UM 101 HOMEWORK ASSIGNMENT 2 SKETCH OF SOLUTIONS

Problem 1. (a) Prove that for any $m, n \in \mathbb{N}$, exactly one of the following statements hold.
(i) $m=n$;
(ii) there is a $k \in \mathbb{N} \backslash\{0\}$ such that $m+k=n$;
(iii) there is a $k \in \mathbb{N} \backslash\{0\}$ such that $n+k=m$.

You may use: induction, the definition of sum_{m} and any of its six properties stated in class (as Theorem 1.12), and the fact that the range of the function $f(x)=x+1$ on \mathbb{N} is $\mathbb{N} \backslash\{0\}$ (Problem 1 in HW1).
Sketch of Solution. Step 1. At most one of the statements hold.

- Suppose $m=n$ and $m+k=n$ for some $k \in \mathbb{N} \backslash\{0\}$. Then, $m+k=n+0$ and by cancellation, $k=0$. This is a contradiction.
- The same argument shows that (i) and (iii) cannot occur simultaneously.
- Suppose $m+k_{1}=n$ for some $k_{1} \in\{0\}$ and $n+k_{2}=m$ for some $k_{2} \in\{0\}$. Then, $m+k_{1}+k_{2}=m+0$. By cancellation, $k_{1}+k_{2}=0$, which implies that $k_{1}=k_{2}=0$. Contradiction.

Step 2. At least one of the statements holds. Fix $n \in \mathbb{N}$. We prove the statement $P_{m}(n)$ by inducting on m, where

$$
P_{n}(m): \text { at least one of }(i),(i i) \text { or }(i i i) \text { hold. }
$$

Claim (Base case). $P_{n}(0)$ is true.
Proof. Case I. If $n=0$, then $n=m=0$, hence (i) holds.
Case II. If $n \neq 0$, set $k=n$. Then $n=n+0=k+m$. Hence, (ii) holds.
Claim (Inductive case). If $P_{n}(m)$ holds, then $P_{n}(m+1)$ holds.
Proof. IDEA: For each of $m=n, m+k=n$ for some $k \in \mathbb{N} \backslash\{0\}$ and $n+k=m$ for some $k \in \mathbb{N} \backslash\{0\}$, show what relationship it implies between n and $m+1$.
(b) Show that \mathbb{N} is an ordered set if we define $<$ as follows: $m<n$ if there is a $k \in \mathbb{N} \backslash\{0\}$ such that $m+k=n$.

Sketch of Solution. We need to establish (O1) and (O2). (O1) was already established in Part (a) For [(O2)], let $m, n, l \in N$ such that $m+k_{1}=n$ and $n+k_{2}=l$ for some $k_{1}, k_{2} \in \mathbb{N} \backslash\{0\}$. Then, $m+k_{1}+k_{2}=l$.

Problem 2. Let $(F,+, \cdot)$ be a field. According to Axiom (F5), given $x \in F$, there is a $y \in F$ such that $x+y=0$. Show that y is unique, i.e., if there is a $z \in F$ such that $x+y=x+z=0$, then $y=z$. Use only the field axioms to justify your answer.

Given. For every $x \in F$, there exists a $y \in F$ such that $x+y=0$.
To show. Given x such a y is unique, i.e if $z \in F$ such that $x+z=0$, then $y=z$.
Proof. By (F4), $y=y+0$.,
Since $x+z=0, y=y+(x+z)$,
By (F2), $y=(y+x)+z$,
By (F1), $y=(x+y)+z$,
Since $x+y=0, y=z$.

Problem 3. Let + and \cdot be the usual addition and multiplication on \mathbb{N}. You are free to use their well-known properties.
(a) Let $F=\{0,1,2,3\}$. We endow F with addition and multiplication as follows.
$a \oplus b=c, \quad$ where c is the remainder that $a+b$ leaves when divided by 4,
$a \odot b=d, \quad$ where d is the remainder that $a \cdot b$ leaves when divided by 4 .
Is (F, \oplus, \odot) a field? Please justify your answer.
Sketch of Solution. First show (by direct computation) that 1 is a multiplicative inverse. Next, show that 2 has no multiplicative inverse by multiplying with each element of the set F.
(b) Let $F=\{0,1\}$. We endow F with addition and multiplication as follows.
$a \oplus b=c, \quad$ where c is the remainder that $a+b$ leaves when divided by 2,
$a \odot b=d, \quad$ where d is the remainder that $a \cdot b$ leaves when divided by 2 .
You may assume (F, \oplus, \odot) is a field (or treat this as an additional exercise, but this won't appear on your quiz). Is it possible to give F a relation $<$ so that $(F, \oplus, \odot,<)$ is an ordered field? Please justify your answer.

Sketch of Solution. Suppose F admits relation $<$ so that $(F, \oplus, \odot,<)$ is an ordered field. We know that in an ordered Field $0<1$. Now by $(\mathrm{O} 3)$ we have that $0 \oplus 1<1 \oplus 1$. But $1 \oplus 1=0$, hence we get $1<0$, a contradiction to the Law of Trichotomy, i.e., (O1).

Problem 4. Let $(F,+, \cdot,<)$ be an ordered field.
(i) Using only the field axioms, and the uniqueness of the additive inverse, show that for all $a, b, c, \in F, a(b-c)=a b-a c$.
(ii) Using the field axioms, the order axioms, and Part (i), show that for all $a, b, c, \in F$, if $a<b$ and $c<0$, then $b c<a c$.

Proof. (i) By distributivity, $a(b-c)=a \cdot b+a \cdot(-c)$. Thus, we must show that $a \cdot(-c)=-a \cdot c$. For this, observe that $a c+a(-c)=a(c-c)=a \cdot 0=0$. Thus, by the uniquess of additive inverse, $a \cdot(-c)=-(a \cdot c)$
(ii) Adding (the unique) additive inverses, we get that $0<b-a$ and $0<-c$. By (O3), $0<-c \cdot(b-a)=(-c) \cdot b+(-c) \cdot(-a)$. We proved in the last part that $(-c) \dot{b}=-b c$ and $(-c) \cdot(-a)=-(c \cdot(-a))=c a$. Thus, $0<c(a-b)=c a-c b$. Now, we add $b c$ on both sides.

Problem 5. Apostol defines an ordered field as a field $(F,+, \cdot)$ together with a set $P \subseteq F$ satisfying the following axioms.
$\left(\mathrm{O}^{\prime} 1\right)$ If $x, y \in P$, then $x+y \in P$ and $x \cdot y \in P$.
(O'2) For every $x \in F$ such that $x \neq 0$, either $x \in P$ or $-x \in P$, but not both. ($\mathrm{O}^{\prime} 3$) $0 \notin P$.

Show that our definition of an ordered field is equivalent to that of Apostol's. That is, show that for a field $(F,+, \cdot)$:
(i) if there is a relation $<$ satisfying (O1)-(O4), then there is a $P \subseteq F$ satisfying (O'1)($\mathrm{O}^{\prime} 3$), and
(ii) if there is a $P \subseteq F$ satisfying (O'1)-(O'3), then there is a relation $<$ satisfying (O1)(O4).

Proof. (i) We are given that there is a relation < satisfying O1- O4. We need to prove that there is a $P \subseteq F$ satisfying ($\left.O^{\prime} 1\right)-\left(O^{\prime} 3\right)$. No define a subset P of F as

$$
P=\{x \in F: x>0\} .
$$

We will establish the four axioms ($O^{\prime} 1$)- ($\mathrm{O}^{\prime} 3$) for this set.

UM 101 - ASSIGNMENT 2

(1) By O4 we have that if $x, y \in P$ then $x . y \in P$. We need to show now that $x+y \in P$. Let $c=x+y$. We will have two cases. First when $c=0$, implies $x+y=0$. By Cancellation Law for Addition we have $x=-y$. Now as $y>0$, implies $-y<0$, which further implies that $x<0$, a contradiction to the fact that $x \in P$. Hence we cannot take $c=0$. Second case we take $c \neq 0$. By O1 either $c>0$ or $c<0$. Now if $c>0$, then we are done. If $c<0$, that means $x+y<0$. By O3, adding $-y$ on both sides we get $x<-y$. This again implies that $x<0$, a contradiction to the fact that $x \in P$.
(2) If $x \in F$, then by O1, either $x=0$ or $x>0$ or $x<0$. We are given that $x \neq 0$, so we have two cases remaining. If $x>0$, then $x \in P$. If $x<0$, then $-x>0$ (prove it), which means that $-x \in P$.
(3) By O1 we have that if $x=0$, then $x>0$ is not possible. Therefore $0 \notin P$.
(ii) Given $x, y \in F$, we say that

$$
x<y \quad \text { if } \quad y-x \in P .
$$

We will establish the four axioms O1-O4 for this relation.
(1) Let $x, y \in F$. First, suppose $x=y$. Then, since $0 \notin P$, neither $y-x \in P$ nor $x-y \in P$. Next, suppose $x \neq y$. Let $z=y-x$. By (O'2), either $z \in P$ or $-z \in P$ but not both. If $z \in P$, then $x<y$. If $-z=x-y \in P$, then $y<x$.
(2) Let $x, y, z \in F$ such that $x<y$ and $y<z$. Then, $y-x \in P$ and $z-y \in P$. Thus, by (O'1), $(z-y)+(y-x)=z-x \in P$. Thus, $x<z$.
(3) Let $x, y, z \in F$ such that $x<y$. Then, $y-x \in P$. Now, $(y+z)-(x+z)=y-x \in P$. Thus, $x+z<y+z$.
(4) Let $x, y \in F$ such that $0<x$ and $0<y$. Then, $x, y \in P$. Thus, by (O'1), $x y \in P$. Thus, $x y>0$.

