
UM 101 HOMEWORK ASSIGNMENT 3

SKETCH OF SOLUTIONS

Problem 1. Let x ∈ R such that 0 ≤ x < δ for every δ > 0. Show that x must be 0.

Explicitly state the field and order axioms that you are using.

Proof. Since x ≥ 0, either x = 0 or x > 0. In the former case, there is nothing to prove.

In the latter case, let δ = x. Then, the condition on x says that x < x, which violates the

trichotomy law O1. □

Problem 2. Formulate definitions of the terms “bounded below set”, “lower bound” and

“greatest lower bound” for subsets of R. Show that Z is neither bounded above nor bounded

below.

Note. You may not use (without proof) anything listed as a theorem in Sections 13.8 and 13.9

of Apostol’s book.

For the definitions, see Apostol.

Proof of claim. To prove that Z is not bounded above , proceed just like in the proof of

Theorem 1.28 in Apostol. To prove that Z is not bounded below, either

(a) proceed analogously using the fact that if n ∈ Z, then n− 1 ∈ Z. You must prove the fact

that every (nonempty) bounded below set has an infimum. Or,

(b) you may directly argue that if Z is bounded below, i.e., if there is a b ∈ R such that b ≤ a

for all a ∈ Z, then −b must be an upper bound of Z, contradicting the first part.

Problem 3. If x is an arbitrary real number, prove that there is exactly one integer n which

satisfies

n ≤ x < n+ 1.

You may use Theorem 1.28 from Apostol (without proof), which says P is not bounded above.

Other than the least upper bound property of R, you need not specify which axioms you are

using in your proof. Hint. Consider the set S = {n ∈ Z : n ≤ x}.

Proof. □

Consider the set S = {n ∈ Z : n ≤ x}.
Step 1: Show that the set is S is nonempty. Use the fact that the set of all integers is not

bounded below.

Step 2: Notice that the set S is bounded above by x. Now by the least upper bound property



S has a supremum say α. Since α is a supremum, there exists a n0 ∈ Z such that α − 1 <

n0 ≤ α ≤ x. Now using the method of contradiction show that x ≤ n0 + 1.

Step 3: Show that the n0 we obtained above is unique using the method of contradiction and

the fact that given two integers m and n, m < n if and only if there exists k ∈ N \ 0 such that

m = n+ k.

Problem 4. Let {an} ⊂ R be an arbitrary sequence. Among the statements listed below,

exactly one implies that {an} is convergent, exactly one implies that {an} is divergent, and

the remaining one does not say anything conclusive about the convergence of {an}. Determine

which is which. For the conclusive statements, you must give proofs. For the inconclusive

statement, you must provide two sequences which satisfy the given statement, but one con-

verges and the other diverges.

(1) There exists an L ∈ R such that for every ε > 0, there exists an N ∈ N such that

|an − L| < nε for all n ≥ N .

Claim. This statement does not yield a conclusive result on the convergence of {an}.

Proof. Let an = 1 for all n ∈ N. {an} is convergent and satisfies the statement. On

the other hand, {
√
n} is divergent, but also satisfies the statement (L = 0). □

(2) There exists an L ∈ R such that for every ε > 0, there exists an N ∈ N such that

|an − L| < ε

n+ 1
for all n ≥ N .

Claim. {an} is convergent.

Proof. Let ε > 0. Then, by the given statement, there is an N ∈ N such that

|an − L| < ε/(n+ 1) ∀n ≥ N.

Since 1/(n+ 1) < 1 for all n ∈ P, we have that

|an − L| < ε ∀n ≥ N.

This is the definition of convergence of {an}. □

(3) For every R > 0, there exists an N ∈ N such that |aN | > R

Claim. {an} is divergent.



Proof. Suppose not and our sequence is convergent to a limit say L. So given ϵ > 0,

there is an N ∈ N such that |an−L| < ϵ for every n ≥ N. Now by triangular inequality

we have that

|an| = |an − L+ l| ≤ |an − L|+ |L| < ε+ |L| ∀n ≥ N.

Now let M = max{|a1|, |a2|, ..., |aN−1|, ε+ |L|}. Then we get that |an| ≤ M ∀n ∈ N.
i.e. we get that {an} is bounded. A contradiction to our hypothesis. □

Note. As part of the above problem, you have established the following resullt: every conver-

gent sequence is bounded.

Bonus (not for quiz). Are any of the above statements actually equivalent to the definition

of convergence or divergence? No. A convergent series may not satisfy (2). For example take

the sequence an = 1
n
, with limit L = 0 and ε = 1. Also every divergent sequence may not

satisfy (3). For example consider the sequence an = (−1)n, n ∈ N.

Problem 5. Determine which of the following sequences converge and which diverge. In the

case of convergence, determine the limit.

(1)

{
2− 3n2

n2 + 2n+ 1

}
n∈N

Proof. Multiply both numerator and denominator by 1
n2 and obtain

{ 2
n2 − 3

1 + 2
n
+ 1

n2

}
n∈N

.

Now use limit laws to show that the limit is −3. □

(2)

{
3n2 − 2

3n+ 1

}
n∈N

Proof. Observe that, for any n ∈ P, since 3n+ 1 ̸= 0,

3n2 − 2

3n+ 1
=

n(3n+ 1)− n− 2

3n+ 1
= n− n+ 2

3n+ 1
≥ n− 1,

where in the last step, we use that
n+ 2

3n+ 1
< 1 for all n ≥ 1.

By the Archimedean property of R/unboundedness of N/divergence of {n}: given any

M ∈ R, there exists an n ∈ N such that n > M . Thus,

3n2 − 2

3n+ 1
> M.

Since M ∈ R was arbitrary, the given sequence diverges to ∞. □



(3)
{
n−

√
1 + n2

}
n∈N

Proof. Multiply and divide by n +
√
1 + n2 and then use Archimedean Property to

show that the limit is 0. □

(4)
{
cos

(
nπ
2

)}
n∈N

Proof. Take ϵ = 1
4
and consider a2n and a2n+1. Then proceed using triangular inequality

as in the proof of when we showed that an = (−1)n, n ∈ N is divergent □


