UM 101 HOMEWORK ASSIGNMENT 2 SKETCH OF SOLUTIONS

Problem 1. (a) Prove that for any $m, n \in \mathbb{N}$, exactly one of the following statements hold.

- (i) m = n;
- (*ii*) there is a $k \in \mathbb{N} \setminus \{0\}$ such that m + k = n;
- (*iii*) there is a $k \in \mathbb{N} \setminus \{0\}$ such that n + k = m.

You may use: induction, the definition of sum_m and any of its six properties stated in class (as Theorem 1.12), and the fact that the range of the function f(x) = x + 1 on \mathbb{N} is $\mathbb{N} \setminus \{0\}$ (Problem 1 in HW1).

Sketch of Solution. Step 1. At most one of the statements hold.

- Suppose m = n and m + k = n for some $k \in \mathbb{N} \setminus \{0\}$. Then, m + k = n + 0 and by cancellation, k = 0. This is a contradiction.
- The same argument shows that (i) and (iii) cannot occur simultaneously.
- Suppose $m + k_1 = n$ for some $k_1 \in \{0\}$ and $n + k_2 = m$ for some $k_2 \in \{0\}$. Then, $m + k_1 + k_2 = m + 0$. By cancellation, $k_1 + k_2 = 0$, which implies that $k_1 = k_2 = 0$. Contradiction.

Step 2. At least one of the statements holds. Fix $n \in \mathbb{N}$. We prove the statement $P_m(n)$ by inducting on m, where

 $P_n(m)$: at least one of (i), (ii) or (iii) hold.

Claim (Base case). $P_n(0)$ is true.

Proof. Case I. If n = 0, then n = m = 0, hence (i) holds. Case II. If $n \neq 0$, set k = n. Then n = n + 0 = k + m. Hence, (ii) holds.

Claim (Inductive case). If $P_n(m)$ holds, then $P_n(m+1)$ holds.

Proof. IDEA: For each of m = n, m + k = n for some $k \in \mathbb{N} \setminus \{0\}$ and n + k = m for some $k \in \mathbb{N} \setminus \{0\}$, show what relationship it implies between n and m + 1.

(b) Show that \mathbb{N} is an ordered set if we define < as follows: m < n if there is a $k \in \mathbb{N} \setminus \{0\}$ such that m + k = n.

UM 101 - ASSIGNMENT 2

Sketch of Solution. We need to establish (O1) and (O2). (O1) was already established in Part (a) For [(O2)], let $m, n, l \in N$ such that $m+k_1 = n$ and $n+k_2 = l$ for some $k_1, k_2 \in \mathbb{N} \setminus \{0\}$. Then, $m + k_1 + k_2 = l$.

Problem 2. Let $(F, +, \cdot)$ be a field. According to Axiom (F5), given $x \in F$, there is a $y \in F$ such that x + y = 0. Show that y is unique, i.e., if there is a $z \in F$ such that x + y = x + z = 0, then y = z. Use only the field axioms to justify your answer.

Given. For every $x \in F$, there exists a $y \in F$ such that x + y = 0. **To show.** Given x such a y is unique, i.e if $z \in F$ such that x + z = 0, then y = z. **Proof.** By (F4), y = y + 0., Since x + z = 0, y = y + (x + z), By (F2), y = (y + x) + z, By (F1), y = (x + y) + z, Since x + y = 0, y = z.

Problem 3. Let + and \cdot be the usual addition and multiplication on \mathbb{N} . You are free to use their well-known properties.

(a) Let $F = \{0, 1, 2, 3\}$. We endow F with addition and multiplication as follows.

 $a \oplus b = c$, where c is the remainder that a + b leaves when divided by 4, $a \odot b = d$, where d is the remainder that $a \cdot b$ leaves when divided by 4.

Is (F, \oplus, \odot) a field? Please justify your answer.

Sketch of Solution. First show (by direct computation) that 1 is a multiplicative inverse. Next, show that 2 has no multiplicative inverse by multiplying with each element of the set F.

(b) Let $F = \{0, 1\}$. We endow F with addition and multiplication as follows.

 $a \oplus b = c$, where c is the remainder that a + b leaves when divided by 2,

 $a \odot b = d$, where d is the remainder that $a \cdot b$ leaves when divided by 2.

You may assume (F, \oplus, \odot) is a field (or treat this as an additional exercise, but this won't appear on your quiz). Is it possible to give F a relation < so that $(F, \oplus, \odot, <)$ is an ordered field? Please justify your answer.

UM 101 - ASSIGNMENT 2

Sketch of Solution. Suppose F admits relation < so that $(F, \oplus, \odot, <)$ is an ordered field. We know that in an ordered Field 0 < 1. Now by (O3) we have that $0 \oplus 1 < 1 \oplus 1$. But $1 \oplus 1 = 0$, hence we get 1 < 0, a contradiction to the Law of Trichotomy, i.e., (O1).

Problem 4. Let $(F, +, \cdot, <)$ be an ordered field.

- (i) Using only the field axioms, and the uniqueness of the additive inverse, show that for all $a, b, c, \in F$, a(b-c) = ab ac.
- (*ii*) Using the field axioms, the order axioms, and Part (*i*), show that for all $a, b, c, \in F$, if a < b and c < 0, then bc < ac.

Proof. (i) By distributivity, $a(b-c) = a \cdot b + a \cdot (-c)$. Thus, we must show that $a \cdot (-c) = -a \cdot c$. For this, observe that $ac + a(-c) = a(c-c) = a \cdot 0 = 0$. Thus, by the uniquess of additive inverse, $a \cdot (-c) = -(a \cdot c)$

(*ii*) Adding (the unique) additive inverses, we get that 0 < b - a and 0 < -c. By (O3), $0 < -c \cdot (b - a) = (-c) \cdot b + (-c) \cdot (-a)$. We proved in the last part that $(-c)\dot{b} = -bc$ and $(-c) \cdot (-a) = -(c \cdot (-a)) = ca$. Thus, 0 < c(a - b) = ca - cb. Now, we add bc on both sides.

Problem 5. Apostol defines an ordered field as a field $(F, +, \cdot)$ together with a set $P \subseteq F$ satisfying the following axioms.

- (O'1) If $x, y \in P$, then $x + y \in P$ and $x \cdot y \in P$.
- (O'2) For every $x \in F$ such that $x \neq 0$, either $x \in P$ or $-x \in P$, but not both.
- (O'3) $0 \notin P$.

Show that our definition of an ordered field is equivalent to that of Apostol's. That is, show that for a field $(F, +, \cdot)$:

- (i) if there is a relation < satisfying (O1)-(O4), then there is a $P \subseteq F$ satisfying (O'1)-(O'3), and
- (*ii*) if there is a $P \subseteq F$ satisfying (O'1)-(O'3), then there is a relation < satisfying (O1)-(O4).

Proof. (i) We are given that there is a relation < satisfying O1- O4. We need to prove that there is a $P \subseteq F$ satisfying (O'1)- (O'3). No define a subset P of F as

$$P = \{ x \in F : x > 0 \}.$$

We will establish the four axioms (O'1)- (O'3) for this set.

UM 101 - ASSIGNMENT 2

- (1) By O4 we have that if $x, y \in P$ then $x.y \in P$. We need to show now that $x + y \in P$. Let c = x + y. We will have two cases. First when c = 0, implies x + y = 0. By Cancellation Law for Addition we have x = -y. Now as y > 0, implies -y < 0, which further implies that x < 0, a contradiction to the fact that $x \in P$. Hence we cannot take c = 0. Second case we take $c \neq 0$. By O1 either c > 0 or c < 0. Now if c > 0, then we are done. If c < 0, that means x + y < 0. By O3, adding -y on both sides we get x < -y. This again implies that x < 0, a contradiction to the fact that $x \in P$.
- (2) If $x \in F$, then by O1, either x = 0 or x > 0 or x < 0. We are given that $x \neq 0$, so we have two cases remaining. If x > 0, then $x \in P$. If x < 0, then -x > 0 (prove it), which means that $-x \in P$.
- (3) By O1 we have that if x = 0, then x > 0 is not possible. Therefore $0 \notin P$.
- (ii) Given $x, y \in F$, we say that

$$x < y$$
 if $y - x \in P$.

We will establish the four axioms O1-O4 for this relation.

- (1) Let $x, y \in F$. First, suppose x = y. Then, since $0 \notin P$, neither $y x \in P$ nor $x y \in P$. Next, suppose $x \neq y$. Let z = y - x. By (O'2), either $z \in P$ or $-z \in P$ but not both. If $z \in P$, then x < y. If $-z = x - y \in P$, then y < x.
- (2) Let $x, y, z \in F$ such that x < y and y < z. Then, $y x \in P$ and $z y \in P$. Thus, by (O'1), $(z y) + (y x) = z x \in P$. Thus, x < z.
- (3) Let $x, y, z \in F$ such that x < y. Then, $y x \in P$. Now, $(y + z) (x + z) = y x \in P$. Thus, x + z < y + z.
- (4) Let $x, y \in F$ such that 0 < x and 0 < y. Then, $x, y \in P$. Thus, by (O'1), $xy \in P$. Thus, xy > 0.