
UM 101 HOMEWORK ASSIGNMENT 8
SKETCH OF SOLUTIONS

Problem 1. Let f : [a, b] → R be continuous on [a, b] and differentiable on (a, c) ∪ (c, b).

Show that if lim
x→c

f ′(x) = L, then f ′(c) exists and equals L.

Proof. Let g : (a, c) ∪ (c, b) → R be given by

g(x) =
f(x)− f(c)

x− c
.

We want to show that limx→c g(c) = L.

Given x ∈ (a, c), MVT applied to [x, c] gives a p(x) ∈ (x, c) such that

f ′(p(x)) =
f(x)− f(c)

x− c
= g(x).

Similarly, for each x ∈ (c, b), there is a p(x) ∈ (c, x) such that f ′(p(x)) = g(x). Thus, we have

a function p : (a, c) ∪ (c, b) → R such that

f ′(p(x)) = g(x).

Observe the following features of p:

(a) p(x) ̸= c for every x ∈ (a, c) ∪ (c, b).

(b) 0 ≤ |p(x) − c| ≤ |x − c| for all x ∈ (a, c) ∪ (c, b). Thus, by the squeeze lemma for

functions and the continuity of | · | and polynomials, we have that limx→c p(x) = c.

By the composition rule for limits (where the “inside” function satisfies the relevant condition:

see item (a) above), we have that

lim
x→c

g(x) = lim
x→c

f ′(p(x)) = lim
y→c

f ′(y) = L.

□

Problem 2. Let f : R → R be defined by

f(x) =

2x4 + x4 sin
(
1
x

)
, x ̸= 0,

0, x = 0.



Show that f has a global minumum at x = 0, but for every δ > 0, f is not monotone on either

(−δ, 0) or on (0, δ). Note. This example demonstrates the limitations of the first derivative

test.

Proof. Since −1 ≤ sin(y) ≤ 1 for all y ∈ R, we have that for x ̸= 0,

f(x) = 2x4 + x4 sin(1/x) ≥ 2x4 − x4 ≥ 0 = f(0).

Thus, x = 0 is point of global minimum.

Suppose there exists a δ > 0 such that f is monotone on either (−δ, 0) or (0, δ). Then, since f

is a composition of differentiable functions on R \ {0}, f ′ would take the same sign on either

(−δ, 0) or (δ, 0) (by the characterization of monotoncity in terms of first derivatives). Note

that

f ′(x) = 8x3 + 4x3 sin

(
1

x

)
− x2 cos

(
1

x

)
, x ̸= 0.

Thus, f ′
(

2
(4k+1)π

)
= 12

(
2

(4k+1)π

)3

> 0 for all k ∈ Z, and f ′ ( 1
2kπ

)
= 8

(
1

2kπ

)3 − (
1

2kπ

)2
< 0 for

all integers k satisfying |k| ≥ 2. Now choose an integer K ≥ 2 such that

min

{
xK =

2

(4K + 1)π
, yK =

1

2Kπ

}
< δ.

Then, xK , yK ∈ (0, δ), but f ′(xK) and f ′(yK) take opposite signs. Similarly, −xK ,−yK ∈
(−δ, 0), but but f ′(−xK) and f ′(−yK) take opposite signs. This contradicts our assumption,

and completes the proof. □

Problem 3. Let f : (a, b) → R be a differentiable function. Show that for any x, y ∈ (a, b),

if k is a number between f ′(x) and f ′(y), then there is some c ∈ (x, y) such that f ′(c) = k.

Note. This means the a derivative function has the intermediate value property. This should

help you construct a function that is not continuous but has the intermediate value property!

Proof. (Different from the proof outlined in Apostol’s Exercise 4.15.10.) Let x, y ∈ (a, b).

Assume x < y, f ′(x) < f ′(y) and k ∈ (f ′(x), f ′(y)). Let g(t) = kt − f(t). Then, g is a

continuous function on [a, b], and therefore [x, y], and attains its global maximum on [x, y] at

some c ∈ [x, y]. We will show that c is neither x nor y, in which case g′(c) = 0 or f ′(c) = k.

Note that g is differentiable at x. Moreover, g′(x) = k − f ′(x) > 0. Thus, by the ε − δ

definition of differentiability, there is a δ > 0 (corresponding to ε = g′(x)/2) such that for all

t ∈ (x, x+ δ),

0 < g′(x)− g′(x)

2
<

g(t)− g(x)

t− x
.



Since the denominator of the right-hand term is positive, the numerator must be positive, so

g(t) > g(x) for all t ∈ (x, x + δ. Thus, x is not a point of global maximum for g on [x, y]. A

similar argument eliminates y as a point of global max. for g on [x, y]. Thus, c ∈ (x, y) and

we are done.

The case f ′(x) > f ′(y) can be handled similarly. □

Problem 4. Show that

1 +
1

2
x− 1

8
x2 ≤

√
1 + x ≤ 1 +

1

2
x

for all x > 0.

Proof. Since polynomials are infinitely differentiable on R and xr, r ∈ Q, is infinitely differ-

entiable on (0,∞), we have that (1 + x)1/2 is infinitely differentiable on (−1,∞). The 1st and

2nd Taylor polynomials of f(x) =
√
1 + x at c = 0 are

P 0
1 (x) = 1 +

x

2

P 0
2 (x) = 1 +

x

2
− x2

8
.

Thus, by Taylor’s theorem, for any x > 0, there exist bx, cx ∈ (0, x) such that

f(x) = P 0
1 (x) +

f ′′(bx)

2!
x2 = 1 +

x

2
− 1

8
(1 + bx)

−3/2x2 < 1 +
x

2
,

f(x) = P 0
2 (x) +

f ′′′(cx)

3!
x3 = 1 +

x

2
− x2

8
+

1

16
(1 + cx)

−5/2x3 > 1 +
x

2
− x2

8
.

□

Problem 5. Locate and classify all the points of local extrema of the function

f(x) = x|x2 − 12|

on the domain [−2, 3].

Solution. Note that f(x) = x(12−x2) for x ∈ [−2, 3]. Thus, f is differentiable on (−2, 3) and

f ′(x) = 12− 3x2. Thus, f ′(x) = 0 in (−2, 3) precisely when x = 2. So the potential points of

local extrema are {−2, 2, 3}.
x = −2 For −2 < x < −1, we have that 1 < x2 < 4, or 9 > 12 − 3x2 > 0. Thus, f ′ > 0 on

(−2,−1), and f(x) ≥ f(−2) for all x ∈ (−2,−1). Thus, −2 is a point of local minima for f

on [−2, 3].

A similar analysis will yield that x = 2 is a point of local maximum, and 3 is neither.



∗ ∗ ∗ ∗ ∗The following problems may require more time than the rest.∗ ∗ ∗ ∗ ∗
Solutions to these problems will not be provided. These problems are for “fun” and you can

continue to try them through the semester, or even later.

Problem 6 (Proof of Taylor’s Theorem). Recall the following theorem. Let f : (a, b) → R
be (n+ 1)-times differentiable on (a, b). Let x0 ∈ (a, b). Then, for any x ∈ (a, b), there exists

a cx between x and x0 such that

f(x) = P x0
n (x) +

f (n+1)(cx)

(n+ 1)!
(x− x0)

n+1.

Brainstorming. WLOG assume x < x0. Set

Kn = (n+ 1)!
f(x)− P x0

n (x)

(x− x0)n+1
.

We will try to apply MVT to an appropriate function G : [x, x0] → R that satisfies two

conditions:

(i) G(x) = G(x0)

(ii) G′(c) = 0 implies that

(1) f (n+1)(c) = Kn.

In class, we observed that the naive idea of G(t) = f (n)(t)− tKn does not satisfy (i).

Let us attempt a new G for the case n = 1. Remember that x is fixed and the variable of

differentiation is t in the below argument. Note that we can write (1) as

f ′′(c) = K1

⇐⇒ (x− c)f ′′(c) = (x− c)K1

⇐⇒
[
f(t) + (x− t)f ′(t)

]′
t=c

= −K1

[(x− t)2

2

]′
t=c

⇐⇒
[
P t
1(x)+(x− t)2

K1

2!

]′
t=c

= 0

(a) Use the function G(t) = P t
1(x)+

(x−t)2K2

2!
to prove Taylor’s theorem in the case of n = 1.

(b) By modifying G suitably for each n, prove Taylor’s theorem. Hint. It may help to try

n = 2 before attempting the general case.

Problem 7. Let f : R → R and c ∈ R. Consider the following “definitions”. In each case,

determine whether it is equivalent to the definition given in class. If yes, provide a proof. If

not, provide an example.



(i) We say that f admits a limit as x approaches c if for every ε > 0, there exists an L ∈ R
and a δ > 0 such that for every x ∈ Nδ(c) \ {c}, we have that

|f(x)− L| < ε.

(ii) We say that f admits a limit as x approaches c if for every ε > 0, there exists a δ > 0

such that for every x ∈ Nδ(c) \ {c} there exists an L ∈ R such that

|f(x)− L| < ε.

(iii) We say that f admits a limit as x approaches c if there exists an L > 0 and a δ > 0,

such that for every ε > 0, whenever x ∈ Nδ(c) \ {c}, we have that

|f(x)− L| < ε.

Note. The text in red marks the main departure from the original definition.


