UM 101 HOMEWORK ASSIGNMENT 7
SKETCH OF SOLUTIONS

Problem 1. Let f : (a,b) — R be a function and ¢ € (a,b). Which of the following statements
are true, and which are false.

_fle—h e
(a) If lim fle) = fle=h) exists, then f is differentiable at c and f'(¢) = lim fe) = fle—h)
h—0 h h—0 h
Solution: Consider the function g : R — R defined as g(x) = —a for every z € R.
Note that }llin%g(h) = 0. For the given ¢, define the function go(z) = f(e) = fle—x)
o T

for x # 0. Now use the following composition theorem:

Let f and g be functions such that

lim f(z) =L and limg(y) = M.
y—L

T—p

Moreover, suppose that for some § > 0, if 0 < |z —p| < §, then |f(z) — L| > 0. Then,

lim g(f(2)) = lim g(y).

—p y—L

(0) If lim n(f(c+1/n)— f(c)) exists, then f is differentiable at c.
neN

Solution: The given limit exists holds for the function f(z) = |z| at ¢ = 0, but
f(z) = |z| is not differentiable at 0.

Problem 2. Let f : R — R be a differentiable function. In each of the following cases,
argue that g is differentiable on its domain (you may use any theorems stated in class), and

determine the derivative of ¢ in terms of f’.

(a) g(x) = f(2°) + sin(f(x)).
Solution: You need to check the following before applying chain rule of differentiation
to the composition f o h of functions f and h:
— The range of h is a subset of the domain of f.
— While checking the differentiability of f o h at a point ¢, you need to check if h is
differentiable at ¢ and if f is differentiable at h(c).



Check the above and use chain rule and algebra of differentiable functions to see that
g (z) = f'(x®)32% + cos(f(x))f'(z) for every z € R

(b) g(x) = (f o f)(@).

Solution: Easy.

Problem 3. Show that f(z) = 2!/3, x € R, is not differentiable at z = 0.

Solution: We need to show that f(z) = 2/?, x € R, is not differential at = 0. Suppose not,

f(O+h) = (0)

, i.e., it is differentiable, or the limit lim exists, and the limit is denoted by

h—0 h
f(0). Thus, for every € > 0, there exists a § > 0 such that for any h satisfying 0 < |h| < §,
— hl/3 1
SO+ h})L 1) — f(0)] < € holds, i.e - —f’(O)‘ <€ le. 'W —f’(O)‘ < €. Now proceed

as it was shown is class as how for f(z) = %, x # 0, lim,_,o f(z) does not exist.

Problem 4. Suppose f : R — R is differentiable at ¢ and f(c¢) = 0. Show that g(z) = | f(x)|
is differentiable at ¢ if and only if f’(c) = 0.

Solution: Suppose g is differentiable at ¢. We claim that ¢’(¢) = 0. Suppose not, i.e., suppose
g'(¢c) = L # 0. Then, either L > 0 or L < 0. In the case that L > 0, choose ¢ > 0 such that
L — € > 0. There is a 6 > 0 such that whenever 0 < h < 9, we have that

gleth)—g(e) Ll =

(c+h)
h = |55 L

7 < €

m0<L—e<ﬂ%@<L+e

orO<L—e<M<L+e

But L}th)‘ < 0 for —§ < h < 0, which contradicts the above statement.
The case L < 0 can be dealt with similarly.
Now, we have a > 0 such that whenever 0 < h < § then

glc+h)
h

[f(c+h)|
h

[f(c+h) = f(e)]

‘If(c+h)|
<e= <e:'

1] Id

fle+h) = fl)
h

< €

<€:>‘ ‘<€:>



Therefore limy,_, f(c%)_m =0= f'(¢)=0
Conversely, when f/(c¢) = 0 then for a given € > 0, there is a 6 > 0 such that

[ f(ctn)l
h) — h h
0<|h|<d= flexh) = Q) | fleth)) WPl =Ll <e
h h 7] z
||

g(ct+h)—g(c)

= B <€
Hence, g is differentiable at ¢ and ¢'(¢) = 0.
Problem 5. Let a > b > 0 and n € N, n > 2. Show that
ar — b < (a— b)%.
Hint. Consider the function z# — (z — 1)# on the interval [1, a/b).
Solution: Since it is done in the class that for z > 0, z# is differentiable and f’(z) = ——r. So,

nr n

both 2w and (z — 1)w are differentiable in (1, %), then by algebra of derivatives, the function
hz) = n — (z — 1)= is differentiable in (1,a/b) and is continuous in [1,a/b] (Prove that
(z — 1) is continuous at z = 1).

Apply Mean Value Theorem and you will get the required result.

Problem 6. Let a1 < as < -+ < a, be real numbers. Let f : R — R be given by

f(z) =Z|%’—$|-

Find the point(s) of global minimum of f.

Hint. Draw the graphs of some examples. Writing f as a piecewise function will help.

Solution: First we will write f as a piecewise function. We have two cases.



Case 1. n is even, i.e n = 2k for some k£ € N.

'a1+a2+a3—|—---+an—nx, r < ag,
—aytayt+az+---+a,— (n—2x1)z, x € lay,as],

—a1—ag+az+ag---+a, —(n—2x2)x, x€ ay,as]

fle)=9-a—ay—ag-- —ar —arp1 +aro+ -+ an— (n—=2x (k=1))z, = € [ap_1, a),
—Q1 — Gy — A3+ — A+ Qg1+ F Ay T E [ag, Qg
—a1—ay—ag--—ag — Qi1+ agro+ -t a, — (n—2x (k+ 1))z, x € [agy1, apr2]
(T —ay —ag — -+ — ap, T > a,

Answer. All z € [ag, agi1].

e Since [ is a continuous function on [ay, a,], there is a ¢ € [ay, as] such that

fz) > f(e) Yz € [ay, a,].

e Since f'(x) = —n <0 on (—o00,ay) and f'(z) =n > 0 on (a,,o0), we have that

f(x) = flar) = f(z) Vo < a,
f(x) = flan) = f(e) Y > ap.

Thus, the points of global minimum of f on R are the points of global minimum of f
on [ay, ay).

e The potential points of local extrema are: ay,as, ..., a, (since they are points of non-
differentiability) and all the points in (ay, agy1) since f’ vanishes there.

e Now study the sign of f’ to conclude that f is strictly decreasing on (—infty,a;) and
strictly increasing on (a1, 00).



Case 2. nis odd, i.e n = 2k + 1 for some k € N.
a; +as +as+ -+ a, — nx, $§a1,
—ay+aytaz+---+a,— (n—2x 1z, x € [ay,as),

—ay —agyt+az+ag---+a, —(n—22)z, x € |as, ag

f(@)=q—a1—ay—as - —ap+ a1+ +ap, — 2,2 € [ag, apy1],
—ap — Ay = A + Apqp + Qg3+ Apy T = Apqy
—ay — Qg — Q) — Qg+ Ao + Qg3 -+ Ap + 2,0 € [Qpp1, Qppo)
\nx—al—ag——-~—an, Tn

Answer. © = ap1.

Repeat the same technique.

Definition. Given a function (a,b) — R and ¢ € (a,b) we say that
lim f(h) = 400
h—c

if, for every M > 0, there is a dy; > 0 such that f(z) > M for all x € Ns,,(c) N (a,b).

Problem 7. Let f : [a,b] — R be a continuous and invertible function. Let p € (a,b). The
following two statements were proposed in class. Prove both of them.

(a) If

i L2~ f(p)
h

h—0
then f~! is differentiable at ¢ = f(p) and (f~1) (¢) = 0.

= +OO,

Solution: For a given € > 0, let M = % > 0. Then, there is a d. such that for

h € Ny, N[a,b], LeH0=10) 5 1

By the inverse function theorem, f~' : J — [a,b] is continuous and one-one, onto.
Let h(k) = f~'(q+ k) — f~'(q). Then, h(k) # 0 whenever k # 0, (since f~! is is
one-to-one). Then h(k) +p = f~'(q+ k), or k = F(h(k) +p) — f(p). Thus,

o+ k) =) h(k) _ !
k Fo+ k)~ fp) et

Since f~! is continuous, so, h(k) is continuous. So, for d., there is a §; > 0 such that

whenever |k| < 01, |h(k) — R(0)| = |h(k)| < 0. = f(p+h}§l(clg—f(p) >1>0.



[~ a+k)—f"(a)
k

Therefore, whenever 0 < |k| < d; then, < e. We are

1
Soth(k)=F(p)
(k)

done.

If f is differentiable at p and f’(p) = 0, then f~! is not differentiable at ¢ = f(p).

Solution: Let M > 0 and choose € = ﬁ > (. Then, there is a 6 > 0 such that

f(p+h)— f(p)
h

0<|h|<d = <€

Take h(k) as in part (a). Then, by the continuity of h(k), there is a d; > 0 such that
[kl <0m = |h(k) = h(0)] = [h(K)] < 0.

This giVeS ‘W <eEe= —€< f(p+h}sl(€]37f(p) < e
Therefore,
fUa+k) —fg) 1 .
IF < 0w = 2 = o Tm e - M
h(k)
So,

-1 1
i 4@+ k) = [ (q)
k—0 k

Hence f~! is not differentiable at ¢ = f(p).

Note. We are using that lim,_,. f(z) = +0o0 = the limit of f as x approaches ¢ does

fr— +OO,

not exist! Prove this using sequential characterization of limits (or any other method).



