
UM 101 HOMEWORK ASSIGNMENT 7
SKETCH OF SOLUTIONS

Problem 1. Let f : (a, b) → R be a function and c ∈ (a, b). Which of the following statements

are true, and which are false.

(a) If lim
h→0

f(c)− f(c− h)

h
exists, then f is differentiable at c and f ′(c) = lim

h→0

f(c)− f(c− h)

h
.

Solution: Consider the function g : R −→ R defined as g(x) = −x for every x ∈ R.

Note that lim
h→0

g(h) = 0. For the given c, define the function g0(x) =
f(c)− f(c− x)

x
for x ̸= 0. Now use the following composition theorem:

Let f and g be functions such that

lim
x→p

f(x) = L and lim
y→L

g(y) = M.

Moreover, suppose that for some δ > 0, if 0 < |x− p| < δ, then |f(x)− L| > 0. Then,

lim
x→p

g(f(x)) = lim
y→L

g(y).

(b) If lim
n→∞
n∈N

n (f(c+ 1/n)− f(c)) exists, then f is differentiable at c.

Solution: The given limit exists holds for the function f(x) = |x| at c = 0, but

f(x) = |x| is not differentiable at 0.

Problem 2. Let f : R → R be a differentiable function. In each of the following cases,

argue that g is differentiable on its domain (you may use any theorems stated in class), and

determine the derivative of g in terms of f ′.

(a) g(x) = f(x3) + sin(f(x)).

Solution: You need to check the following before applying chain rule of differentiation

to the composition f ◦ h of functions f and h:

– The range of h is a subset of the domain of f .

– While checking the differentiability of f ◦ h at a point c, you need to check if h is

differentiable at c and if f is differentiable at h(c).



Check the above and use chain rule and algebra of differentiable functions to see that

g′(x) = f ′(x3)3x2 + cos(f(x))f ′(x) for every x ∈ R

(b) g(x) = (f ◦ f)(x).

Solution: Easy.

Problem 3. Show that f(x) = x1/3, x ∈ R, is not differentiable at x = 0.

Solution: We need to show that f(x) = x1/3, x ∈ R, is not differential at x = 0. Suppose not,

, i.e., it is differentiable, or the limit lim
h→0

f(0 + h)− f(0)

h
exists, and the limit is denoted by

f ′(0). Thus, for every ϵ > 0, there exists a δ > 0 such that for any h satisfying 0 < |h| < δ,∣∣∣∣∣f(0 + h)− f(0)

h
−f ′(0)

∣∣∣∣∣ < ϵ holds, i.e

∣∣∣∣∣h1/3

h
−f ′(0)

∣∣∣∣∣ < ϵ, i.e.

∣∣∣∣∣ 1

h2/3
−f ′(0)

∣∣∣∣∣ < ϵ. Now proceed

as it was shown is class as how for f(x) = 1
x
, x ̸= 0, limx→0 f(x) does not exist.

Problem 4. Suppose f : R → R is differentiable at c and f(c) = 0. Show that g(x) = |f(x)|
is differentiable at c if and only if f ′(c) = 0.

Solution: Suppose g is differentiable at c. We claim that g′(c) = 0. Suppose not, i.e., suppose

g′(c) = L ̸= 0. Then, either L > 0 or L < 0. In the case that L > 0, choose ϵ > 0 such that

L− ϵ > 0. There is a δ > 0 such that whenever 0 < h < δ, we have that∣∣∣∣∣g(c+h)−g(c)
h

− L

∣∣∣∣∣ =
∣∣∣∣∣g(c+h)

h
− L

∣∣∣∣∣ < ϵ

or 0 < L− ϵ < g(c+h)
h

< L+ ϵ

or 0 < L− ϵ < |f(c+h)|
h

< L+ ϵ

But |f(c+h)|
h

≤ 0 for −δ < h < 0, which contradicts the above statement.

The case L < 0 can be dealt with similarly.

Now, we have a δ > 0 such that whenever 0 < h < δ then

∣∣∣∣∣g(c+ h)

h

∣∣∣∣∣ < ϵ ⇒

∣∣∣∣∣ |f(c+ h)|
h

∣∣∣∣∣ < ϵ ⇒

∣∣∣∣∣|f(c+ h)|

∣∣∣∣∣
|h|

< ϵ ⇒ |f(c+ h)− f(c)|
|h|

< ϵ ⇒

∣∣∣∣∣f(c+ h)− f(c)

h

∣∣∣∣∣ < ϵ



Therefore limh→0
f(c+h)−f(c)

h
= 0 ⇒ f ′(c) = 0

Conversely, when f ′(c) = 0 then for a given ϵ > 0, there is a δ > 0 such that

0 < |h| < δ ⇒

∣∣∣∣∣f(c+ h)− f(c)

h

∣∣∣∣∣ < ϵ ⇒

∣∣∣∣∣f(c+ h)

h

∣∣∣∣∣ < ϵ ⇒ |f(c+ h)|
|h|

< ϵ ⇒

∣∣∣∣∣|f(c+h)|

∣∣∣∣∣
|h| < ϵ

⇒

∣∣∣∣∣ |f(c+h)|
h

∣∣∣∣∣ < ϵ

⇒

∣∣∣∣∣g(c+h)−g(c)
h

∣∣∣∣∣ < ϵ

Hence, g is differentiable at c and g′(c) = 0.

Problem 5. Let a > b > 0 and n ∈ N, n ≥ 2. Show that

a
1
n − b

1
n < (a− b)

1
n .

Hint. Consider the function x
1
n − (x− 1)

1
n on the interval [1, a/b].

Solution: Since it is done in the class that for x > 0, x
1
n is differentiable and f ′(x) = 1

nx
n−1
n

. So,

both x
1
n and (x− 1)

1
n are differentiable in (1, a

b
), then by algebra of derivatives, the function

h(x) = x
1
n − (x − 1)

1
n is differentiable in (1, a/b) and is continuous in [1, a/b] (Prove that

(x− 1)
1
n is continuous at x = 1).

Apply Mean Value Theorem and you will get the required result.

Problem 6. Let a1 < a2 < · · · < an be real numbers. Let f : R → R be given by

f(x) =
n∑

j=1

|aj − x|.

Find the point(s) of global minimum of f .

Hint. Draw the graphs of some examples. Writing f as a piecewise function will help.

Solution: First we will write f as a piecewise function. We have two cases.



Case 1. n is even, i.e n = 2k for some k ∈ N.

f(x) =



a1 + a2 + a3 + · · ·+ an − nx, x ≤ a1,

−a1 + a2 + a3 + · · ·+ an − (n− 2× 1)x, x ∈ [a1, a2],

−a1 − a2 + a3 + a4 · · ·+ an − (n− 2× 2)x, x ∈ [a2, a3]
...

−a1 − a2 − a3 · · · − ak − ak+1 + ak+2 + · · ·+ an − (n− 2× (k − 1))x, x ∈ [ak−1, ak],

−a1 − a2 − a3 · · · − ak + ak+1 + · · ·+ an, x ∈ [ak, ak+1],

−a1 − a2 − a3 · · · − ak − ak+1 + ak+2 + · · ·+ an − (n− 2× (k + 1))x, x ∈ [ak+1, ak+2]
...

nx− a1 − a2 − · · · − an, x ≥ an

Answer. All x ∈ [ak, ak+1].

• Since f is a continuous function on [a1, an], there is a c ∈ [a1, a2] such that

f(x) ≥ f(c) ∀x ∈ [a1, an].

• Since f ′(x) = −n < 0 on (−∞, a1) and f ′(x) = n > 0 on (an,∞), we have that

f(x) ≥ f(a1) ≥ f(x) ∀x < a1,

f(x) ≥ f(an) ≥ f(c) ∀x > an.

Thus, the points of global minimum of f on R are the points of global minimum of f

on [a1, an].

• The potential points of local extrema are: a1, a2, ..., an (since they are points of non-

differentiability) and all the points in (ak, ak+1) since f ′ vanishes there.

• Now study the sign of f ′ to conclude that f is strictly decreasing on (−infty, ak) and

strictly increasing on (ak+1,∞).



Case 2. n is odd, i.e n = 2k + 1 for some k ∈ N.

f(x) =



a1 + a2 + a3 + · · ·+ an − nx, x ≤ a1,

−a1 + a2 + a3 + · · ·+ an − (n− 2× 1)x, x ∈ [a1, a2],

−a1 − a2 + a3 + a4 · · ·+ an − (n− 2.2)x, x ∈ [a2, a3]
...

−a1 − a2 − a3 · · · − ak + ak+1 + · · ·+ an − x, x ∈ [ak, ak+1],

−a1 − a2 · · · − ak + ak+2 + ak+3 · · ·+ an, x = ak+1

−a1 − a2 · · · − ak − ak+1 + ak+2 + ak+3 · · ·+ an + x, x ∈ [ak+1, ak+2]
...

nx− a1 − a2 − · · · − an, xn

Answer. x = ak+1.

Repeat the same technique.

Definition. Given a function (a, b) → R and c ∈ (a, b) we say that

lim
h→c

f(h) = +∞

if, for every M > 0, there is a δM > 0 such that f(x) > M for all x ∈ NδM (c) ∩ (a, b).

Problem 7. Let f : [a, b] → R be a continuous and invertible function. Let p ∈ (a, b). The

following two statements were proposed in class. Prove both of them.

(a) If

lim
h→0

f(p+ h)− f(p)

h
= +∞,

then f−1 is differentiable at q = f(p) and (f−1)
′
(q) = 0.

Solution: For a given ϵ > 0, let M = 1
ϵ
> 0. Then, there is a δϵ such that for

h ∈ Nδϵ ∩ [a, b], f(p+h)−f(p)
h

> 1
ϵ
.

By the inverse function theorem, f−1 : J → [a, b] is continuous and one-one, onto.

Let h(k) = f−1(q + k) − f−1(q). Then, h(k) ̸= 0 whenever k ̸= 0, (since f−1 is is

one-to-one). Then h(k) + p = f−1(q + k), or k = f(h(k) + p)− f(p). Thus,

f−1(q + k)− f−1(q)

k
=

h(k)

f(p+ h(k))− f(p)
=

1
f(p+h(k))−f(p)

h(k)

.

Since f−1 is continuous, so, h(k) is continuous. So, for δϵ, there is a δ1 > 0 such that

whenever |k| < δ1, |h(k)− h(0)| = |h(k)| < δϵ ⇒ f(p+h(k))−f(p)
h(k)

> 1
ϵ
> 0.



Therefore, whenever 0 < |k| < δ1 then,

∣∣∣∣∣f−1(q+k)−f−1(q)
k

∣∣∣∣∣ =
∣∣∣∣∣ 1

f(p+h(k))−f(p)
h(k)

∣∣∣∣∣ < ϵ. We are

done.

(b) If f is differentiable at p and f ′(p) = 0, then f−1 is not differentiable at q = f(p).

Solution: Let M > 0 and choose ϵ = 1
M

> 0. Then, there is a δ > 0 such that

0 < |h| < δ ⇒

∣∣∣∣∣f(p+ h)− f(p)

h

∣∣∣∣∣ < ϵ

Take h(k) as in part (a). Then, by the continuity of h(k), there is a δM > 0 such that

|k| < δM ⇒ |h(k)− h(0)| = |h(k)| < δ.

This gives

∣∣∣∣∣f(p+h(k))−f(p)
h(k)

∣∣∣∣∣ < ϵ ⇒ −ϵ < f(p+h(k))−f(p)
h(k)

< ϵ.

Therefore,

|k| < δM ⇒ f−1(q + k)− f−1(q)

k
=

1
f(p+h(k))−f(p)

h(k)

>
1

ϵ
= M

So,

lim
k→0

f−1(q + k)− f−1(q)

k
= +∞,

Hence f−1 is not differentiable at q = f(p).

Note. We are using that limx→c f(x) = +∞ ⇒ the limit of f as x approaches c does

not exist! Prove this using sequential characterization of limits (or any other method).


