
UM 101 HOMEWORK ASSIGNMENT 6
SKETCH OF SOLUTIONS

Problem 1. Give an example each of

(a) a bounded function f : [−1, 1] → R that does not attain either its minimum or its

maximum anywhere on [−1, 1];

Solution.

f(x) =

x, x ∈ (−1, 1)

0, x = −1, 1.

Note that sup{f(x) : x ∈ [−1, 1]} = 1 and inf{f(x) : x ∈ [−1, 1]} = −1, yet f never

attains these values.

(b) a bounded continuous function f : (−1, 1) → R that attains its minimum but does not

attain its maximum on (−1, 1).

Solution.

f(x) = x2.

Note that f(x) ≥ 0 everywhere and f(0) = 0. Thus, f attains its minimum on (−1, 1),

but sup{f(x) : x ∈ [−1, 1]} = 1, which is never attained on (−1, 1).

Problem 2. Let f be a continuous function on [a, b] such that f(x) > 0 for all x ∈ [a, b].

Show that there is a c > 0 such that f(x) ≥ c for all x ∈ [a, b].

Proof. By algebra of limits 1/f is continuous on [a, b]. Since every continuous function on a

closed and bounded interval is bounded, there exists an M ∈ R such that

0 <
1

f(x)
≤ M x ∈ [a, b].

Thus, c = 1/M > 0 and f(x) ≥ c for all x ∈ [a, b]. □

Problem 3. Show that every polynomial with real coefficients and odd degree has at least

one real root.

Note. We haven’t discussed the meaning of limx→±∞ f(x), but you do know what it means

to take the limits of the sequences {f(n)}n∈N and {f(−n)}n∈N.



Proof. Let f(x) = a0 + a1x+ · · ·+ adx
d, where d is odd, a0, ..., ad ∈ R and ad ̸= 0.

Case 1. ad > 0. Note that

f(n) = adn
d

(
1 +

ad−1

adn
+ · · ·+ a0

nd

)
.

By algebra of sequential limits, and the fact that limn→∞ n−p = 0 for p > 0, we have the

existence of some N1 ∈ P such that

1 +
1

2
> 1 +

ad−1

adn
+ · · ·+ a0

nd
> 1− 1

2

for all n ≥ N1. Thus,

f(N1) >
ad
2
Nd > 0.

By the same reasoning, there is an N2 ∈ P such that

f(−N2) <
3

2
ad(−N2)

d < 0

since d is odd. Since f is continuous (it’s a polynomial) on [−N2, N1] and it takes opposite

signs on the endpoints, by IVT, it must vanish somewhere in (−N2, N1). □

Problem 4. Let f : [0, π/2] → R be given by

f(x) = max{x2, cosx}.

Argue that f attains a global minimum on [0, π/2] at some c ∈ [0, π/2]. Show that c is a

solution of the equation cosx = x2.

We will use the fact that

g(x) = |x| =

x, x > 0,

−x, x ≤ 0

is continuous. This is so because g is a polynomial on (−∞, 0)∪ (0,∞), and at 0, we use that

for every ε > 0, if we choose δ = ε, then |x| < δ ⇒ |g(x)| = |x| < ε.

Now, observe that

f(x) =
x2 + cosx+ |x2 − cosx|

2
.

Thus, by the algebra of continuous functions, f is continuous. Since every continuous function

on a closed and bounded interval attains its minimum and maximum, the claimed c exists.

Now say that c2 ̸= cos c. Case 1. c2 > cos c. Since cosx ≥ 0 for x ∈ [0, π/2], c ̸= 0. By

the continuity of h(x) = x2 − cosx, corresponding to ε = h(c)/2, there is a δ > 0 such that

0 <
h(c)

2
< h(x)



for all c− δ < x ≤ c. Thus, f(x) = x2 for c− δ < x ≤ c, but (c− δ)2 < c2, and c is a global

minimum of f !

Case 2. c2 < cos c. Since (π)2/4 > cos(π/2), so c ̸= π/2. By a similar argument as in Case

1, we get a 0 < δ < π/2 such that f(x) = cos x for c ≤ x < c+ δ. But,

cos(c+ δ) = cos(c) cos(δ)− sin(c) sin(δ) < cos(c).

But f attains its global min. at c!

Problem 5. For each given f below, determine its region of continuity and region of differ-

entiability. As always, you may directly cite any theorems or examples discussed in class.

(a) f : R → R defined by h ◦ g, where g(x) = x3 and h(x) = |x|.
Claim. f is continuous and differentiable on R.
Since g is a polynomial, h has been shown to be continuous in Problem 5., and the

composition of continuous functions is continuous, f = h ◦ g is continuous.

Note that

f(x) =

x3, x > 0,

−x3, x ≤ 0.

Since polynomials are differentiable on open intervals, we only need to check the dif-

ferentiability of f at 0. Let ε > 0. Choose δ =
√
ε > 0. Then, whenever |k| < δ, we

have that ∣∣∣∣f(k)k

∣∣∣∣ = k2 < ε.

Thus, f is also diff. at 0.

(b) f : R → R given by

f(x) =


|x|, x < 0,

0, x = 0,

x2 cos
(
1
x

)
, x > 0.

Claim. f is continuous and differentiable on R \ {0}.

The continuity of f on R \ {0} follows from known results. We check the continuity of

f at 0. Let ε > 0. Choose δ = min{ε,
√
ε}. Then, whenever |x| < δ, either

(i) 0 ≤ x < δ, in which case f(x) = |x| = x < ε, or

(ii) −δ < x < 0, in which case |f(x)| ≤ |x|2 < δ2 < ε (since cos(x) ≤ 1 for all x).



Next, we determine the region of differentiability of f . For x, y > 0 and x ̸= y,

cos(1/x)− cos(1/y)

x− y
=

2 sin((x+ y)/xy) sin((x− y)/xy)

x− y

=
2xy sin((x+ y)/xy) sin((x− y)/xy)

xy(x− y)
.

Now by the algebra of limits, and the fact that limx→0 sin(x)/x = 1, we have that

lim
y→x

cos(1/x)− cos(1/y)

x− y

exists, and cos(1/x) is differentiable at each x > 0. By the algebra of differentiable

functions, we have that f is differentiable on R \ {0}.
Let h ̸= 0. Then

g(h) =
f(h)

h
=

−1, h < 0,

h cos(1/h), h > 0.

Consider the sequence
{
an = (−1)n 2

(2n+1)π

}
. Then, {g(an)} is the oscilating sequence

{−1, 0,−1, 0, ...} which does not converge. Thus, by the seq. char. of limits, f is not

diff. at 0.

(c) f : R → R given by

f(x) =


| sinx|
sin |x|

, x ̸= nπ, for any n ∈ Z,

1, otherwise.

From trig. identities, we know that sin(x) > 0 on x ∈ (2kπ, (2k + 1)π) and sin(x) < 0 for

x ∈ ((2k + 1)π, (2k + 2)π) for each k ∈ Z. Thus,

f(x) =

+1, x ∈ [−(2k + 1)π, 2kπ] ∪ [2kπ, (2k + 1)π], k ∈ N,

−1, x ∈ (−(2k + 2)π,−(2k + 1)π) ∪ ((2k + 1)π, (2k + 2)π), k ∈ N.

Using similar techniques as in the previous problems, you can show that f is continuous and

differentiable precisely on R \ {nπ : n ∈ Z \ {0}}.

Problem 6. Use induction to prove the following statement: given differentiable functions

f1, ..., fn on some interval (a, b), the function

g =
n∏

j=1

fn = f1 · f2 · ... · fn



is also differentiable on (a, b), and

g′ =
n∑

j=1

(
f ′
j

n∏
k=1,k ̸=j

fk

)
.

This is a routine application of indution.


