It follows that if D(ε) is set as the Bergman sublevel set D1/ε, then,
again we obtain the normalized affine surface area measure on ∂D. Theorem 1.1
implies that, analogous to strongly convex domains, the two competing classes
{Dε} and {D1/ε} will yield comparable equiaffine-invariant measures on ∂D for a
general convex domain D ⊂ Rn. This is surprising since in the absence of strong
convexity, we do not have any Schütt-Werner or Hörmander-type estimates relating
these sets to the curvature of ∂D (the estimates referred to are used in the proof
of Proposition 3.2).

The rest of the article is organized as follows. We provide a proof of Theorem 1.1
in the next section. The constants �n and un are computed therein. In Section 3, we
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set up a new affine-invariant constant associated to a convex body, and compute
it for some examples. At the end, we indicate some possible avenues of future
exploration.

2. Proof of Theorem 1.1

Notation. We first clarify some notation that will appear throughout the rest of
this article. We use Bn and ωn to denote the unit Euclidean ball and its volume,
respectively, in Rn. The unit disc in C is written as D. The space of holomorphic
maps from D1 to D2 is denoted by O(D1;D2). For complex-valued n-tuples a =
(a1, . . . , an) and b = (b1, . . . , bn), a · b = a1b1 + · · ·+ anbn.

We now briefly argue the fact that the Bergman sublevel sets {DM}M>0 exhaust
D. Although, this is not necessary for our main proof, it is an essential feature of
the comparison we are making between {Dε}ε>0 and {DM}M>0.

Lemma 2.1. Let D ⊂ Rn be a bounded convex domain. Then, for any x0 ∈ ∂Ω,
KD(x) → ∞ as x → x0.

Proof. Let R := {(z1, . . . , zn) : (log |z1|, . . . , log |zn|) ∈ D}. As D is a bounded
convex domain, R is a bounded pseudoconvex Reinhardt domain in Cn that satisfies
the Fu condition — i.e., it does not intersect any complex hyperplane of the form
{(z1, . . . , zn) ∈ Cn : zj = 0}. Thus, R is hyperconvex, and KR(z, z) → ∞ as
z 
→ z0, for any z0 ∈ ∂R (these are results from [16] and [9], respectively). Now, by
Theorem 2 and estimate (7) in Fu’s paper [4],

KR

(
(ex1 , . . . , exn), (ex1 , . . . , exn)

)
= e−2(x1+···+xn)

∑
k∈Zn

KRn+iD(ix, ix+ 2kπ)

≤ CKRn+iD(ix, ix)
∑

k∈Z
n,

k �=(0,··· ,0)

1

|k|2 ,

for x = (x1, . . . , xn) ∈ D, and some constant C independent of x. Thus, KD(x) ≥
C̃KR

(
(ex1 , . . . , exn), (ex1 , . . . , exn)

)
, where C̃ is independent of x. Combining this

with the hyperconvexity of R, we get the desired result. �

We now proceed to the proof of our main theorem. We rely on Nazarov’s ap-
proach from [8], the main source of challenge being the lack of any symmetry
assumptions on D.

Proof of Theorem 1.1. Let D be a bounded convex domain in Rn. We first es-
tablish the existence of un. For this, we repeat an estimate due to Nazarov (see
[8, Section 3]). Let E ⊂ Rn be an origin-symmetric convex body. One uses formula
(1.2) to write

(2.1) KE(0) =
1

(2π)n

∫
Rn

1

JE(t)
dμ(t)

where

JE(t) =

∫
E

e−2x·tdμ(x).
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Fix a y ∈ E. Then, Ey := 1
2 (y + E) ⊆ E. So, we obtain

JE(t) ≥
∫
Ey

e−2x·tdμ(x) = 2−n

∫
E

e−2( v+y
2 )·tdμ(v)

= 2−ne−y·t
∫
E

e−v·tdμ(v)

≥ 2−ne−y·t vol(E),(2.2)

where we use the convexity of v 
→ e−v·t on E for every t, and the observation that
any convex function f on E satisfies∫

E

f(x)dμ(x) ≥ f(0) vol(E)

by the symmetry of E. Next, recall that the polar body of E is given by E◦ = {y ∈
Rn : x · y ≤ 1 for all x ∈ E}, and

||x||E◦ := min{α > 0 : x ∈ αE◦}
= max{x · y : y ∈ E}.

So, maximizing (2.2) over all y ∈ E, we obtain that

JE(t) ≥ 2−ne||−t||E◦ vol(E) = 2−ne||t||E◦ vol(E),

for all t ∈ R
n. Substituting this back in (2.1), we see that

KE(0) ≤ 1

πn vol(E)

∫
Rn

e−||t||E◦ dμ(t)

=
1

πn vol(E)

∫
Rn

∫
s≥||t||E◦

e−sds dμ(t)

=
1

πn vol(E)

∫ ∞

0

e−s

∫
{t∈Rn:||t||E◦≤s}

dμ(t) ds

=
vol(E◦)

πn vol(E)

∫ ∞

0

sne−sds =
n! vol(E◦)

πn vol(E)
.(2.3)

Now, we return to D. Fix a positive δ � vol(D). For each v ∈ Sn−1, let rv
denote the unique real number such that

vol({x ∈ D : x · v > rv}) = δ.

Set Hv := {x ∈ Rn : x · v = rv} and D|v := {x ∈ D : x · v > rv}. D|v is a
continuous family of convex domains in D, each of volume δ. We let Ev denote the
circumscribed Löwner-John ellipsoid of D|v — i.e., the unique ellipsoid of minimal
volume that contains D|v (see [1, Lecture 3], for more on Löwner-John ellipsoids).
Then, due to a result by F. John ([7]), if

Ev = cv +Av(B
n),

for some Av ∈ GL(n;R), then on shrinking,

En
v := cv +

1

n
Av(Bn) ⊆ D|v.

In particular, for every v ∈ Sn−1,

(2.4) vol(En
v ) =

1

nn
vol(Ev) ≥

1

nn
vol(D|v) =

δ

nn
.
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We now estimate the Bergman kernel of D at each cv. We first observe that
since the Bergman kernel is invariant under translations, K 1

nAv(Bn)(0) = KEn
v
(cv)

for each v ∈ Sn−1. But, since 1
nAv(B

n) is an origin-symmetric convex domain in
R

n, we get by (2.3) that

(2.5) KEn
v
(cv) = K 1

nAv(Bn)(0) ≤
n! vol

( (
1
nAv(B

n)
)◦ )

πn vol
(

1
nAv(Bn)

) .

This can be combined with the Blaschke-Santaló inequality for origin-symmetric
convex bodies:

vol(D◦) vol(D) ≤ (ωn)
2,

and (2.4), to obtain that

KEn
v
(cv) ≤

n!(ωn)
2

πn vol
(
1
nAv(Bn)

)2 =
n!(ωn)

2

πn vol(En
v )

2
≤ n!n2n(ωn)

2

πnδ2
.

Since cv ∈ En
v ⊆ D|v ⊂ D, by the monotonicity of the Bergman kernel,

(2.6) KD(cv) ≤ KEn
v
(cv) ≤ unδ

−2, for every v ∈ Sn−1,

where un :=
n!n2n(ωn)

2

πn
.

Now, we claim that the image of the map γ : Sn−1 → D \Dδ given by v 
→ cv
‘surrounds’ Dδ — i.e., Dδ is contained in an open set U such that ∂U ⊆ γ(Sn−1).
Our argument is as follows. Let bv denote the barycenter of Hv ∩ D. Then, by
Lemma 2 in [14], every x ∈ ∂Dδ coincides with a bv for some v ∈ Sn−1. Thus, the
image of the map β : Sn−1 
→ D \Dδ given by v 
→ bv surrounds Dδ (in the sense
described above — in fact, U = Dδ in this case). Now, T : Sn−1 × [0, 1] 
→ D \Dδ

given by (v, t) 
→ (1−t)bv+tcv is a homotopy between β(Sn−1) and γ(Sn−1) whose
image is entirely contained in the complement of Dδ. Thus, γ(S

n−1) must surround
Dδ as well, and there is an open set U ⊂ D, such that U ⊇ Dδ and ∂U ⊆ γ(Sn−1).
Thus, by the maximum principle (x 
→ logKD(x) is strongly convex on D),

sup
x∈Dδ

KD(x) ≤ sup
y∈U

KD(y) ≤ sup
y∈∂U

KD(y) ≤ sup
v∈Sn−1

KD(cv) ≤
un

δ2
.

This shows that Dδ ⊂ Dunδ
−2

.
We now turn to the existence of �n. Once again, we fix δ so small that Dδ

is nonempty, and Hv is as before. It suffices to show that for any x ∈ Hv ∩ D,
KD(x) ≥ �nδ

−2 for some �n > 0 independent of v, δ and D. This is because for
any x ∈ ∂Dδ, there is a supporting hyperplane of Dδ that cuts off a set of volume
δ from D — i.e., there is a v ∈ Sn−1 such that x ∈ Hv ∩D (see Lemma 2 in [14]).
The required estimate will be obtained from the following lower bound for convex
domains due to B�locki in [2]:

(2.7) KΩ(w,w) ≥
1

volCn(IΩ(w))
, w ∈ Ω,

where IΩ(w) ⊂ Cn is the Kobayashi indicatrix of Ω given by

IΩ(w) = {φ′(0) : φ ∈ O(D; Ω), φ(0) = w}.
For us, Ω := Rn + iD, and w = ix for some x ∈ Hv ∩D. We are seeking an upper
bound on volCn(IΩ(w)).
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Without loss of generality, we assume that x is the origin in Rn and v =
(0, . . . , 0, 1). In particular, Hv is the hyperplane {(x1, . . . , xn) ∈ Rn : xn = 0}
and D ∩ {xn > 0} = D|v. We will follow Nazarov’s technique from [8] (as used by
B�locki in [2]). We recall that D◦ = {u ∈ Rn : y · u ≤ 1 for all y ∈ D}, which is
the same as {u ∈ Rn : y · u < 1 for all y ∈ D} since D is open. Now, consider the
half-plane S := {z ∈ C : Im z < 1}, and let Φ : S 
→ D denote the conformal map
z 
→ −iz/(z − 2i). Then, Φ(0) = 0 and Φ′(0) = 1/2. For a fixed u ∈ D◦ and any
φ ∈ O(D; Ω) such that φ(0) = w, the map F : z 
→ Φ(φ(z) · u) is a holomorphic
self-map of D that fixes the origin (since we are assuming that w is the origin in
Cn). Thus, by the Schwarz lemma, |F ′(0)| ≤ 1, or |φ′(0) ·u| ≤ 2. So, 1

2IΩ(w) ⊆ DC,
where

DC := {z ∈ C
n : |z · u| ≤ 1 for all u ∈ D◦}.

Note that DC ⊆
(
D̂ ∪ (−D̂)

)
+ i

(
D̂ ∪ (−D̂)

)
, where

D̂ = {(x1, . . . , xn) ∈ R
n : |x · u| ≤ 1 for all u ∈ D◦, xn ≥ 0}.

But,

D̂ ⊆ D ∩ {x ∈ R
n : xn ≥ 0} ⊆ D|v,

and vol(D|v) = δ. Thus, recalling (2.7),

KD(x) = KΩ(w,w) ≥
1

volCn(IΩ(w))
≥ (2)−2n (2δ)−2.

Therefore, Dδ ⊇ D�nδ
−2

, where �n :=
1

4n+1
. This completes the proof of Theorem

1.1. �

3. A new affine invariant and some examples

It is unlikely that the values of �n and un computed above are optimal. For one,
John’s theorem on Löwner-John ellipsoids can be replaced by results that utilize
other centrally-symmetric bodies, perhaps yielding better bounds. However, we
believe optimal bounds can be obtained if we restrict ourselves to certain classes of
convex bodies. Before we support this claim with some computations, we associate
a new quantity θD to a convex body.

Definition. Suppose D ⊂ Rn is a convex body. Let

�D := lim inf
δ→0

(
sup{� > 0 : D�/δ2 ⊆ Dδ}

)
;

uD := lim sup
δ→0

(
inf{u > 0 : Dδ ⊆ Du/δ2}

)
;

θD :=
�D
uD

.

We establish some properties of θD.

Proposition 3.1. For a convex body D ⊂ Rn,

(1)
πn

n!n2n4n+1(ωn)2
≤ θD ≤ 1.

(2) θD is affine invariant, i.e., θD = θA(D) for any affine map A on Rn.
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Proof. (1) The upper bound on θD follows from the fact that �D ≤ uD, by definition.
The lower bound is a consequence of Theorem 1.1, where we have essentially shown
that �D ≥ 1/4n+1 and uD ≤ n!n2n(ωn)

2/πn.
(2) The affine invariance of θD follows from that of �D and uD, which, in turn, is

a consequence of the transformation properties of Dδ and DM under affine maps.
More concretely, if A : Rn → Rn is an affine map and H is a hyperplane that cuts
off a set of volume δ from D, then the hyperplane A(H) cuts off a set of volume
| det(A)|δ from A(D). Therefore,

(3.1) A(Dδ) = A(D)|detA|δ, for all δ > 0.

Now, let Ω := Rn + iD and AC be the map z 
→ Az. Then, AC : Cn → Cn

is a biholomorphic map with JacC AC = detA, where JacC denotes the complex
Jacobian. We use the well-known fact that the Bergman kernel of Ω satisfies

KAC(Ω)(AC(z), AC(z))| JacC(AC)|2 = KΩ(z, z), for all z ∈ Ω.

Hence,

(3.2) A(DM ) = A(D)M/|detA|2 .

Combining (3.1) and (3.2), we see that if D�/δ2 ⊆Dδ ⊆ Du/δ2 , then A(D)�/(|detA|δ)2

⊆ D| detA|δ ⊆ Du/(| detA|δ)2 . Hence, the affine invariance of �D, uD and θD. �
We now compute some examples to indicate the extent to which θD distinguishes

convex domains.

Proposition 3.2. If D is strongly convex — i.e., the second fundamental form on
∂D is positive definite everywhere on ∂D — then, θD = 1.

Proof. We begin with some notation (see Figure 1). For x ∈ ∂D, let N(x) be the
unique outer unit normal to ∂D at x, andH(x) = {y ∈ Rn : y·N(x) = x·N(x)}. For
δ > 0, let Δ(x, δ) denote the width of the slice of volume δ cut off by a hyperplane
H(x, δ) perpendicular to N(x) — i.e.,

vol{y ∈ D : y ·N(x) > x ·N(x)−Δ(x, δ)} = δ

and

H(x, δ) = {y ∈ R
n : y ·N(x) = x ·N(x)−Δ(x, δ)}

= H(x)−Δ(x, δ)N(x).

Let xδ denote the barycenter of H(x, δ) ∩D.

H(x, δ)

Δ(x, δ)

H(x)

x

xδ

x+N(x)

D

Figure 1
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Now — as θD is affine invariant — for a fixed x0 ∈ ∂D, we can choose affine
co-ordinates, so that x0 is the origin, the outer unit normal N(x0) = (0, . . . , 0,−1)
and H(x0, δ) = {(x′, y) : y = Δ(x0, δ)}, where x′ = (x1, . . . , xn−1). There is a
neighborhood U0 of x0 such that U0 ∩D = {y > φ(x′)}, where φ : Rn−1 → R is a
convex function of the form

φ(x) = α(x2
1 + · · ·+ x2

n−1) + h. o. t.,

for some α > 0. Thus, each H(x0, δ) ∩D satisfies the equation

Δ(x0, δ) = α(x2
1 + · · ·+ x2

n−1) + h. o. t.

in the hyperplane y = Δ(x0, δ). So, we may estimate the barycenter of H(x0, δ)∩D
as

xδ
0 = (o(

√
Δ(x0, δ)), . . . , o(

√
Δ(x0, δ)),Δ(x0, δ)) as δ → 0.

Thus, minimizing dist(xδ
0, z) over all z ∈ ∂Ω, we obtain that

(3.3) lim
δ→0

Δ(x0, δ)

dist(xδ
0, ∂D)

= 1.

Moreover, using Dupin indicatrices (see [12, Lemma 10]), it is known that

(3.4) lim
δ→0

Δ(x0, δ)
n+1

δ2
=

1

2n+1

(
n+ 1

ωn−1

)2

κ(x0),

where κ is the Gaussian curvature function of ∂D. Lastly, since Ω is strongly
convex, Ω = R

n + iD is strongly pseudoconvex. Thus, by Hörmander’s estimate
(in [6]), we have that

(3.5) lim
x→x0∈∂D

dist(x, ∂D)n+1KD(x) =
n!

(4π)n
κ(x0).

Since, limδ→0 x
δ
0 = x0, we can combine (3.3), (3.4) and (3.5) to obtain that

lim
δ→0

δ2KD(xδ
0) =

n!2n+1

(4π)n

(
ωn−1

n+ 1

)2

=: an.

Hence, (x0, δ) 
→ δ2KD(xδ
0) extends to a (uniformly) continuous function on ∂D ×

[δ̂, 0]. So, given ε > 0, there is a δε > 0 such that for δ < δε,

an − ε

δ2
< KD(xδ) <

an + ε

δ2
, for all x ∈ ∂D.

According to Lemma 2 in [14], each y ∈ ∂Dδ is the barycenter xδ of some H(x, δ)∩
D. Therefore, for δ < δε,

D(an−ε)δ−2 ⊂ Dδ ⊂ D(an+ε)δ−2

.

Thus,

θD =
lim infδ→0 sup{� > 0 : D�/δ2 ⊆ Dδ}
lim supδ→0 inf{u > 0 : Dδ ⊆ Du/δ2} ≥ an − ε

an + ε
.

Since ε > 0 is arbitrary, and θD ≤ 1, our claim follows. �

We contrast the above example with the next one, where the Gaussian curvature
of the boundary vanishes on a large part of it.

Proposition 3.3. Let D � R2 be a triangle or a parallelogram. Then, θD = 4/π2.
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Proof. As all planar triangles and parallelograms are affine images of the triangle
T = {(x, y) ∈ R2 : x > 0, y > 0, x + y < 1} and the square S := (0, 1) × (0, 1),
respectively, it suffices to show that �S = �T , uS = uT and θS = 4/π2. We take
this approach as it is hard to directly compute θT .

We start with a description of the floating body of S. For small enough δ > 0,
the boundary of Sδ is a piecewise smooth curve, each smooth piece of which is a
part of a hyperbola (see Figure 2). Specifically,

Sδ =
{
(x, y) ∈ R

2 : min
(
xy, (1− x)y, x(1− y), (1− x)(1− y)

)
> δ/2

}
.

Cδ Sδ

Figure 2. A convex floating body for S.

Due to the eight-fold symmetry of S, we will focus on the one-eighth part of the
boundary given by Cδ := ∂Sδ ∩ {(x, y) : 0 ≤ y ≤ x ≤ 1/2} (thickened in Figure 2).
For δ � 1/2, Cδ can be parametrized as

t 
→ c(t) :=

(
t,

δ

2t

)
,

√
δ

2
≤ t ≤ 1

2
.

To estimate KS on Cδ, we observe that

Cδ ⊂ T ⊂ S ⊂ T̃ (see Figure 3),

where T̃ is the image of T under the map (x, y) 
→ (2x, 2y).
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Cδ

T S Tδ

Figure 3

The descriptions of the floating bodies of T and T̃ are also needed:

Tδ =
{
(x, y) ∈ R

2 : min
(
xy, (1− x− y)y, (1− x− y)x

)
> δ/2

}
;

T̃δ =
{
(x, y) ∈ R

2 : min
(
xy, (2− x− y)y, (2− x− y)x

)
> δ/2

}
.

These explicit descriptions allow us to conclude that, for δ << 1/2,

(3.6) Cδ ⊂ Tδ−2δ2 and Cδ ⊂ ∂T̃δ ⊂ T̃ \ T̃δ+2δ2 .

Now fix an arbitrary ε > 0. Then, for small enough δ,

(1) (1− ε)δ < δ − 2δ2 and δ + 2δ2 < (1 + ε)δ; and

(2) Tδ ⊆ T (1+ε)uT δ−2

and T̃ (1−ε)�T δ−2 ⊆ T̃δ.

The latter follows from the definitions of �D and uD, and the fact that �
˜T = �T

due to affine invariance (established in the proof of Proposition 3.1). We combine

(3.6), (1), the monotonicity of Tδ and T̃δ, and (2) to conclude that:

Cδ ⊂ Tδ−2δ2 ⊂ T(1−ε)δ ⊂ T (1+ε)uT (1−ε)−2δ−2

and
Cδ ⊂ T̃ \ T̃δ+2δ2 ⊂ T̃ \ T̃(1+ε)δ ⊂ T̃ \ T̃ (1−ε)�T (1+ε)−2δ−2

.

Thus, for all c ∈ Cδ,

KT (c) <
(1 + ε)uT

(1− ε)2δ2
and K

˜T (c) >
(1− ε)�T
(1 + ε)2δ2

.

So, by the monotonocity of the Bergman kernel,

(1− ε)�T
(1 + ε)2δ2

< K
˜T (c) < KS(c) < KT (c) <

(1 + ε)uT

(1− ε)2δ2
.

As ε > 0 was arbitrarily chosen, and the estimates on Cδ transfer to ∂Sδ due to
symmetry,

S�T δ−2 ⊂ Sδ ⊂ SuT δ−2

.

Thus, uS ≤ uT , �S ≥ �T and, consequently, θS ≥ θT . An analogous computation
can be executed after switching the roles of S and T to obtain that θT ≥ θS , thus
yielding the desired equality. It now suffices to compute θS .
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We use (1.2) to compute the Bergman kernel of R2 + iS at any point (x, y) ∈ S:

KS

(
(x, y)

)
=

π2

16
csc2(πx) csc2(πy).

Once again, we can exploit the symmetry of S to obtain that

�S = lim
δ→0

inf
c∈Cδ

KS(c)δ
2 = lim

δ→0
inf

t∈[
√

δ/2,1/2]

π2δ2

16
csc2(πt) csc2

(
πδ

2t

)
=

1

4π2
;

uS := lim
δ→0

sup
c∈Cδ

KS(c)δ
2 = lim

δ→0
sup

t∈[
√

δ/2,1/2]

π2δ2

16
csc2(πt) csc2

(
πδ

2t

)
=

1

16
.

Therefore, θT = θS = 4/π2. �

We strongly suspect that θD = 1 completely characterizes strongly convex bod-
ies, and that Proposition 3.3 can be extended to all planar convex polygons. In fact,
we believe that, for n = 2, these represent the two extremes of the range of values
for θD (this would improve the first part of Proposition 3.1). Furthermore, it is
likely that using the almost polygonal bodies constructed in [13] one can construct
planar convex bodies with any prescribed value of θD in the interval (4/π2, 1).
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