UM 101 HOMEWORK ASSIGNMENT 6
SKETCH OF SOLUTIONS

Problem 1. Give an example each of

(a) a bounded function f : [-1,1] — R that does not attain either its minimum or its
maximum anywhere on [—1, 1];
Solution.
r, wz€(-1,1)
0, x=-1,1.
Note that sup{f(z) : € [-1,1]} = 1 and inf{f(x) : x € [-1,1]} = —1, yet f never

attains these values.
(b) a bounded continuous function f : (—1,1) — R that attains its minimum but does not
attain its maximum on (—1,1).
Solution.
fz) =22
Note that f(x) > 0 everywhere and f(0) = 0. Thus, f attains its minimum on (—1, 1),
but sup{f(z): x € [-1,1]} = 1, which is never attained on (—1,1).

Problem 2. Let f be a continuous function on [a,b] such that f(x) > 0 for all € [a,].
Show that there is a ¢ > 0 such that f(z) > ¢ for all x € [a, b].

Proof. By algebra of limits 1/f is continuous on [a,b]. Since every continuous function on a
closed and bounded interval is bounded, there exists an M € R such that
1
0<—<M x€]ab).
f(x)
Thus, ¢ =1/M > 0 and f(x) > ¢ for all z € [a, b]. O

Problem 3. Show that every polynomial with real coefficients and odd degree has at least
one real root.

Note. We haven’t discussed the meaning of lim, .+, f(x), but you do know what it means
to take the limits of the sequences {f(n)}nen and {f(—n)}nen.



Proof. Let f(z) = ag + a1 + - - - + aqgz?, where d is odd, ay, ...,a; € R and ay # 0.
Case 1. az > 0. Note that

ag— a
o=t (1924,
agn n
By algebra of sequential limits, and the fact that lim, ,.,n™ = 0 for p > 0, we have the
existence of some N; € P such that
1
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for all n > N;. Thus,
F(N)) > %Nd > 0.
By the same reasoning, there is an Ny € P such that

f<—N2) < ;ad(—Ng)d <0

since d is odd. Since f is continuous (it’s a polynomial) on [—N, Ni| and it takes opposite
signs on the endpoints, by IVT, it must vanish somewhere in (—Ns, N7). O

Problem 4. Let f:[0,7/2] — R be given by
f(z) = max{2?, cosz}.

Argue that f attains a global minimum on [0,7/2] at some ¢ € [0,7/2]. Show that ¢ is a
solution of the equation cosz = z2.

We will use the fact that
x, x>0,
—z, v <0
is continuous. This is so because g is a polynomial on (—oo,0) U (0, 00), and at 0, we use that

for every ¢ > 0, if we choose ¢ = ¢, then |z| < = |g(z)| = |z| < e.
Now, observe that

2% + cosz + |2? — cos x|

) = .
Thus, by the algebra of continuous functions, f is continuous. Since every continuous function

on a closed and bounded interval attains its minimum and maximum, the claimed c exists.

Now say that ¢? # cosc. Case 1. ¢® > cosc. Since cosx > 0 for z € [0,7/2], ¢ # 0. By
the continuity of h(x) = 22 — cosx, corresponding to € = h(c)/2, there is a § > 0 such that

0<@<h(x)



for all c — 6 < x < c. Thus, f(z) =2 for c— § <z < ¢, but (¢ —4§)? < ¢?, and ¢ is a global
minimum of f!

Case 2. ¢* < cosc. Since (m)?/4 > cos(m/2), so ¢ # 7/2. By a similar argument as in Case
1, we get a 0 < 0 < /2 such that f(z) = cosz for ¢ < x < ¢+ J. But,

cos(c + 6) = cos(c) cos(d) — sin(c) sin(d) < cos(c).

But f attains its global min. at ¢!

Problem 5. For each given f below, determine its region of continuity and region of differ-
entiability. As always, you may directly cite any theorems or examples discussed in class.
(a) f:R — R defined by h o g, where g(z) = 2% and h(x) = |z|.
Claim. f is continuous and differentiable on R.
Since g is a polynomial, h has been shown to be continuous in Problem 5., and the

composition of continuous functions is continuous, f = h o g is continuous.

Note that
23, x>0,
—23, 2 <0.

fz) =

Since polynomials are differentiable on open intervals, we only need to check the dif-
ferentiability of f at 0. Let € > 0. Choose 0 = /¢ > 0. Then, whenever |k| < J, we

have that
k
'—fgf )‘ =k <e¢
Thus, f is also diff. at 0.
(b) f:R — R given by
|z, x <0,
f(x) =10, xr =0,

z?cos (1), x>0,
Claim. f is continuous and differentiable on R\ {0}.

The continuity of f on R\ {0} follows from known results. We check the continuity of
f at 0. Let ¢ > 0. Choose § = min{e, \/¢}. Then, whenever |z| < ¢, either

(1) 0 <z <9, in which case f(z) = |z| =2 < ¢, or

(4i) —0 < x < 0, in which case |f(z)| < |z|? < §? < & (since cos(z) < 1 for all ).



Next, we determine the region of differentiability of f. For z,y > 0 and = # v,

cos(1/x) —cos(l/y) _ 2sin((x +y)/zy) sin((x — y)/zy)
T —y T =y
_ 2zysin((z +y)/zy)sin((z — y)/zy)
zy(z —y) '

Now by the algebra of limits, and the fact that lim, ,qsin(z)/x = 1, we have that

lim cos(1/x) — cos(1/y)
Yy r—y

exists, and cos(1/x) is differentiable at each x > 0. By the algebra of differentiable
functions, we have that f is differentiable on R\ {0}.
Let h # 0. Then

f(h -1, h <0,
g(h) = # =
hcos(1/h), h > 0.
Consider the sequence {an = (—1)”%} Then, {g(a,)} is the oscilating sequence
{=1,0,—-1,0,...} which does not converge. Thus, by the seq. char. of limits, f is not

diff. at 0.

(¢) f: R — R given by
| sin x|

f(x) = { sinfz|’

1, otherwise.

x # nm, for any n € Z,

From trig. identities, we know that sin(xz) > 0 on x € (2km, (2k + 1)7) and sin(z) < 0 for
x € ((2k + 1)m, (2k + 2)7) for each k € Z. Thus,

+1, v € [—(2k + )7, 2k7) U [2k7, (2k + 1)7], k € N,

P72t o e (ks 29m—(2h+ D) U (@4 D, (k4 2, ke N

Using similar techniques as in the previous problems, you can show that f is continuous and
differentiable precisely on R\ {n7:n € Z\ {0}}.

Problem 6. Use induction to prove the following statement: given differentiable functions
fi, -, fn on some interval (a,b), the function

g=1[t=HFrrfu
j=1



is also differentiable on (a,b), and

g’=2(f;- 1 fk,).
j=1 k=1,k#j

This is a routine application of indution.



