

UM 101 HOMEWORK ASSIGNMENT 10

Posted on January 5, 2023
(NOT FOR SUBMISSION)

- These problems are for self-study.
- Some of these problems will be discussed at the next tutorial.
- A 15-minute quiz based on the topics of this assignment will be conducted at the end of the tutorial section.

Problem 1. Let $A \subseteq \mathbb{R}$ be a non-empty subset. Let $f : A \rightarrow \mathbb{R}$ be a *Lipschitz* function on A , i.e., for some $M > 0$,

$$|f(x) - f(y)| \leq M|x - y|, \quad \forall x, y \in A.$$

Show that f is uniformly continuous on A . Produce a uniformly continuous function on $[0, \infty)$ that is not Lipschitz on $[0, \infty)$.

Problem 2. Show that the following function is Riemann integrable on $[0, 1]$.

$$f(x) = \begin{cases} x - x^2, & x \in [0, 1] \setminus \{1/3\}, \\ 0, & x = 1/3. \end{cases}$$

Generalize your proof to show that every bounded function that is continuous at all but finitely many points in an interval $[a, b]$ is Riemann integrable on $[a, b]$. **Hint.** Use the ϵ -characterization of Riemann integrability.

Problem 3. Show that the following bounded function is not Riemann integrable on $[0, 1]$.

$$f(x) = \begin{cases} 1, & x \in \mathbb{Q} \cap [0, 1], \\ 0, & x \in [0, 1] \setminus \mathbb{Q}. \end{cases}$$

Problem 4. Argue (possibly citing earlier problems from this assignment) that the function

$$f(x) = \begin{cases} 2x \cos\left(\frac{1}{x}\right) + \sin\left(\frac{1}{x}\right), & x \neq 0, \\ 0, & x = 0, \end{cases}$$

is Riemann integrable on $[-1, 1]$. Find the function (try to guess what F would be, and then justify your answer using a theorem)

$$F(x) = \int_{-1}^x f(x)dx, \quad x \in [-1, 1].$$

Note. This problem demonstrates that even though $\lim_{x \rightarrow 0} f(x)$ does not exist (i.e., the discontinuity of f at $x = 0$ is not “removable”), F can be differentiable at $x = 0$.

Problem 5. Solve Problems 14, 15, 16, 17, 19, 20 and 22 from Section 5.5 of Apostol.