UM 101 HOMEWORK ASSIGNMENT 2
SKETCH OF SOLUTIONS

Problem 1. (a) Prove that for any m,n € N, exactly one of the following statements hold.
(i) m=mn;
(1) there is a k € N\ {0} such that m + k = n;
(73i) there is a k € N'\ {0} such that n 4+ k = m.
You may use: induction, the definition of sum,, and any of its six properties stated in class
(as Theorem 1.12), and the fact that the range of the function f(z) =2+ 1 on Nis N\ {0}
(Problem 1 in HW1).
Sketch of Solution. Step 1. At most one of the statements hold.
e Suppose m = n and m + k = n for some k € N\ {0}. Then, m + k = n + 0 and by
cancellation, k£ = 0. This is a contradiction.
e The same argument shows that (i) and (¢i7) cannot occur simultaneously.
e Suppose m + k; = n for some k; € {0} and n + ko = m for some ky € {0}. Then,
m + ki + ko = m + 0. By cancellation, k; + ko = 0, which implies that k; = ks = 0.
Contradiction.
Step 2. At least one of the statements holds. Fix n € N. We prove the statement P,,(n) by

inducting on m, where
P,(m) : at least one of (i), (i7) or (ziz) hold.
Claim (Base case). P,(0) is true.

Proof. Case 1. If n = 0, then n = m = 0, hence (i) holds.
Case IL. If n # 0, set k =n. Then n =n + 0 = k + m. Hence, (ii) holds. O

Claim (Inductive case). If P,(m) holds, then P,(m + 1) holds.
Proof. IDEA: For each of m =n, m + k = n for some k£ € N\ {0} and n + k = m for some

k € N\ {0}, show what relationship it implies between n and m + 1. O

(b) Show that N is an ordered set if we define < as follows: m < n if there is a k € N\ {0}
such that m + k = n.
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Sketch of Solution. We need to establish (O1) and (02). (O1) was already established in
Part (a) For [(02)], let m,n,l € N such that m+k; = n and n+ky = [ for some ky, ko € N\{0}.
Then, m + /{71 + ]{32 = l

Problem 2. Let (F,+,-) be a field. According to Axiom (F5), given x € F, thereisay € F
such that x4y = 0. Show that y is unique, i.e., if thereis a z € F such that xt+y = x4+ 2 = 0,
then y = z. Use only the field axioms to justify your answer.

Given. For every x € I, there exists a y € I’ such that x +y = 0.

To show. Given x such a y is unique, i.e if z € F’ such that x 4+ z = 0, then y = 2.
Proof. By (F4), y=y+0.,

Sincex + 2z =0,y =y + (v + 2),

By (F2), y = (y +2) + 2,

By (F1), y = (z +y) + 2,

Sincex +y =0,y = 2.

Problem 3. Let 4+ and - be the usual addition and multiplication on N. You are free to use
their well-known properties.
(a) Let FF'={0,1,2,3}. We endow F' with addition and multiplication as follows.

a®b=c, wherecisthe remainder that a + b leaves when divided by 4,

a®b=d, where d is the remainder that a - b leaves when divided by 4.

Is (F,®,®) a field? Please justify your answer.

Sketch of Solution. First show (by direct computation) that 1 is a multiplicative inverse.
Next, show that 2 has no multiplicative inverse by multiplying with each element of the set
F.

(b) Let ' ={0,1}. We endow F' with addition and multiplication as follows.

a®b=c, wherecisthe remainder that a + b leaves when divided by 2,

a®b=4d, whered is the remainder that a - b leaves when divided by 2.

You may assume (F,@,®) is a field (or treat this as an additional exercise, but this won’t
appear on your quiz). Is it possible to give F' a relation < so that (F,®,®, <) is an ordered

field? Please justify your answer.
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Sketch of Solution. Suppose F' admits relation < so that (F,®,®, <) is an ordered field.
We know that in an ordered Field 0 < 1. Now by (O3) we have that 0&® 1 < 14 1. But
1® 1 =0, hence we get 1 < 0, a contradiction to the Law of Trichotomy, i.e., (O1).

Problem 4. Let (F,+,-, <) be an ordered field.

(7) Using only the field axioms, and the uniqueness of the additive inverse, show that for
all a,b,c,€ F, a(b—c) =ab— ac.

(77) Using the field axioms, the order axioms, and Part (i), show that for all a,b, ¢, € F, if
a < band c <0, then bc < ac.

Proof. (i) By distributivity, a(b—c¢) = a-b+a-(—c). Thus, we must show that a-(—c) = —a-c.
For this, observe that ac + a(—c) = a(c —¢) = a -0 = 0. Thus, by the uniquess of additive
inverse, a - (—c) = —(a - ¢)

(17) Adding (the unique) additive inverses, we get that 0 < b —a and 0 < —c. By (03),
0< —c-(b—a)=(—c)-b+ (—c)-(—a). We proved in the last part that (—c)b = —bc and
(—c) - (—a) = —(¢-(—a)) = ca. Thus, 0 < ¢(a —b) = ca — cb. Now, we add bc on both
sides. O

Problem 5. Apostol defines an ordered field as a field (F,+,-) together with a set P C F
satisfying the following axioms.
(O'1) f z,y € P,thenx+y € Pand x -y € P.
(0’2) For every x € F such that x # 0, either x € P or —z € P, but not both.
(0'3) 0 ¢ P.
Show that our definition of an ordered field is equivalent to that of Apostol’s. That is, show
that for a field (£, +,-):
(i) if there is a relation < satisfying (O1)-(O4), then there is a P C F satisfying (O’1)-
(0’3), and
(17) if there is a P C F satisfying (O’1)-(0’3), then there is a relation < satisfying (O1)-
(O4).

Proof. (i) We are given that there is a relation < satisfying O1- O4. We need to prove that
there is a P C F satisfying (O’1)- (O’3). No define a subset P of F' as

P={xe€F:x>0}
We will establish the four axioms (O’1)- (O’3) for this set.
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(1) By O4 we have that if z,y € P then x.y € P. We need to show now that x +y € P.
Let ¢ = 4+ y. We will have two cases. First when ¢ = 0, implies z +y = 0. By
Cancellation Law for Addition we have x = —y. Now as y > 0, implies —y < 0, which
further implies that x < 0, a contradiction to the fact that x € P. Hence we cannot
take ¢ = 0. Second case we take ¢ # 0. By O1 either ¢ > 0 or ¢ < 0. Now if ¢ > 0,
then we are done. If ¢ < 0, that means z +y < 0. By O3, adding —y on both sides we
get © < —y. This again implies that = < 0, a contradiction to the fact that = € P.

(2) If z € F, then by Ol, either z = 0 or x > 0 or x < 0. We are given that x # 0, so
we have two cases remaining. If x > 0, then x € P. If z < 0, then —z > 0 (prove it),
which means that —x € P.

(3) By O1 we have that if z = 0, then = > 0 is not possible. Therefore 0 ¢ P.
(ii) Given z,y € F, we say that
r<y if y—xeP.

We will establish the four axioms O1-O4 for this relation.

(1) Let x,y € F. First, suppose x = y. Then, since 0 ¢ P, neither y—x € P nor x—y € P.
Next, suppose = # y. Let z =y — z. By (0’2), either z € P or —z € P but not both.
Ifze P,thenz <y. If —z=2—y € P, then y < x.

(2) Let z,y,z € F such that x <y and y < z. Then, y —x € P and z — y € P. Thus, by
(O'1),(z—y)+(y—x)=2z—z € P. Thus, z < 2.

(3) Let z,y,z € F such that z < y. Then, y—xz € P. Now, (y+z2)—(z+2)=y—x € P.
Thus, z+ 2 <y + 2.

(4) Let x,y € F such that 0 < z and 0 < y. Then, z,y € P. Thus, by (O’'1), zy € P.
Thus, zy > 0.

O



