UM 101 HOMEWORK ASSIGNMENT 8
SKETCH OF SOLUTIONS

Problem 1. Let f : [a,b] — R be continuous on [a,b] and differentiable on (a,c) U (c,b).
Show that if lim f’(z) = L, then f'(c) exists and equals L.
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Proof. Let g : (a,c¢) U (c,b) — R be given by

We want to show that lim, . g(c) = L.
Given x € (a,c), MVT applied to [z, c] gives a p(x) € (z,¢) such that

r—c
Similarly, for each = € (¢,b), there is a p(x) € (¢, z) such that f'(p(z)) = g(x). Thus, we have
a function p : (a,c) U (¢,b) — R such that

f'(p(x)) = g(x).
Observe the following features of p:

(a) p(z) # c for every z € (a,c) U (c,b).
(b) 0 < |p(z) —¢| < |z —¢| for all z € (a,c) U (¢,b). Thus, by the squeeze lemma for
functions and the continuity of | - | and polynomials, we have that lim,_,.p(z) = c.

By the composition rule for limits (where the “inside” function satisfies the relevant condition:

see item (a) above), we have that

lim g(z) = lim f'(p(z)) = lim f'(y) = L.
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Problem 2. Let f: R — R be defined by

224 + 2sin (1), o #0,
fla) - )
0, z=0.



Show that f has a global minumum at x = 0, but for every § > 0, f is not monotone on either
(—0,0) or on (0,6). Note. This example demonstrates the limitations of the first derivative
test.

Proof. Since —1 <sin(y) <1 for all y € R, we have that for = # 0,
f(z) = 22" + 2t sin(1/x) > 22 — 2* > 0= £(0).

Thus, x = 0 is point of global minimum.

Suppose there exists a § > 0 such that f is monotone on either (—d,0) or (0,4). Then, since f
is a composition of differentiable functions on R\ {0}, f* would take the same sign on either
(—6,0) or (4,0) (by the characterization of monotoncity in terms of first derivatives). Note
that

f'(x) = 82° + 42” sin (l> — 2% cos (1> , x #0.
x T
Thus, /' (el ) = 12 (m)s > 0forall k€7 and f'(;5) =8 (55)° — (55)° < 0 for
all integers k satisfying |k| > 2. Now choose an integer K > 2 such that
. 2 1
mm{xK = m,y;( = E} < 0.
Then, zx,yx € (0,9), but f'(zx) and f'(yx) take opposite signs. Similarly, —zx, —yx €
(—0,0), but but f'(—zk) and f'(—yx) take opposite signs. This contradicts our assumption,
and completes the proof. O

Problem 3. Let f : (a,b) — R be a differentiable function. Show that for any =,y € (a,b),
if k£ is a number between f’(x) and f’(y), then there is some ¢ € (z,y) such that f'(c) = k.
Note. This means the a derivative function has the intermediate value property. This should
help you construct a function that is not continuous but has the intermediate value property!

Proof. (Different from the proof outlined in Apostol’s Exercise 4.15.10.) Let z,y € (a,b).
Assume z < y, f'(z) < f'(y) and k € (f'(z), f'(y)). Let g(t) = kt — f(t). Then, g is a
continuous function on [a, b], and therefore [x,y], and attains its global maximum on [z, y] at
some ¢ € [x,y]. We will show that ¢ is neither x nor y, in which case ¢'(c) = 0 or f'(c) = k.
Note that ¢ is differentiable at x. Moreover, ¢'(z) = k — f'(z) > 0. Thus, by the ¢ — §
definition of differentiability, there is a 6 > 0 (corresponding to € = ¢'(z)/2) such that for all
t e (x,x+9),
gx) _g(t) —g(=)

0<g(x)— < T,




Since the denominator of the right-hand term is positive, the numerator must be positive, so
g(t) > g(x) for all t € (z,z + 0. Thus, z is not a point of global maximum for g on [z, y]. A
similar argument eliminates y as a point of global max. for g on [z,y]. Thus, ¢ € (x,y) and
we are done.

The case f'(z) > f'(y) can be handled similarly. O

Problem 4. Show that ) ) )
1+§x—§x2§\/1+x§1+§x
for all z > 0.

Proof. Since polynomials are infinitely differentiable on R and z", r € Q, is infinitely differ-
entiable on (0, 00), we have that (1 + z)'/2 is infinitely differentiable on (—1,00). The 1** and
284 Taylor polynomials of f(z) = /1 +x at ¢ =0 are

Pz) = 1+°2

2
P = 1455
xr) = - — —.
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Thus, by Taylor’s theorem, for any x > 0, there exist b,, ¢, € (0, ) such that
" bz 1
2! 2 8 2
1" (cx) | N r a?
= P S—l4S——+—(1 3 > 14—
f(x) » () + TR + 3 8—1—16( + )7 > t5 3

Problem 5. Locate and classify all the points of local extrema of the function
f(z) = z|z* — 12|
on the domain [—2, 3].

Solution. Note that f(z) = z(12—z?) for € [-2, 3]. Thus, f is differentiable on (—2,3) and
f'(x) =12 — 322 Thus, f'(z) =0 in (-2, 3) precisely when x = 2. So the potential points of
local extrema are {—2,2,3}.

For —2 <x < —1, we have that 1 < 22 <4, or 9 > 12 — 322 > 0. Thus, ' > 0 on
(—2,-1), and f(z) > f(=2) for all z € (=2, —1). Thus, —2 is a point of local minima for f
on [—2,3].

A similar analysis will yield that x = 2 is a point of local maximum, and 3 is neither.



x % x % xThe following problems may require more time than the rest.x * % % %
Solutions to these problems will not be provided. These problems are for “fun” and you can
continue to try them through the semester, or even later.

Problem 6 (Proof of Taylor’s Theorem). Recall the following theorem. Let f : (a,b) - R
be (n + 1)-times differentiable on (a,b). Let x¢ € (a,b). Then, for any = € (a,b), there exists
a ¢, between x and zq such that

F ) (ea)

@) = o) + o

Brainstorming. WLOG assume z < z(. Set

J(2) = P

(I _ ZL‘Q)”'H

K,=(n+1)

We will try to apply MVT to an appropriate function G : [x,29] — R that satisfies two

conditions:
(i) G(x) = G(x)
(17) G'(c) = 0 implies that
(1) F(e) = K.

In class, we observed that the naive idea of G(t) = f™(t) — tK, does not satisfy (4).
Let us attempt a new G for the case n = 1. Remember that x is fixed and the variable of

differentiation is ¢ in the below argument. Note that we can write (1) as
f//(C) — Kl
= (@=f'(c) = (z -k,

= [fo+e-nrm] =-r]

t=c

(m;t) }’

t=c
2K1}’ —0

= [P+ -

t=c

(a) Use the function G(t) = Pf(:r,')—i—(x_;# to prove Taylor’s theorem in the case of n = 1.

(b) By modifying G suitably for each n, prove Taylor’s theorem. Hint. It may help to try
n = 2 before attempting the general case.

Problem 7. Let f: R — R and ¢ € R. Consider the following “definitions”. In each case,
determine whether it is equivalent to the definition given in class. If yes, provide a proof. If

not, provide an example.



(1) We say that f admits a limit as = approaches c if for every ¢ > 0, there exists an L € R
and a ¢ > 0 such that for every x € Nj(c) \ {c}, we have that

[f(z) = L <e.

(7i) We say that f admits a limit as x approaches c if for every € > 0, there exists a § > 0
such that for every z € Ns(c) \ {c} there exists an L € R such that

[f(z) = L <e.

(7i1) We say that f admits a limit as x approaches c if there exists an L > 0 and a § > 0,
such that for every ¢ > 0, whenever z € Ns(c) \ {c}, we have that

|f(z) = L| <e.

Note. The text in red marks the main departure from the original definition.



