
UM 101 HOMEWORK ASSIGNMENT 4
SKETCH OF SOLUTIONS

You might find the following inequalities useful. For fun(?), try to prove these on your own.

(i) Given n ∈ N and x > 0, (1 + x)n ≥ nx.

(ii) Given n ∈ N and x > 0, (1 + x)n ≥ n(n− 1)

2
x2.

(iii) The AM-GM inequality. Given x, y > 0,
x+ y

2
≥ √

xy.

Problem 1. Let {an} and {bn} be sequences in R such that for some N ∈ N, 0 ≤ an ≤ bn
for all n ≥ N . Convince yourself that if limn→∞ bn = 0, then limn→∞ an = 0. Using this fact,

prove the following statements (you are not allowed to use logarithms for these proofs). Since

limn→∞ bn = 0, therefore for ϵ > 0, there is an N1 such that |bn| < ϵ for all n ≥ N1. Now

choose M = max{N1, N}. So, for all n ≥ M ,

|an| = an ≤ bn = |bn| < ϵ ⇒ lim
n→∞

an = 0

(a) For any r > 0, lim
n→∞

n
√
r = 1. For r > 1, an := n

√
r − 1 > 0. So, by (i),

r = (1 + an)
n ≥ nan

Thus 0 ≤ an ≤ r
n
. Now apply the Squeeze Lemma stated above.

For 0 < r < 1, 1
r
> 1. So, from above, limn→∞

n

√
1
r
= 1. By using limit laws, we have

limn→∞
n
√
r = 1.

(b) lim
n→∞

n
√
n = 1. Observe that rn := n

√
n− 1 > 0. Thus, by (ii),

n = (1 + rn)
n ≥ n(n− 1)

2
r2n.

Thus, 0 ≤ rn ≤
√
2√

n−1
. Now apply the Squeeze Lemma stated above.

Problem 2. (a) Show that the series
∞∑
n=0

1

n!
converges. The mathematical constant e is

defined as the sum of this series. Apply the Ratio Test.



(b) Bonus (not for quiz). Complete the following steps to show that e =
∞∑
n=0

1

n!
is irrational,

i.e., e cannot be written as p/q for any p ∈ Z and q ∈ P.

(i) Let sn = 1 + 1
1!
+ · · ·+ 1

n!
, n ∈ N. Show that, for all n ∈ P,

(1) 0 < e− sn <
1

n!n
.

(ii) Suppose e = p/q for some p ∈ Z and q ∈ P. Show that q!(e− sq) is an integer.

(iii) Obtain a contradiction using (1).

See Rudin’s Principles of Mathematical Analysis, III Ed., Theorem 3.32.

Problem 3. Let {an : n ∈ P} be an arbitrary collection of non-negative real numbers

such that
∞∑
n=1

an converges. Determine which of the following series will necessarily converge

(proof required), and which may either converge or diverge depending on the choice of the

an’s (examples required).

(a)
∞∑
n=1

a2n

Method 1: Since
∞∑
n=1

an converges, therefore limn→∞ an = 0. So, for ϵ = 1, there is an

N1 such that |an| < 1 for all n ≥ N1. Since all an’s are non-negative real numbers,

therefore

0 ≤ an < 1 for all n ≥ N1

Also an = 0 ⇐⇒ a2n = 0 and for an ̸= 0, an < 1 ⇒ a2n < an for all n ≥ N1. So, we

can say that for all n ≥ N1,

0 ≤ a2n ≤ an

So, by comparison test, since
∞∑
n=1

an is convergent,
∞∑
n=1

a2n is also convergent.

Method 2: Consider Sn =
n∑

k=1

a2n and Pn =
n∑

k=1

an are the sequence of partial sums. So,

{Pn} is convergent and hence {P 2
n} is convergent, which gives that {P 2

n} is bounded.

So, there is an M > 0 such that |P 2
n | = P 2

n ≤ M for all n ∈ N.
Now since all an’n are non-negative, So, for all n ∈ N,

Sn =
n∑

k=1

a2n ≤ (
n∑

k=1

an)
2 = P 2

n ≤ M

[You can prove this by mathematical induction and using a2 + b2 ≤ (a+ b)2 and note

that this is only true for non-negative numbers, otherwise find a counter example]



Which gives that {Sn} is a bounded sequence. Also, we can observe that {Sn} is

monotonically increasing. Hence it is a convergent sequence. Therefore, the series
∞∑
n=1

an is convergent.

(b)
∞∑
n=1

√
an

∞∑
n=1

√
an may or may not converge. Let an = 1

n2 . Then
∑

an converges, but
∑√

an

does not. For the second case, take an = 1/n4. T

(c)
∞∑
n=1

√
an
n

For all n ≥ 1, if we apply AM-GM inequality on an and 1
n2 , we get,

0 ≤
√
an

1

n2
≤ 1

2
(an +

1

n2
) ⇒ 0 ≤

√
an
n

≤ 1

2
(an +

1

n2
)

Since
∞∑
n=1

an and
∞∑
n=1

1
n2 are convergent, by the limit law of series, the sum

∞∑
n=1

(an +
1
n2 )

is also convergent. Therefore, by the comparison test of series’ (with C = 1
2
),

√
an
n

is

convergent.

Problem 4. Show that each of the following series converges, and determine its sum.

(a)
∞∑
n=1

4n2 − 1 + 3n−1

3n (2n+ 1) (2n− 1)

∞∑
n=1

4n2 − 1 + 3n−1

3n (2n+ 1) (2n− 1)
=

∞∑
n=1

(2n+ 1) (2n− 1) + 3n−1

3n (2n+ 1) (2n− 1)

=
∞∑
n=1

{
1

3n
+

1

3 (2n+ 1) (2n− 1)

}

≤
∞∑
n=1

{
1

3n
+

1

3 (n+ 1) (n)

}
(2n− 1 ≥ n and 2n+ 1 ≥ n+ 1 ∀ n ≥ 1)

≤
∞∑
n=1

{
1

3n
+

1

3 n2

}
(

1

n+ 1
≤ 1

n
)

Now
∞∑
n=1

1

3n
is convergent because

1

3
< 1 and

∞∑
n=1

1

n2
is convergent by p-test. So, by

limit laws,
∞∑
n=1

{
1

3n
+

1

3 n2

}
is a convergent series. Therefore, by the comparison test,



∞∑
n=1

4n2 − 1 + 3n−1

3n (2n+ 1) (2n− 1)
is convergent.

Now to find it’s sum, we will expand it as following;

∞∑
n=1

4n2 − 1 + 3n−1

3n (2n+ 1) (2n− 1)
=

∞∑
n=1

(2n+ 1) (2n− 1) + 3n−1

3n (2n+ 1) (2n− 1)

=
∞∑
n=1

{
1

3n
+

1

3 (2n+ 1) (2n− 1)

}

=
∞∑
n=1

{
1

3n
+

1

6

{
1

(2n− 1)
− 1

(2n+ 1)

}}

We know that
∞∑
n=1

1

3n
=

1

3

1− 1

3

=
1

2
and let Sn =

n∑
k=1

1

6

{
1

(2k − 1)
− 1

(2k + 1)

}

be the sequence of partial sums of
∞∑
n=1

{
1

6

{
1

(2n− 1)
− 1

(2n+ 1)

}}
.

So, we have;

Sn =
1

6

{
(
1

1
− 1

3
) + (

1

3
− 1

5
) + . . .+ (

1

2n− 3
− 1

2n− 1
) + (

1

2n− 1
− 1

2n+ 1
)

}
=

1

6

{
1− 1

2n+ 1

}

Now, limn→+∞ Sn =
1

6
(1− 0) =

1

6
. So,

∞∑
n=1

{
1

6

{
1

(2n− 1)
− 1

(2n+ 1)

}}
converges to

1

6
. Hence by using limit laws of series’, we have;

∞∑
n=1

4n2 − 1 + 3n−1

3n (2n+ 1) (2n− 1)
=

1

2
+

1

6
=

2

3

(b)
∞∑
n=6

6

n2 − 1
Do the same as part (a). The sum will be

11

15
.



(c)
∞∑
n=1

n

(n+ 1)(n+ 2)(n+ 3)
By partial fraction, we have

∞∑
n=1

n

(n+ 1)(n+ 2)(n+ 3)
=

∞∑
n=1

{
−1

2(n+ 1)
+

2

n+ 2
+

−3

2(n+ 3)

}

=
∞∑
n=1

{
−1

2(n+ 1)
+

1

2
+

3

2
n+ 2

+
−3

2(n+ 3)

}

=
∞∑
n=1

{
(−1

2
)(

1

n+ 1
− 1

n+ 2
) +

3

2
(

1

n+ 2
− 1

n+ 3
)

}

Now
∞∑
n=1

(
1

n+ 1
− 1

n+ 2
) and

∞∑
n=1

(
1

n+ 2
− 1

n+ 3
) are both telescoping series’ and hence

convergent. So, by the limit laws of series’, the given series is convergent. To find it’s

sum, do the same as (a). The sum will be
1

4
.

Problem 5. For each of the series given below, determine whether it converges or diverges.

You need not compute the sum in the case of convergence.

(1)
∞∑
n=1

n sin2(nπ/3)

2n

Note that

0 ≤ n sin2(nπ/3)

2n
≤ n

2n
.

Let bn =
n

2n
. Then,

bn+1

bn
=

(n+ 1)

2n
=

1 + 1/n

2
.

By limit laws for sequences, the above sequence converges to 1/2 < 1. By the ratio

test,
∑

bn < ∞. Thus, by the comparison test, the given series converges.

(2)
∞∑
n=1

(
1

n

)1/n

Already shown in Problem 1 that limn→∞ n1/n = 1. Thus, the individual terms in the

above series are not converging to 0. The series diverges.

(3)
∞∑
n=1

(−1)nn25

(n+ 2)!



We will show that the series converges absolutely by using the ratio test. Let

an = (−1)n
n25

(n+ 2)!
. Then,

|an+1|
|an|

=
(n+ 1)25(n+ 2)!

n25(n+ 3)!
=

(n+ 1)25

n26 + 3n25
=

(1 + 1/n)25

3 + 1/n
.

By the limit laws for sequences, the above sequence converges to 1/3 < 1. Thus, the

ratio test,
∑

|an| converges. But, abs. cvg. => cvg.

(4)
∞∑
n=5

√
n+ 1

(n− 1)(n+ 2)(n− 4)

We use the comparison test, using the convergent series
∞∑
n=5

1

n3/2
for the comparison.

Note that

0 ≤
√
n+ 1

(n− 1)(n+ 2)(n− 4)
=

(n− 1)

(n− 1)(n+ 2)(n− 4)(
√
n− 1)

(n ̸= 1)

<
1

(n+ 2)(
√
n− 1)

(n− 4 ≥ 1, for n ≥ 5)

<
1

n(
√
n− 1)

(n+ 2 > n)

<
2

n3/2
(
√
n− 1 >

1

2

√
n, for n ≥ 5).

Since
∞∑
n=1

1
n3/2 converges, by limit laws

∞∑
n=1

2
n3/2 converges. Moreover, since dropping

finitely many terms does not affect the convergence of the series,
∞∑
n=5

2
n3/2 converges.

Thus, by the comparison test, the given series converges.


