
UM 101 HOMEWORK ASSIGNMENT 8

Posted on December 23, 2022

(NOT FOR SUBMISSION)

• These problems are for self-study. Some of these problems are long, so you may need

more than a week to work on this assignment.

• There will be no quiz on this material.

Problem 1. Let f : [a, b] → R be continuous on [a, b] and differentiable on (a, c) ∪ (c, b).

Show that if lim
x→c

f ′(x) = L, then f ′(c) exists and equals L.

Problem 2. Let f : R → R be defined by

f(x) =

2x4 + x4 sin
(
1
x

)
, x ̸= 0,

0, x = 0.

Show that f has a global minumum at x = 0, but for every δ > 0, f is not monotone on either

(−δ, 0) or on (0, δ). Note. This example demonstrates the limitations of the first derivative

test.

Problem 3. Let f : (a, b) → R be a differentiable function. Show that for any x, y ∈ (a, b),

if k is a number between f ′(x) and f ′(y), then there is some c ∈ (x, y) such that f ′(c) = k.

Note. This means the a derivative function has the intermediate value property. This should

help you construct a function that is not continuous but has the intermediate value property!

Hint. See Apostol, Section 4.15, Exercise 10.

Problem 4. Show that

1 +
1

2
x− 1

8
x2 ≤

√
1 + x ≤ 1 +

1

2
x

for all x > 0.

Problem 5. Locate and classify all the points of local extrema of the function

f(x) = x|x2 − 12|

on the domain [−2, 3].



∗ ∗ ∗ ∗ ∗The following problems may require more time than the rest.∗ ∗ ∗ ∗ ∗

Problem 6 (Proof of Taylor’s Theorem). Recall the following theorem. Let f : (a, b) → R
be (n+ 1)-times differentiable on (a, b). Let x0 ∈ (a, b). Then, for any x ∈ (a, b), there exists

a cx between x and x0 such that

f(x) = P x0
n (x) +

f (n+1)(cx)

(n+ 1)!
(x− x0)

n+1.

Brainstorming. WLOG assume x < x0. Set

Kn = (n+ 1)!
f(x)− P x0

n (x)

(x− x0)n+1
.

We will try to apply MVT to an appropriate function G : [x, x0] → R that satisfies two

conditions:

(i) G(x) = G(x0)

(ii) G′(c) = 0 implies that

(1) f (n+1)(c) = Kn.

In class, we observed that the naive idea of G(t) = f (n)(t)− tKn does not satisfy (i).

Let us attempt a new G for the case n = 1. Remember that x is fixed and the variable of

differentiation is t in the below argument. Note that we can write (??) as

f ′′(c) = K1

⇐⇒ (x− c)f ′′(c) = (x− c)K1

⇐⇒
[
f(t) + (x− t)f ′(t)

]′
t=c

= −K1

[(x− t)2

2

]′
t=c

⇐⇒
[
P t
1(x)+(x− t)2

K1

2!

]′
t=c

= 0

(a) Use the function G(t) = P t
1(x)+

(x−t)2K2

2!
to prove Taylor’s theorem in the case of n = 1.

(b) By modifying G suitably for each n, prove Taylor’s theorem. Hint. It may help to try

n = 2 before attempting the general case.

Problem 7. Let f : R → R and c ∈ R. Consider the following “definitions”. In each case,

determine whether it is equivalent to the definition given in class. If yes, provide a proof. If

not, provide an example.

(i) We say that f admits a limit as x approaches c if for every ε > 0, there exists an L ∈ R
and a δ > 0 such that for every x ∈ Nδ(c) \ {c}, we have that

|f(x)− L| < ε.



(ii) We say that f admits a limit as x approaches c if for every ε > 0, there exists a δ > 0

such that for every x ∈ Nδ(c) \ {c} there exists an L ∈ R such that

|f(x)− L| < ε.

(iii) We say that f admits a limit as x approaches c if there exists an L > 0 and a δ > 0,

such that for every ε > 0, whenever x ∈ Nδ(c) \ {c}, we have that

|f(x)− L| < ε.

Note. The text in red marks the main departure from the original definition.


