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Abstract In convex geometry, the Blaschke surface area measure on the boundary
of a convex domain can be interpreted in terms of the complexity of approximating
polyhedra. This approach is formulated in the holomorphic setting to establish an
alternate interpretation of Fefferman’s hypersurfacemeasure on boundaries of strongly
pseudoconvex domains in C2. In particular, it is shown that Fefferman’s measure can
be recovered from the Bergman kernel of the domain.
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1 Introduction

The Fefferman hypersurfacemeasure on the boundary of a C2-smooth domain� ⊂ C
d

is the (2d − 1)-form, σ�, satisfying

σ� ∧ dρ = 4
d

d+1 M(ρ)
1

d+1ωCd ,

where ωCd is the standard volume form on C
d , ρ is a defining function for � with

� = {ρ < 0}, and
M(ρ) = − det

(
ρ ρzk
ρz j ρz j zk

)
1≤ j,k≤d

.
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1030 P. Gupta

First introduced by Fefferman in [9], this measure is well defined under the added
assumption that � is strongly pseudoconvex (defined in Sect. 2). Moreover, it does
not depend on the choice of ρ and satisfies the following transformation law:

F∗σF(�) = | det JC F | 2d
d+1 σ�,

where F is a biholomorphism on � that is C2-smooth on �.
The Fefferman hypersurface measure shares strong connections with the Blaschke

surface area measure (explored in [3] and [4], for instance) studied in affine convex
geometry. If K ⊂ R

d is a C2-smooth convex body, the Blaschke surface area measure
on ∂K is given by

σ̃K = κ 1
d+1 sEuc ,

where κ and sEuc are the Gaussian curvature function and the Euclidean surface area
form on ∂K , respectively. Its resemblance to the Fefferman measure is reflected in the
following identity:

A∗σ̃A(K ) = | det JR A| d−1
d+1 σ̃K ,

where A is an affine transformation of Rd . Since its introduction by Blaschke in [5],
severalmathematicians have extended the notion of affine surface area to arbitrary con-
vex bodies; see [14] for details. As this measure is invariant under volume-preserving
affine maps, it occurs naturally in volume approximations of convex bodies by poly-
hedra (see [11, Chap. 1.10] for a survey). The first complete asymptotic result was due
to Gruber [10] who showed that if K ⊂ R

d is a C2-smooth strongly convex body, then

inf{vol(P \ K ) : P ∈ Pc
n} ∼ 1

2
divd−1

(∫
∂K
σ̃K

)(d+1)/(d−1) 1

n2/(d−1)
(1.1)

as n → ∞, where Pc
n is the class of all polyhedra that circumscribe K and have at

most n facets, and divd−1 is a dimensional constant. Ludwig [15] later showed that,
if the approximating polyhedra are from Pn , the class of all polyhedra with at most n
facets, then

inf{vol(K�P) : P ∈ Pn} ∼ 1

2
ldivd−1

(∫
∂K
σ̃K

)(d+1)/(d−1) 1

n2/(d−1)
(1.2)

as n → ∞, where � denotes the symmetric difference between sets and ldivd−1 is a
dimensional constant. In (1.1) and (1.2), the constants divd−1 and ldivd−1 are named
after Dirichlet–Voronoi and Laguerre–Dirichlet–Voronoi tilings (see the Appendix),
respectively, since these are used to prove the formulae. Later, Böröczky [6] proved
both these formulae for all C2-smooth convex bodies. Similar asymptotics have been
obtained using other notions of complexity for a polyhedron—such as the number of
vertices.

In [3], Barrett asks whether such relations can be found between the Fefferman
hypersurfacemeasure on a pseudoconvexdomain and the complexity of approximating
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Volume Approximations of Strongly Pseudoconvex Domains 1031

analytic polyhedra. An analytic polyhedron in� is a relatively compact subset that is
a union of components of any set of the form

P = {z ∈ � : | f j (z)| < 1, j = 1, . . . , n},

where f1, . . . , fn are holomorphic functions in �. The natural notion of complexity
for an analytic polyhedron, P , is its order, i.e., the number of inequalities that define
P . This setup, however, is not suited for our purpose as demonstrated by a result due
to Bishop (Lemma 5.3.8 in [12]) which says that any pseudoconvex domain in C

d

can be approximated arbitrarily well (in terms of the volume of the gap) by analytic
polyhedra of order at most 2d. With the help of an example, we indicate where the
problem lies. Let� = D be the unit disk inC. Consider the lemniscate-bound domains

Pn :=
{
z ∈ D :

2n−1∏
k=0

n

π

∣∣∣(z − exp( kπ in ))
−1
∣∣∣ < 1

}
.

Each Pn has order 1 and satisfies {|z| < 1 − π/n} ⊂ Pn ⊂ {|z| < 1 − √
3π/2n}.

Thus,
inf{vol(D \ P) : P is an analytic polyhedron of order 1} = 0.

If we, instead, declare the complexity of Pn to be 2n, i.e., the number of poles of the
function defining Pn , then, since limn→∞ n · vol(D \ Pn) ∈ (0,∞), we can expect
results similar to (1.1) and (1.2).

The above example leads us to a special class of polyhedral objects. For any fixed
f ∈ C(�× ∂�), let Pn( f ) be the collection of all relatively compact sets in � of the
form

P =
{
z ∈ � : | f (z, w j )| > δ j , j = 1, . . . , n

}
,

where w1, . . . , wn ∈ ∂� and δ1, . . . , δn > 0. We present a class of functions f for
which asymptotic results such as (1.1) and (1.2) can be obtained for domains in C2.

Theorem 1.1 Let� ⊂⊂ C
2 be a C4-smooth strongly pseudoconvex domain. Suppose

f ∈ C(�× ∂�) is such that

(i) f (z, w) = 0 if and only if z = w ∈ ∂�, and
(ii) there exist η > 1 and τ > 0 such that

f (z, w) = a(z, w)p(z, w)+ O
(
p(z, w)η

)
(1.3)

on �τ := {(z, w) ∈ � × ∂� : ||z − w|| ≤ τ }, where p is the Levi polynomial
of some strictly plurisubharmonic defining function of � (see Sect. 2) and a is
some continuous non-vanishing function on �τ .

Then, there exists a constant lkor > 0, independent of �, such that

inf{vol(� \ P) : P ∈ Pn( f )} ∼ 1

2
lkor

(∫
∂�

σ�

) 3
2 1√

n
(1.4)

as n → ∞.
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1032 P. Gupta

In the tradition of divd−1 and ldivd−1, the constant lkor above is named after
Laguerre–Korányi tilings. Any such tiling comes from a collection of Korányi balls
K covering [0, 1]3 in R

3 = C × R by minimizing the horizontal power functions
hpow(·, K ) : C × R → C × R associated with the balls K in K (see the Appendix
for more details). If hcell(K ) denotes the tile associated with K ∈ K , we obtain that

lkor = lim
n→∞

√
n inf

⎧⎨
⎩−

∑
K∈K

∫
hcell(K )

hpow(z′, K )dz′ : #(K ) ≤ n

⎫⎬
⎭ .

Such descriptions have been obtained for divd−1 and ldivd−1 as well (see [10,15] and
[7]).

We believe that our proof of Theorem 1.1 can be generalized to higher dimensions,
although the exposition becomes exceedingly complicated.We, therefore, merely state
what we believe to be is the corresponding asymptotic formula when � ⊂⊂ C

d and
f ∈ C(�×∂�) satisfy the hypothesis of the above theorem: there is a constant cd > 0
such that

inf{vol(� \ P) : P ∈ Pn( f )} ∼ 1

2
cd

(∫
∂�

σ�

) d+1
d 1

n1/d
(1.5)

as n → ∞. Here, cd is the d-dimensional version of lkor. We encourage the reader to
compare the exponents and decay rates in (1.5), (1.1) and (1.2). A common pattern
emerges when we realize that the role played by the Euclidean metric on R

d−1 in
obtaining (1.1) and (1.2) is played by the Korányi metric on the (2d − 1)-dimensional
Heisenberg group in the case of (1.5). The former hasHausdorff dimension d ′ = d−1,
while the latter has Hausdorff dimension d ′ = 2d. The exponent of the boundary
measure and the power of 1/n in all three formulae now have the unified expressions
(d ′ + 2)/d ′ and 2/d ′, respectively.

Let LP(�) denote the class of f ∈ C(� × ∂�) that satisfy conditions (i) and
(i i) of Theorem 1.1. Then, LP(�) is invariant under biholomorphisms that extend
(C2-)smoothly to the boundary. LP(�) is a natural class when working with strongly
pseudoconvex domains and contains elements that yield analytic polyhedra. The
Henkin–Ramirez generating function (see [16, §3] for details) is one such choice
of f . So are K−1/(d+1)

� and S−1/d
� , where K� and S� denote the Bergman kernel and

Szegő kernel on� ⊂ C
d , respectively. In fact, these two choices of f are almost ana-

lytic extensions of any defining function of �. Since the Bergman kernel and almost
analytic extensions of defining functions make sense in a context larger than that of
strongly pseudoconvex domains, these provide potential candidates for f to obtain
results like Theorem 1.1 in a more general setting. We support this fact with an exam-
ple where the Fefferman hypersurface measure, though not defined everywhere, is
zero almost everywhere with respect to the Hausdorff measure on the boundary. Let
� = D

2 and f (z, w) = (1− z1w1)(1− z2w2). Then, by choosing appropriate f -cuts
with sources on the distinguished boundary, it can be shown that

lim
n→∞

√
n inf{vol(� \ P) : P ∈ Pn( f )} = 0
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Volume Approximations of Strongly Pseudoconvex Domains 1033

as n → ∞. Note that f is a scalar multiple of K−1/2
D2 .

Organization of the paper Definitions, notation and terminology that feature in multi-
ple sections are collected inSect. 2. The proof ofTheorem1.1 is spread over subsequent
sections. A critical lemma allows us to pass from LP(�) to a single representative—
this lemma and other technical issues are dealt with in Sect. 3. In Sect. 4, we address
the problem for certain model domains and model polyhedra. The rate of decay and
the relevant exponents in (1.4) become evident in this section. We move from the
model to the general case (locally), and from the local to the global case in Sects. 5
and 6, respectively. TheAppendix contains a brief exposition on power diagrams in the
Euclidean plane, and introduces a new tiling problem on the Heisenberg group. The
latter emerged naturally in the course of this work, and seems indispensable in proving
Theorem 1.1 (in particular, Lemma 6.1 from the Appendix is a crucial component of
Lemma 5.6). The Appendix also contains bounds for lkor.

2 Preliminaries

In this article, N+ denotes the set of all positive natural numbers. For D ⊆ R
n , C(D)

is the set of all continuous functions on D, and Ck(D), k ≥ 1, denotes the set of all
functions that are k-times continuously differentiable in some open neighborhood of
D. If A ⊂ B ⊂ R

n , intB A is the interior of A in the relative topology of B. The
transpose of a vector v is denoted by vtr . When well defined, JR f (x) and HessR f (x)
denote the real Jacobian and Hessian matrices, respectively, of f at x , JC f (z) is the
complex Jacobian matrix of f at z, and f ∗ denotes the pull-back operator induced by
f on differential forms and measures. For brevity, we often abbreviate ∂ f

∂x and ∂2 f
∂x ∂y

to fx and fxy , respectively. In C2, we employ the notation

• z = (z1, z2) = (x1 + iy1, x2 + iy2), w = (w1, w2) = (u1 + iv1, u2 + iv2) for
points;

• B2(z; r) for the Euclidean ball centered at z and of radius r ;

•
〈
·, ·
〉
for the complex pairing between a co-vector and a vector;

• “ ′ ” to indicate projection onto {y2 = 0} = C × R;
• Ares for (A

∣∣{y2=0})
′ : C × R → C × R, where A : C2 → C

2;

• vol for the Lebesgue measure in C2;
• vol3 for the Lebesgue measure in C × R, and
• s for the standard Euclidean surface area measure on the boundary of a smooth
domain.

In our analogy between convex and complex analysis, the role of convexity is played
by pseudoconvexity:

Definition 2.1 A C2-smooth domain � ⊂ C
d is called strongly pseudoconvex if it

admits a defining function ρ in a neighborhood U ⊃ � such that
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1034 P. Gupta

∑
1≤ j,k≤d

∂2ρ

∂z j∂zk
(z)v jvk > 0 for z ∈ ∂� and v = (v1, . . . , vd) ∈ C

d \ {0}

satisfying
d∑
j=1

∂ρ

∂z j
(z)v j = 0. (2.1)

A (possibly non-smooth) domain� ⊂ C
d is called pseudoconvex if it can be exhausted

by strongly pseudoconvex domains, i.e.,� = ∪ j∈R� j with each� j strongly pseudo-
convex and � j ⊆ �k for j < k.

Remark Wewill heavily use the fact that any strongly pseudoconvex domain� admits
a defining function ρ which is strictly plurisubharmonic, i.e., (2.1) holds for all z ∈ U
and v ∈ C

d \ {0}.
We reintroduce the polyhedral objects of our study.

Definition 2.2 Let � ⊂ C
2 be a domain and f ∈ C(� × ∂�). Given a compact set

J ⊂ ∂�, an f -polyhedron over J is any set of the form

P = {z ∈ � : | f (z, w j )| > δ j , j = 1, . . . , n}, (w j , δ j ) ∈ ∂�× (0,∞),

such that J ⊂ ∂� \ P and for every j ∈ {1, . . . , n}, | f (z, w j )| < δ j for some z ∈ J .
If� is bounded, then an f -polyhedron over ∂� is simply called an f -polyhedron. We
call

• each (w j , δ j ) a source-size pair of P;
• each C(w j , δ j ; f ) := {z ∈ � : | f (z, w j )| ≤ δ j } a cut of P;
• each F(w j , δ j ; f ) := {z ∈ � : | f (z, w j )| = δ j , | f (z, wl)| ≥ δl , l �= j} a facet
of P;

• (w1, . . . , wn) and (δ1, . . . , δn) the source-tuple and size-tuple of P , respectively.

We emphasize that, by definition, the cuts of an f -polyhedron over J cover J , and
each of its cuts intersects J non-trivially.

Remarks When there is no ambiguity in the choice of f , we drop any reference to
it from our notation for cuts and facets. Repetitions are permitted when listing the
sources of an f -polyhedron. Thus, P—as in Definition 2.2—has at most n facets.

Let�, f , P and J be as in Definition 2.2 above.We will use the following notation.

• δ(P) := max{δ j : 1 ≤ j ≤ n and (δ1, . . . , δn) is the size-tuple of P}.
• Pn( f ) := the collection of all f -polyhedra in � with at most n facets.
• Pn(J ; f ) := the collection of all f -polyhedra over J with at most n facets.
• Pn(J ⊂ H ; f ) := {P ∈ Pn(J ; f ) : ∂� \ P ⊂ H}, where H ⊂ ∂� is a compact
superset of J .

• v(�;P) := inf{vol(� \ P) : P ∈ P}, for any sub-collection P ⊂
Pn(J ⊂ H ; f ).

• vn( f ) := v(�;Pn(J ⊂ H ; f )), when the choice of�, J and H is unambiguous.
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Volume Approximations of Strongly Pseudoconvex Domains 1035

• vn(J ⊂ H) := v(�;Pn(J ⊂ H ; f )), when the choice of � and f is unambigu-
ous.

We now introduce some terminology and notation that will be used repeatedly in
Sect. 5.

• Let ρ : U → R be C2-smooth. The Levi polynomial associated with ρ is the map
pρ : U ×U → C given by

p(z, w) =
2∑
j=1

∂ρ

∂z j
(w)(z j − w j )+ 1

2

2∑
j,k=1

∂2ρ

∂z j∂zk
(w)(z j − w j )(zk − wk).

If the choice of ρ is unambiguous, we will use p instead.
• Let ρ : U → R be C2-smooth. The Cauchy–Leray map associated with ρ is the
map lρ : U ×U → C given by

lρ(z, w) =
2∑
j=1

∂ρ

∂z j
(w)(z j − w j ).

• Sλ = {(z1, z2) ∈ C
2 : ρλ(z1, z2) < 0}, where ρλ(z1, z2) = λ|z1|2 − Im z2. When

λ = 1, Sλ = S.
• For brevity, lλ := lρλ , and fλ(z, w) := −2iλlλ(z, w) when w ∈ ∂Sλ.
• As defined in Theorem 1.1, for any domain � ⊂ C

2 and τ > 0, �τ := {(z, w) ∈
�× ∂� : ||z − w|| < τ }.

3 Some Technical Lemmas

Here, we restrict our attention to Jordan measurable domains � ⊂ C
2. J and H are

compact subsets of ∂� such that J ⊂ int∂�H . We will concern ourselves with f -
polyhedra over J that are constrained by H . We first prove a lemma that will allow us
to work locally.

Lemma 3.1 Let �, J and H be as above. Suppose there are δ0 > 0, c > 0 and
f, g ∈ C(�× H) such that

(a) {z ∈ � : f (z, w) = 0} = {z ∈ � : g(z, w) = 0} = {w}, for any fixed w ∈ H,
(b) C(w, δ; f ) ⊇ C(w, cδ; g), for all w ∈ H and δ < δ0,
(c) C(w, δ; g) is Jordan measurable for each w ∈ H and δ < cδ0.

Then, for Pn ∈ Pn(J ⊂ H ; f ) such that limn→∞ vol(� \ Pn) = 0, we have that
limn→∞ δ(Pn) = 0.

Proof It suffices to show that for each δ < δ0, there is a b > 0 such that
vol(C(w, δ; f )) > b for all w ∈ H . By condition (b), it is enough to show this
for the cuts of g. By (a), vol

(
C(w, δ; g)) > 0 for each w ∈ H and δ < cδ0. Thus, it

is enough to prove the continuity of w �→ vol
(
C(w, δ; g)), δ < cδ0, on the compact

set H .
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1036 P. Gupta

Fix a δ ∈ (0, cδ0). Let χw := χC(w,δ;g) , where χA denotes the indicator function of
A. For a given w ∈ H , consider a sequence of points {wn}n∈N ⊂ H that converges to
w as n → ∞. Then,

lim
n→∞χwn (z) = χw(z) for a.e. z ∈ �. (3.1)

To see this, consider a z ∈ � such that χw(z) = 0. Suppose there is a subse-
quence {wn j } j∈N ⊂ {wn}n∈N such that χwn j (z) = 1. Then, |g(z, wn j )| ≤ δ but
lim j→∞ |g(z, wn j )| = |g(z, w)| ≥ δ. This is only possible if g(z, w) = δ. An anal-
ogous argument holds if χw(z) = 1. Thus, z ∈ ∂C(w, δ; g). Due to assumption (c),
this is a null set. Thus, (3.1) is true and we invoke Lebesgue’s dominated convergence
theorem to conclude that

vol
(
C(wn, δ; g)) =

∫
�

χwn dω
n→∞−−−→

∫
�

χwdω = vol
(
C(w, δ; g)),

where δ < cδ0 and ω = vol is the Lebesgue measure on C
2. ��

Next, we prove a lemma that permits us to concentrate on a single representative
of LP(�).

Lemma 3.2 Let �, J and H be as above. Suppose f, g ∈ C(�× H) are such that

(i) {z ∈ � : f (z, w) = 0} = {z ∈ � : g(z, w) = 0} = {w}, for any fixed w ∈ H,
and

(ii) there exist constants ε ∈ (0, 1/3) and τ > 0, such that

| f (z, w)− g(z, w)| ≤ ε(|g(z, w)+ | f (z, w)|) (3.2)

on {(z, w) ∈ �× H : ||z − w|| ≤ τ }.
Further, assume that the cuts of g are Jordan measurable and satisfy a doubling
property as follows

(3.3) there is a δg > 0 and a continuous D : [0, 16] → R so that, for any n ∈ N+,
(w j , δ j ) ∈ H × (0, δg), 1 ≤ j ≤ n, and t ∈ [0, 16],

vol

⎛
⎝ n⋃

j=1

C(w j , (1 + t)δ j )

⎞
⎠ ≤ D(t) · vol

⎛
⎝ n⋃

j=1

C(w j , δ j )

⎞
⎠ . (3.3)

Then, for every β > 0,

lim sup
n→∞

nβvn( f ) ≤ D

(
(1 + ε)2
(1 − ε)2 − 1

)
lim sup
n→∞

nβvn(g); (3.4)

lim inf
n→∞ nβvn( f ) ≥ D

(
(1 + ε)4
(1 − ε)4 − 1

)−1

lim inf
n→∞ nβvn(g), (3.5)

where vn(h) = v (�;Pn(J ⊂ H ; h)), D1(ε) = and D2(ε).
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Proof Observe that if ε̂ := 1+ε
1−ε , then inequality (3.2) may be transcribed as

| f (z, w)| ≤ ε̂|g(z, w)| and |g(z, w)| ≤ ε̂| f (z, w)| (3.6)

on {(z, w) ∈ �× H : ||z − w|| ≤ τ }. Hence, for any w ∈ H and δ > 0,

C(w, δ; f ) ⊆ B2(w; τ) ⇒ C(w, δ; f ) ⊆ C
(
w, ε̂δ; g) ; (3.7)

C(w, δ; g) ⊆ B2(w; τ) ⇒ C(w, δ; g) ⊆ C
(
w, ε̂δ; f

)
. (3.8)

We first show that

lim sup
n→∞

nβvn( f ) ≤ D

(
(1 + ε)2
(1 − ε)2 − 1

)
lim sup
n→∞

nβvn(g).

Let ξ > 1. Assume that Lsup := lim supn→∞ nβvn(g) is finite. Then, there is an
nξ ∈ N+ such that for each n ≥ nξ , we can pick a Qn ∈ Pn(J ⊂ H ; g) satisfying

vol(� \ Qn) ≤ ξLsupn
−β. (3.9)

As the cuts of g are Jordan measurable, Lemma 3.1 implies that δ(Qn) → 0 as
n → ∞. Consequently, nξ can be chosen so that (3.9) continues to hold, and for all
source-size pairs (w, δ) of Qn , n ≥ nξ , we have that

(a) δ < δg (see condition (3.3) on g);
(b) C(w, δ; g) ⊂ B2(w; τ) and C(w, 4δ; g) ∩ ∂� ⊂ H ; and
(c) C(w, 2δ; f ) ⊂ B2(w; τ).
The second part of (b) is possible as each cut of Qn is compelled to intersect J non-
trivially, by definition. For a fixed source-size pair (w, δ) of Qn , we have, due to (3.8)
and (3.7),

C(w, δ; g) ⊆ C(w, ε̂δ; f ) ⊆ C
(
w, ε̂2δ; g

)
.

The second inclusion is valid as ε̂δ ≤ 2δ, thus permitting the use of (3.7), given (c).
We can now approximate Qn by an f -polyhedron by setting

Q̃n := {z ∈ � : |g(z, w)| > ε̂2δ, (w, δ) is a source-size pair of Qn};
Pn := {z ∈ � : | f (z, w)| > ε̂δ, (w, δ) is a source-size pair of Qn}.

Our assumptions imply that Q̃n and Pn are in Pn(J ⊂ H ; g) and Pn(J ⊂ H ; f ),
respectively. From the above inclusions, we have that Q̃n ⊆ Pn ⊆ Qn , n ≥ nξ .
Hence, by property (3.3) of g and (3.9), we see that

nβvn( f ) ≤ nβ vol(� \ Pn) ≤ nβ vol
(
� \ Q̃n

)
≤ D

(
ε̂2 − 1

)
nβ vol(� \ Qn)

≤ ξD(ε̂2 − 1
)
Lsup,

for n ≥ nξ . As ξ > 0 was arbitrary and ε̂ = 1+ε
1−ε , (3.4) follows.
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To complete this proof, we show that

lim inf
n→∞ nβvn( f ) ≥ D

(
(1 + ε)4
(1 − ε)4 − 1

)−1

lim inf
n→∞ nβvn(g).

For this, fix a ξ > 1, and assume that L inf := lim infn→∞ nβvn(g) is finite. Thus,
there is an nξ ∈ N+ such that

vn(g) ≥ 1

ξ
L infn

−β; for n ≥ nξ . (3.10)

For each n, we pick an Rn ∈ Pn(J ⊂ H ; f ) that satisfies

v(� \ Rn) ≤ ξvn( f ). (3.11)

Now, we may also assume that lim infn→∞ nβvn( f ) < ∞ (else, there is nothing to
prove), thus obtaining that vn( f ) → 0 for infinitely many n ∈ N+. But, as vn( f ) is
decreasing in n, we get that vn( f )→ 0 for all n ∈ N+. Now, due to (3.8), it is possible
to choose δ small enough so that

C

(
w,
δ

ε̂
; g
)

⊆ C(w, δ; f ),

for each w ∈ H . As the cuts of g are Jordan measurable (there is no such assumption
on the cuts of f ), we invoke Lemma 3.1 to conclude that δ(Rn) → 0 as n → ∞. As
before, we find a new nξ such that (3.10) continues to hold, and for all n ≥ nξ and all
source-size pairs (w, δ) of Rn , we have

(a′) δ < δg (see condition (3.3) on g);
(b′) C(w, 4δ; f ) ⊂ B2(w; τ) and C(w, 4δ; f ) ∩ ∂� ⊂ H ; and
(c′) C(w, 2δ; g) ⊂ B2(w; τ).
Then, as before

C

(
w,
δ

ε̂
; g
)

⊆ C(w, δ; f ) ⊆ C
(
w, ε̂δ; g) ⊆ C

(
w, ε̂2δ; f

)
⊆ C

(
w, ε̂3δ; g

)
.

(3.12)
We now approximate Rn with an n-faceted g-polyhedron, using

R̃n : =
{
z ∈ � : | f (z, w)| > ε̂2δ, (w, δ) is a source-size pair of Rn

}
;

Sn : = {
z ∈ � : |g(z, w)| > ε̂δ, (w, δ) is a source-size pair of Rn

}
.

Our assumptions are designed to ensure that R̃n ∈ Pn(J ⊂ H ; f ) and Sn ∈
Pn(J ⊂ H ; g). From the above inclusions, we have that

R̃n ⊆ Sn ⊆ Rn, n ≥ nξ .
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Volume Approximations of Strongly Pseudoconvex Domains 1039

Moreover, the first and last inclusions in (3.12) and the assumption (3.3) on g (note
that ε̂4 < 16) imply that

vol(� \ R̃n)− vol(� \ Rn) ≤ vol

⎛
⎝ ⋃
(w,δ)∈�n

C
(
w, ε̂3δ; g

)
−

⋃
(w,δ)∈�n

C

(
w,
δ

ε̂
; g
)⎞⎠

≤ D
(
ε̂4 − 1

)
vol(� \ Rn), (3.13)

where �n is the set of source-size pairs of Rn .
Therefore, using (3.13) and (3.11), we see that

1

ξ
L infn

−β ≤ vn(g) ≤ vol(� \ Sn) ≤ vol
(
� \ R̃n

)

≤ D
(
ε̂4 − 1

)
vol(� \ Rn)

≤ D
(
ε̂4 − 1

)
ξvn( f ).

Therefore,
nβvn( f ) ≥ ξ−2D

(
ε̂4 − 1

)−1
L inf , n ≥ nξ .

As ξ > 0 was arbitrary and ε̂ = 1+ε
1−ε , (3.5) follows. ��

Remark 3.3 In practice, f and gmayonly be defined on (�∩U )×H for some open set
U ⊂ C

2 containing a τ -neighborhood of H , while satisfying the analogous version of
condition (i) there. As the remaining hypothesis (and indeed the result itself) depends
only on the values of f and g on an arbitrarily thin tubular neighborhood of H in �,
we may replace f (and, similarly, g) by fe to invoke Lemma 3.2, where

fe := f (z, w)ς(||z − w||2)+ ||z − w||2(1 − ς(||z − w||2))

for some non-negative ς ∈ C∞(R) such that ς(x) = 1 when x ≤ τ 2/2 and ς(x) = 0
when x ≥ τ 2. We will do so without comment, when necessary.

4 Approximating Model Domains

As a first step, we examine volume approximations of the Siegel domain by a particular
class of analytic polyhedra. This problem enjoys a connection with Laguerre-type
tilings of the Heisenberg surface equipped with the Korányi metric (see the Appendix
for further details).

Let S := {(z1, x2 + iy2) ∈ C
2 : y2 > |z1|2} and fS(z, w) = z2 − w2 − 2i z1w1.

We view C × R as the first Heisenberg group, H, with group law

(z1, x2) ·H (w1, u2) = (z1 + w1, x2 + u2 + 2 Im(z1w1))

and the left-invariant Korányi gauge metric (see [8, Sect. 2.2])

dH((z1, x2), (w1, u2)) := ||(w1, u2)
−1 ·H (z1, x2)||H,
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1040 P. Gupta

where ||(z1, x2)||4H := |z1|4 + x22 . Observe that, for any cut C(w, δ) = C(w, δ; fS),
w ∈ ∂S, C(w, δ)′ is the set

K (w′,
√
δ) = {(z1, x2) ∈ C×R : |z1−w1|4+(x2−u2+2 Im(z1w1))

2 ≤ δ2}, (4.1)

which is the ball of radius
√
δ centered at w′, in the Korányi metric.

Notation We will use the following notation in this section:

• I r := {(x1 + iy1, x2) ∈ C × R : 0 ≤ x1 ≤ r, 0 ≤ y1 ≤ r, 0 ≤ x2 ≤ r2}, r > 0.

• Î r := I 2r −
(
r
2 + i r2 ,

3r2
2

)
, r > 0. I r ⊂ Î r and they are concentric.

• vn(J ⊂ H) := v(S;Pn(J ⊂ H ; fS)), for J ⊂ H ⊂ ∂S. If J ⊂ H ⊂ C × R,
vn(J ⊂ H) is meaningful in view of the obvious correspondence between C×R

and ∂S.

Lemma 4.1 Let I = I 1 and Î = Î 1. There exists a positive constant lkor > 0 such
that

vn(I ⊂ Î ) ∼ lkor√
n

as n → ∞.

Proof Simple calculations show that

vol(C(w, δ)) = 2π

3
δ3 (4.2)

vol3(K (w
′,

√
δ)) = π2

2
δ2 (4.3)

for all w ∈ ∂S and δ > 0.
We utilize a special tiling in C×R. Let k ∈ N+ and consider the following points

in C × R:
vpqr :=

( p
k

+ i
q

k
,
r

k2

)
, (p, q, r) ∈ �k,

where �k := {
(p, q, r) ∈ Z

3 : −2q ≤ r ≤ k2 − 1 + 2p, 0 ≤ p, q ≤ k − 1
}
.

Observe that card(�k) = k4 + 2k3 − 2k2. Now, we set Epqr := vpqr ·H I
1
k , and

note that I ⊂ ∪�k E pqr ⊂ Î , for all k ∈ N+. (See Fig. 1.)
1. We first show that there is a constant α1 > 0 such that

vn(I ⊂ Î ) ≤ α1√
n

(4.4)

for all n ∈ N+.
For this, let

u pqr := center of Epqr = vpqr ·H
(

1

2k
+ i

1

2k
,

1

2k2

)
, (p, q, r) ∈ �k, k ∈ N+.
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Volume Approximations of Strongly Pseudoconvex Domains 1041

Fig. 1 The 24 tiles Epqr when
k = 2

Then, the Korányi ball K
(
u pqr ,

4√5
4√2k

)
(see (4.1)) contains Epqr and is contained in

Î . Hence, if wpqr ∈ ∂S is such that wpqr
′ = u pqr , the cuts

C

(
wpqr ,

√
5√
2k2

; fS

)
, (p, q, r) ∈ �k,

define Pk , an fS -polyhedron with k4 + 2k3 − 2k2 facets. In fact, Pk ∈
Pk4+2k3−2k2(I ⊂ Î ; fS), for all k ∈ N+, where we identify I and Î with their images
in ∂S under the map (z1, x2) �→ (z1, x2 + i |z1|2). Therefore, using (4.2)

vk4+2k3−2k2(I ⊂ Î ) ≤ vol(S \ Pk)

≤ vol

⎛
⎝⋃
�k

C

(
wpqr ,

√
5√
2k2

)⎞
⎠

≤ 2π

3

( √
5√
2k2

)3

(k4 + 2k3 − 2k2) = 5
√
5π

3
√
2

(k4 + 2k3 − 2k2)

k6
,

k ∈ N+. Now, for a given n ∈ N+, choose k such that k4 + 2k3 − 2k2 ≤ n ≤
(k + 1)4 + 2(k + 1)3 − 2(k + 1)2. Then, one can easily find a α1 > 0 such that
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1042 P. Gupta

vn(I ⊂ Î )
√
n ≤ vk4+2k3−2k2(I ⊂ Î )

√
(k + 1)4 + 2(k + 1)3 − 2(k + 1)2

≤ 5
√
5π

3
√
2

(k4 + 2k3 − 2k2)
√
(k + 1)4 + 2(k + 1)3 − 2(k + 1)2

k6

≤ α1.

2. Next, we show that there is an α2 > 0 such that

vn(I ⊂ Î ) ≥ α2√
n

(4.5)

for n ∈ N+.
If finitely many Korányi balls of radii

√
ρ1, . . . ,

√
ρk cover I , then (4.3) yields

(
√
ρ1)

4 + · · · + (√ρk)4 ≥ 2

π2 vol3(I ) = 2

π2 . (4.6)

Wewill also need the followingmean inequality (a consequence of Jensen’s inequal-
ity) (

ρd+1
1 + · · · + ρd+1

k

k

) 1
d+1

≥
(
ρd−1
1 + · · · + ρd−1

k

k

) 1
d−1

, (4.7)

for positive ρ j , 1 ≤ j ≤ k, and d > 1.
Now, fix a ξ > 1. Let Pn ∈ Pn(I ⊂ Î ; fS) be such that

vol(S \ Pn) ≤ ξvn(I ⊂ Î ). (4.8)

Let C j and K j , j = 1, . . . , n, be the cuts and their projections, respectively, of Pn .
Now, Kn := {K j , j = 1, . . . , n} is a finite covering of I , so by the Wiener covering
lemma (see [13, Lemma 4.1.1] for a proof that generalizes to metric spaces), we can
find, on renumbering the indices, disjoint Korányi balls K1, . . . , Kk ∈ Kn of radii√
ρ1, . . . ,

√
ρk , such that ∪K∈Kn K ⊂ ∪1≤ j≤k3K j , where, for j = 1, . . . , k, 3K j has

the same center as K j but thrice its radius. Let C j denote the cut that projects to K j ,
j = 1, . . . , k. It follows from (4.8), (4.2) and the inequalities (4.7) (for d = 5) and
(4.6) that

vn(I ⊂ Î )
√
n ≥ 1

ξ
vol

⎛
⎝ k⋃

j=1

C j

⎞
⎠√

k

= 1

ξ

(
k∑

i=1

vol(C j )

)√
k = 2π

3ξ

(
ρ31 + · · · + ρ3k

)√
k

= 2π

37ξ

(
(9ρ1)

3 + · · · + (9ρk)3
)√

k = 2π

37ξ

(
(3

√
ρ1)

6 + · · · + (3√ρk)6
)
k

2
4
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≥ 2π

37ξ

(
(3

√
ρ1)

4 + · · · + (3√ρk)4
) 6

4

≥ 4
√
2

π237ξ
vol3(I )

3
2 = 4

√
2

π237ξ
> 0, for n = n0, n0 + 1, . . .

As ξ > 1 was arbitrary, we have proved (4.5).
3. Define

lkor = lim inf
n→∞ vn(I ⊂ Î )

√
n.

By (4.5) and (4.4), 0 < lkor <∞. We now show that

lkor = lim
n→∞ vn(I ⊂ Î )

√
n. (4.9)

For this, it suffices to show that for every ξ > 1, if n0 ∈ N+ is chosen so that

vn0(I ⊂ Î )
√
n0 ≤ ξ lkor (4.10)

then,
vn(I ⊂ Î )

√
n ≤ ξ4lkor (4.11)

for n sufficiently large.
Now, let Pn0 ∈ Pn0(I ⊂ Î ; fS) be such that

vol(S \ Pn0) ≤ ξvn0(I ⊂ Î ).

For any w ∈ ∂S and k ∈ N+, let Aw,k : C2 → C
2 be the biholomorphism

(z1, z2) �→
(
w1 + 1

k
z1, w2 + 1

k2
z2 − 2i

k
z1w1

)
.

Then, Aw,k has the following properties:

• Ares
w,k(z

′) = w′ ·H
(
1
k z1,

1
k2
x2
)
;

• Aw,k(S) = S;
• Aw,k(Pn0) ∈ Pn0(w

′ ·H I
1
k ⊂ w′ ·H Î

1
k ; fS); and

• vol(S \ Aw,k(Pn0)) ≤ ξ vn0 (I⊂ Î )

k6
.

As a consequence,
P :=

⋃
(p,q,r)∈�k

Avpqr ,k(Pn0)

satisfies the following conditions:

• P ∈ Pn0(k4+2k3−2k2)(I ⊂ Î ; fS)
• vol(S \ P) ≤ ξvn0(I ⊂ Î ) k

4+2k3−2k2

k6
.
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Hence, by assumption (4.10),

vn0(k4+2k3−2k2)(I ⊂ Î )
√
n0(k4 + 2k3 − 2k2) ≤ ξvn0(I ⊂ Î )

√
n0
(k4 + 2k3 − 2k2)

3
2

k6

≤ ξ2vn0(I ⊂ Î )
√
n0 ≤ ξ3lkor, (4.12)

for sufficiently large k. Choose k0 so that (4.12) holds and
(k+1)4+2(k+1)3−2(k+1)2

k4+2k3−2k2
≤ ξ2

for k > k0. For n ≥ n0(k40 + 2k30 − 2k20), let k be such that n0(k
4 + 2k3 − 2k2) ≤ n ≤

n0((k + 1)4 + 2(k + 1)3 − 2(k + 1)2). Consequently,

vn(I ⊂ Î )
√
n ≤ vn0(k4+2k3−2k2)(I ⊂ Î )

√
n0((k + 1)4 + 2(k + 1)3 − 2(k + 1)2)

≤ ξ3lkor
√
(k + 1)4 + 2(k + 1)3 − 2(k + 1)2

k4 + 2k3 − 2k2
≤ ξ4lkor,

by (4.12). We have proved (4.11) and, therefore, our claim (4.9). ��
Our choice of the unit square in the above lemma facilitates the computation for

polyhedra lying above more general Jordan measurable sets in the boundary of S.
Lemma 4.2 Let J, H ⊂ ∂S be compact and Jordan measurable with J ⊂ int∂SH.
Then

vn(J ⊂ H) ∼ vol3(J
′)

3
2 lkor

1√
n

as n → ∞.

Proof 1.We first show that

lim sup
n→∞

vn(J ⊂ H)
√
n ≤ lkor vol3(J

′)
3
2 . (4.13)

Let ξ > 1 be fixed. As J is Jordan measurable, we can find m points v1, . . . , vm ∈
C × R and some r > 0, such that

J ′ ⊂
m⋃
1

(
v j ·H I r

)
⊂

m⋃
1

(
v j ·H Î r

)
⊂ H ′ (4.14)

and

m vol3(I
r ) ≤ ξ vol3(J ′). (4.15)

Now, observe that

√
k
vk(v

j ·H I r ⊂ v j ·H Î r )

vol3(I r )
3
2

= √
k
vk(I r ⊂ Î r )

vol3(I r )
3
2

= √
k vk(I ⊂ Î ). (4.16)
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Thus, due to (4.14), Lemma 4.1, (4.16) and (4.15), we have

vkm(J ⊂ H)
√
km ≤

m∑
j=1

vk(v
j ·H I r ⊂ v j ·H Î r )

√
k
√
m

≤ ξ lkor vol3(I r )
3
2m

3
2 (4.17)

≤ ξ 5
2 lkor vol3(J

′)
3
2

for k sufficiently large. Choose k0 ∈ N+ such that for k ≥ k0, (4.17) holds and√
(k + 1)/k ≤ ξ . For sufficiently large n, we can find a k ≥ k0 such that mk ≤ n ≤

m(k + 1). Hence,

vn(J ⊂ H)
√
n ≤ vkm(J ⊂ H)

√
(k + 1)m

≤ ξ 5
2 lkor vol3(J

′)
3
2

√
k + 1

k

≤ ξ 7
2 lkor vol3(J

′)
3
2 .

As ξ > 1 was arbitrarily fixed, we have proved (4.13).
2. It remains to show that

lim inf
n→∞ vn(J ⊂ H)

√
n ≥ lkor vol3(J

′)
3
2 . (4.18)

Once again, fix a ξ > 1. The Jordan measurability of J ensures that there are
pairwise disjoint sets I1, . . . , Im , where I j = v j ·H I r j for some r j > 0 and v j ∈ C×R,
1 ≤ j ≤ m, such that

m⋃
1

I j ⊂ J ′ and
m⋃
1

Î j ⊂ J ′, (4.19)

where Î j = v j ·H Î r j , and

vol3(J
′) ≤ ξ

m∑
j=1

vol3(I j ). (4.20)

Choose a Pn ∈ Pn(J ⊂ H ; fS) such that v(S \ Pn) ≤ ξvn(J ⊂ H) and let n j denote
the number of cuts of Pn whose projections intersect I j and are contained in Î j . By
part 1, vn(J ⊂ H)→ 0 as n → ∞. Thus, recalling (4.2), δ(Pn)→ 0 as n → ∞. So,
we may choose n so large that the projections of these n j cuts, in fact, cover I j and
no two cuts of P whose projections intersect two different I j ’s intersect. Therefore,

n1 + · · · + nm ≤ n. (4.21)
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By Lemma 4.1 and (4.16), there is an n0 ∈ N+ such that

vk(I j ⊂ Î j ) ≥ 1

ξ
lkor vol3(I j )

3
2

1√
k

(4.22)

for k ≥ n0 and j = 1, . . . ,m. We may further increase n to ensure that

n j ≥ n0 for j = 1, . . . ,m.

Consequently, by (4.19) and (4.22), we have,

vn(J ⊂ H) ≥ 1

ξ

m∑
j=1

vn j (I j ⊂ Î j ) ≥ lkor
ξ2

m∑
j=1

vol3(I j )
3
2

√
n j

.

Now, Hölder’s inequality yields

m∑
j=1

vol3(I j ) =
m∑
j=1

(
vol3(I j )

n1/3j

)
n1/3j ≤

⎛
⎝ m∑

j=1

vol3(I j )
3/2

n1/2j

⎞
⎠

2
3
⎛
⎝ m∑

j=1

n j

⎞
⎠

1
3

.

Using this, (4.20) and (4.21), we obtain

vn(J ⊂ H) ≥ lkor
ξ2

⎛
⎝ m∑

j=1

vol3(I j )

⎞
⎠

3
2 (

1∑m
1 n j

) 1
2 ≥ lkor

ξ7/2
vol3(J

′)
3
2

1√
n

for n sufficiently large. As the choice of ξ > 1was arbitrary, (4.18) now stands proved.
��

As a final remark, we extend the above lemma to a class of slightly more general
model domains in order to illustrate the effect of theLevi determinant onour asymptotic
formula.

Corollary 4.3 Let Sλ := {(z1, x2 + iy2) ∈ C
2 : y2 > λ|z1|2} and fSλ(z, w) =

λ(z2 − w2) − 2iλ2(z1w1), for λ > 0. Let J, H ⊂ ∂Sλ be compact and Jordan
measurable with J ⊂ int∂SλH. Then

vn(Sλ; J ⊂ H) := v(Sλ;Pn(J ⊂ H ; fSλ)) ∼ λ 1
2 vol3(J

′)
3
2 lkor

1√
n

as n → ∞.

Proof Let � : C2 → C
2 be the biholomorphism � : (z1, z2) �→ (λz1, λz2). Then,

S = �(Sλ) and fSλ(z, w) = fS(�(z),�(w)). Therefore, there is a bijective cor-
respondence between Pn(J ⊂ H ; fSλ) and Pn(�J ⊂ �H ; fS) given by P �→ �P .
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Now, as det(JR�) ≡ λ4 and det(JR�res) ≡ λ3, we have
vn(Sλ; J ⊂ H)

vol3(J ′) 32
= λ−4vn(S;�J ⊂ �H)

λ− 9
2 vol3(�res J ′) 32

∼ λ 1
2 lkor

1√
n
.

��

5 Local Estimates Via Model Domains

Lemma 3.2 suggests a way to locally compare the volume-minimizing approximations
drawn from two different classes of f -polyhedra which exhibit some comparability.
In this section, our main goal is Lemma 5.5 where we set up a local correspondence
between � and a model domain Sλ, pull back the special cuts given by fSλ (defined
in Sect. 4) via this correspondence, and establish a (3.2)-type relationship between the
pulled-back cuts and those coming from the Levi polynomial of a defining function
of �. First, we note a useful estimate on the Levi polynomial.

Lemma 5.1 Let � be a C2-smooth strongly pseudoconvex domain. Suppose ρ ∈
C2(C2) is a strictly plurisubharmonic defining function of �. Then, there exist con-
stants c > 0 and τ > 0 such that

||z − w||2 ≤ c|p(z, w)|, (5.1)

on �τ = {(z, w) ∈ �× ∂� : ||z − w|| ≤ τ }, where p is the Levi polynomial of ρ.

Proof The second-order Taylor expansion of ρ about w ∈ ∂� gives:

−2Re p(z, w) = −ρ(z)+
2∑

j,k=1

∂2ρ(w)

∂z j∂zk
(z j − w j )(zk − wk)+ o(||z − w||2),

The strict plurisubharmonicity of ρ implies the existence of a c′ > 0 so that

2∑
j,k=1

∂2ρ(w)

∂z j∂zk
(z j − w j )(zk − wk) ≥ c′||z − w||2, (z, w) ∈ �×�.

The result follows quite easily from this. ��

5.1 Special Darboux Coordinates

As we are now going to construct a non-holomorphic transformation, we need to
alternate between the real and complex notation. Here are some clarifications.

• Wewill use z (and similarlyw) to denote both (z1, z2) = (x1+ iy1, x2+ iy2) ∈ C
2

and (x1, y1, x2, y2) ∈ R
4. The usage will be clear from the context. In the same

vein, by z′ we mean either (z1, x2) = (x1 + iy1, x2) ∈ C×R or (x1, y1, x2) ∈ R
3.
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• For any map � : C2 → C
2 and z, w ∈ C

2, JR�(w)(z − w) will either denote a
vector in C2 or a vector in R4 depending on the context. Recall that JR�(w)(z −
w) = JC�(w)(z − w) + Jac

C̄
�(w)(z − w̄), where Jac

C̄
�(w) is the matrix of

complex conjugate derivatives of � at w.

• Recall that
〈
θ, z

〉
denotes the pairing between a complex covector and a complex

vector. When θ is a real covector, we use
〈〈
θ, z

〉〉
to stress that z is being viewed

as a tuple in R
4.

Fix a λ > 0. For reasons that will become clear in the next part of this section, we
consider a special C4-smooth strongly pseudoconvex domain� such that 0 ∈ ∂� and
for a neighborhood U of the origin, there is a convex function ρ : U → R such that
� ∩U = {z ∈ U : ρ(z) < 0} and

ρ(z) = − Im z2 + λ|z1|2 + 2Re(μz1z2)+ ν|z2|2 + o(|z|2). (5.2)

We may shrink U to find a convex function F := Fρ : U ′ → R that satisfies
ρ(z1, x2, F(z1, x2)) = 0. ρ and Fρ are both C4-smooth and −i(∂ρ − ∂ρ) is a C3-
smooth contact form on ∂� ∩ U . The domain Sλ from Sect. 4 is such a domain with
ρλ(z) = − Im z2 + λ|z1|2 and Fρλ(z1, x2) = λ|z1|2.

Darboux’s theorem in contact geometry (see [1, Appendix 4]) says that any two
equi-dimensional contact structures are locally contactomorphic. We seek local dif-
feomorphisms between � and Sλ that extend to local contactomorphisms between
(∂�,−i(∂ρ − ∂ρ)) and (∂Sλ,−i(∂ρλ − ∂ρλ)), and satisfy estimates essential to
our goal. We carry out this construction over the next three lemmas, working ini-
tially on R

3 instead of ∂�. For this, if grρ : U ′ → U maps (x1, y1, x2) to
(x1, y1, x2, Fρ(x1, y1, x2)), we set

θρ := (grρ)∗
(
∂ρ − ∂ρ

i

)

= −1

ρy2

(
(ρy2ρy1 + ρx1ρx2)dx1 − (ρy2ρx1 − ρy1ρx2)dy1 + (ρ2y2 + ρ2x2)dx2

)
,

where, by the partial derivatives of ρ we mean their pull-backs to U ′ via grρ .

Lemma 5.2 Let � be defined by (5.2). There is an open subset (0 ∈)V ⊂ U ′ ⊂ R
3

and a C2-smooth diffeomorphism � = (π1, π2, π3) : V → R
3 with �(0) = 0

satisfying

• �∗θρλ(z′) = α(z′)θρ(z′) for all z′ ∈ V , and some α ∈ C(V ) with α(0) = 1; and
• | det JR�(0)| = 1.

Proof We proceed with the understanding that when referring to functions defined a
priori onU (such as ρ or its derivatives) we implicitly mean their pull-backs toU ′ via
grρ .
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Now, consider the following C3-smooth vector field in ker θρ on U ′:

v = ∂ρ

∂x2

∂

∂x1
− ∂ρ

∂ y2

∂

∂ y1
− ∂ρ

∂x1

∂

∂x2
.

We let γ t (z′) := γ (z′; t) = (γ1(z′; t), γ2(z′; t), γ3(z′; t)) be the flow of v such that
γ (z′; 0) = z′. Note that γ (z′; t) is C3-smooth in z′ and C4-smooth in t . Differentiating
the initial value problem for the flow, we have

JR γ
0 ≡ Id. and HessR γ

0 ≡ 0. (5.3)

Observe that the map

� = (�1, �2, �3) : z′ = (x1, y1, x2) �→ γ (x1, 0, x2; y1),

is defined on some neighborhood, U ′
1 ⊂ U ′, of the origin. Moreover, dropping the

arguments, switching to our shorthand notation, and denoting f ◦ � by f̃ , we have

JR � =
⎛
⎝�1x1 ρ̃x2 �1x2
�2x1 −ρ̃y2 �2x2
�3x1 −ρ̃x1 �3x2

⎞
⎠ ,

and

(JR �)
−1 =

⎛
⎜⎜⎝

ρ̃x1�2x2−ρ̃y2�3x2
det JR �

−ρ̃x1�1x2−ρ̃x2�3x2
det JR �

ρ̃y2�1x2+ρ̃x2�2x2
det JR �

�2x2�3x1−�2x1�3x2
det JR �

−�1x2�3x1+�1x1�3x2
det JR �

�1x2�2x1−�1x1�2x2
det JR �

ρ̃y2�3x1−ρ̃x1�2x1
det JR �

ρ̃x2�3x1+ρ̃x1�1x1
det JR �

−ρ̃y2�1x1−ρ̃x2�2x1
det JR �

⎞
⎟⎟⎠ ,

wherever JR � is invertible. In particular, JR �(0) = (JR �)−1(0) = Id. We may,
therefore, locally invert � (as a C3-smooth function) in some neighborhood W1 ⊂ U ′

1
of 0. Let

(X1,Y1, X2) = �−1(x1, y1, x2).

� is constructed to “straighten” v, i.e., JR �(
∂
∂Y1
) = v. So, if we view X1 and X2 as C3-

smooth functions on W := �(W1) ∩ U ′, they have linearly independent differentials
and v(X1) ≡ v(X2) ≡ 0. Thus, dX1 ∧ dX2 �= 0 everywhere on W and dX1(v) ≡
dX2(v) ≡ θρ(v) ≡ 0 on W . So, it must be the case that

θρ(·) = ω1(·)dX1(·)+ ω2(·)dX2(·),

for some ω1, ω2 ∈ C2(W ). Substituting the expressions for θρ , dX1 and dX2 (the
latter two can be read off the matrix (JR �)−1 above), we get ω1 =

−�1x1 ρ̃y2 (ρy1ρy2 + ρx1ρx2 )+ �2x1 (ρ̃x1 (ρ2y2 + ρ2x2 )− ρ̃x2 (ρy1ρy2 + ρx1ρx2 ))− �3x1 ρ̃y2 (ρ2x2 + ρ2y2 )
ρy2 ρ̃y2
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and ω2 =
−�1x2 ρ̃y2 (ρy1ρy2 + ρx1ρx2 )+ �2x2 (ρ̃x1 (ρ2y2 + ρ2x2 )− ρ̃x2 (ρy1ρy2 + ρx1ρx2 ))− �3x2 ρ̃y2 (ρ2x2 + ρ2y2 )

ρy2 ρ̃y2
,

where, once again, f̃ := f ◦ �. Observe that ω1(0) = 0 and ω2(0) = 1. Thus, for
some neighborhood, V ⊂ W , of the origin, ω2 �= 0 and

θρ = ω2(Y1dX1 + dX2),

where Y1 := ω1/ω2. Finally, set

α := 1

ω2
, π1 := X1, π2 := −Y1

4λ
andπ3 := X2 + X1Y1

2
.

Then, on V ,
αθρ = −2λπ2dπ1 + 2λπ1dπ2 + dπ3 = �∗(θρλ) (5.4)

and α(0) = 1.
Referring to (5.3) and the formulae for ω1, ω2 and (JR �)−1, we get

JR�(0) =
⎛
⎝ 1 0 0
0 1 − Imμ

2λ
0 0 1

⎞
⎠ . (5.5)

We have, thus, constructed the required map. ��
Wenow show that the contact transformation constructed above satisfies an estimate

crucial to our analysis.

Lemma 5.3 Let � and V be as in the proof of Lemma 5.2 and V � V be a neigh-
borhood of the origin. Then, there is an e1 ∈ C(V) with e1(0) = 0 and a c1 > 0 such
that, for all w′ ∈ V and z′ ∈ R

3,

|(z′ − w′)tr · HessR π3(w′) · (z′ − w′)|
≤ e1(w

′)|z′ − w′|2 + c1(|z1 − w1||x2 − u2| + |x2 − u2|2). (5.6)

Proof Recall that π3 = X2 + X1Y1
2 . We refer to the construction in the proof of

Lemma 5.2 and collect the following data:

(X1)x1(0) = 1, (X1)y1(0) = 0;
(Y1)x1(0) = 0, (Y1)y1(0) = −4λ;
(X2)x1x1(0) = 0, (X2)x1y1(0) = 2λ = (X2)y1x1(0), (X2)y2y2(0) = 0.

Next, we write out the relevant terms.

(z′ − w′)tr · HessR π3(w′) · (z′ − w′)
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=
(
X2x1x1 (w

′)+ X1x1 (w
′)Y1x1 (w

′)+ 1

2
Y1(w

′)X1x1x1 (w
′)+ 1

2
X1(w

′)Y1x1x1 (w
′)
)
(x1 − u1)

2

+
(
2X2x1 y1 (w

′)+ X1x1 (w
′)Y1 y1 (w

′)+ X1 y1 (w
′)Y1x1 (w

′)
)
(x1 − u1)(y1 − v1)

+
(
Y1(w

′)X1x1 y1 (w
′)+ X1(w

′)Y1x1 y1 (w
′)
)
(x1 − u1)(y1 − v1)

+
(
X2 y1 y1 (w

′)+ X1 y1 (w
′)Y1 y1 (w

′)+ 1

2
Y1(w

′)X1 y1 y1 (w
′)+ 1

2
X1(w

′)Y1 y1 y1 (w
′)
)
(y1 − v1)2

+ 2π3x1x2 (w
′)(x1 − u1)(x2 − u2)+ 2π3 y1x2 (w

′)(y1 − v1)(x2 − u2)+ π3x2x2 (w′)(x2 − u2)
2.

Now, the coefficients of (x1 − u1)2, (x1 − u1)(y1 − v1) and (y1 − u1)2 in the above
expansion all vanish at the origin (see data listed above). Thus, we obtain (5.6). ��

All that remains is to extend the above transformation to �. For this, let V be as in
Lemma 5.2 and Gρ : V × R → C

2 be the map

(x1, y1, x2, y2) �→ (x1, y1, x2, Fρ(x1, y1, x2)+ y2).

Gρ is evidently a C4-smooth diffeomorphism withG(V × (0, t]) ⊂ � for some t > 0.
We note the following facts about Gρ :

• JR Gρ(0) = Id.

• (Gρ)∗(dρ) =
(
∂ρ

∂ y2
◦ Gρ

)
dy2 and (Gρ)∗

(
∂ρ−∂ρ

i

)
= θρ on V × {0}.

Lemma 5.4 There is a neighborhood U ⊂ C
2 of the origin and a C2-diffeomorphism

� : U → �(U ) ⊂ C
2 such that

• �(0) = 0, �(� ∩U ) = Sλ ∩�(U ) and �(∂� ∩U ) = ∂Sλ ∩�(U );
• det JR�(0) = 1 and det JR�res(0) = 1; and
• if lρ and lλ denote the Cauchy–Leray map of ρ and ρλ, respectively, then

∣∣lρ(z, w)− lλ(�(z),�(w))
∣∣ (5.7)

≤ (e(w)+ D(z − w))
(
|lλ(�(z),�(w))+ ||z − w||2

)
+ c|lλ(�(z),�(w))|2,

on {(z, w) ∈ �×U : ||z −w|| ≤ τ }, for some choice of e ∈ C(U ) with e(0) = 0,
D(ζ ) = o(1) as |ζ | → 0, and constants c, τ > 0.

Proof Let � = (�1, �2) := Gρλ ◦ (�, Id.) ◦ G−1
ρ , where Id. is the identity map on

R, and U � Gρ(V × [−t, t]) is a neighborhood of the origin. We use the notation
(�1, �2) = (ψ1+ iψ2, ψ3+ iψ4). The regularity and mapping properties of� follow
from its definition We also clarify that ∂ρλ(�(w)) denotes ∂ρλ evaluated at �(w).
Since Id.∗(−dy2) = −dy2 and �∗(θρλ) = αθρ on {y2 = 0},

�∗(dρλ) = α1(dρ)

and

�∗
(
∂ρλ − ∂ρλ

i

)
= α2

(
∂ρ − ∂ρ

i

)
,
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on ∂� ∩ U , where α1(x1, y1, x2, y2) = −1/

(
∂ρ

∂ y2
(Gρ(x1, y1, x2, y2))

)
and

α2(x1, y1, x2, y2) = α(x1, y1, x2). Therefore, for all w ∈ ∂� ∩U and z ∈ C
2,

2
〈
∂ρλ(�(w)), JR�(w)(z − w)

〉
(5.8)

= 2Re
〈
∂ρλ(�(w)), JR�(w)(z − w)

〉
+ 2i Im

〈
∂ρλ(�(w)), JR�(w)(z − w)

〉

=
〈〈
(∂ρλ + ∂ρλ)(�(w)), JR�(w)(z − w)

〉〉

+ i
〈〈∂ρλ − ∂ρλ

i
(�(w)), JR�(w)(z − w)

〉〉

=
〈〈
�∗(∂ρλ + ∂ρλ)(w), z − w

〉〉
+ i
〈〈
�∗

(
∂ρλ − ∂ρλ

i

)
(w), z − w

〉〉

= α1(w)
〈〈
(∂ρ + ∂ρ)(w), z − w

〉〉
+ iα2(w)

〈〈 (∂ρ − ∂ρ
i

)
(w), z − w

〉〉

= 2α1(w)Re
〈
∂ρ(w), z − w

〉
+ 2iα2(w) Im

〈
∂ρ(w), z − w

〉
.

Now, since ρλ := λ|z1|2 − y2,
∂ρλ

∂z1
(�(z)) = λ�1(z) and

∂ρλ

∂z2
(�(z)) = i

2
.

Therefore, there is a τ1 > 0 such that on {(z, w) ∈ R
4 ×U : ||z − w|| ≤ τ1},

∣∣∣〈∂ρλ(�(w)),�(z)−�(w)− JR�(w)(z − w)
〉∣∣∣

≤ c|�1(w)| · ||z − w||2 + 1

2
R1(z − w)+ R2(z − w), (5.9)

where, c′ > 0, R1(z − w) = |(z − w)tr · (HessR ψ3(w) + HessR ψ4(w)) · (z − w)|,
and R2(ζ ) = o(|ζ |2) as |ζ | → 0. Observe that ψ3(z′, y2) = π3(z′) and ψ4(z′, y2) =
π1(z′)2 + π2(z′)2 + y2 − F(z′). As

ψ4x1x1(w) = 2
2∑
j=1

(π j x1
(w′)2 + π j (w

′)π j x1x1
(w′))− Fx1x1(w

′),

ψ4y1y1(w) = 2
2∑
j=1

(π j y1
(w′)2 + π j (w

′)π j y1y1
(w′))− Fy1y1(w

′) and

ψ4x1y1(w) = 2
2∑
j=1

(π j x1
(w′)π j y1

(w′)+ π j (w
′)π j x1y1

(w′))− Fx1y1(w
′)

all vanish at w = 0, we have, for all (z, w) ∈ R
4 ×U ,

|(z − w)tr · HessR ψ4(w) · (z − w)|
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≤ e2(w)||z − w||2 + c2(|z1 − w1||z2 − w2| + |z2 − w2|2), (5.10)

where e1 ∈ C(U ) with e1(0) = 0, and c1 > 0 is a constant. Combining (5.9), (5.6)
and (5.10) (and adding c′|�1|, e1 and e2), we have that

A :=
∣∣∣〈∂ρλ(�(w)),�(z)−�(w)− JR�(w)(z − w)

〉∣∣∣ (5.11)

≤ (e3(w)+ D3(z − w))||z − w||2 + c3(|z1 − w1||z2 − w2| + |z2 − w2|2),

on {(z, w) ∈ R
4 × U : ||z − w|| ≤ τ3}, for some e3 ∈ C(U ) with e3(0) = 0,

D3(ζ ) = o(1) as |ζ | → 0, and constants c3, τ3 > 0.
Next, we have that

|�2(z)−�2(w)| = 2
∣∣∣〈∂ρλ(�(w)),�(z)−�(w)〉−�1(z)(�1(z)−�1(w))

∣∣∣
≤ c4

∣∣∣〈∂ρλ(�(w)),�(z)−�(w)〉∣∣∣+ e4(w)||z − w||, (5.12)

on {(z, w) ∈ R
4×U : ||z−w|| ≤ τ4}, for some choice of e4, c4 and τ4 as before. Also,

if �−1 = (ψ̂1, ψ̂2, ψ̂3, ψ̂4), then JR ψ̂3(0) = (0, 0, 1, 0) and JR ψ̂4(0) = (0, 0, 0, 1).
So, we are permitted to conclude that

|z2 − w2| ≤ c4|�2(z)−�2(w)| + (e5(w)+ D5(z − w))||z − w||, (5.13)

on {(z, w) ∈ R
4 ×U : ||z − w|| ≤ τ5}, for some e5, c5, D5 and τ5 as before.

Finally, as α1(0) = α2(0) = 1, (5.8), (5.11), (5.12) and (5.13) combine to give e,
c, D and τ with the required properties, such that

|lρ(z, w)− lλ(�(z),�(w))|
≤
∣∣∣〈∂ρ(w), z − w

〉
−
〈
∂ρλ(�(w)), JR�(w)(z − w)

〉∣∣∣+ A,

≤ (e(w)+ D(z − w))
(
|lλ(�(z),�(w))| + ||z − w||2

)
+ c|lλ(�(z),�(w))|2

on {(z, w) ∈ R
4 ×U : ||z − w|| ≤ τ }. ��

Convexification Now, we return to general strongly pseudoconvex domains. Assume
0 ∈ ∂� and the outward unit normal vector to ∂� at 0 is (0,−i). Let ρ be a C2-smooth
strictly plurisubharmonic defining function of� such that ||∇ρ(0)|| = 1. Now, ρ has
the following second-order Taylor expansion about the origin:

ρ(w) = Im

⎛
⎝−w2 + i

2∑
j,k=1

∂2ρ(0)

∂z j∂zk
w jwk

⎞
⎠+

2∑
j,k=1

∂2ρ(0)

∂z j∂zk
w jwk + o(|w|2).
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Using a classical trick, attributed to Narasimhan, we convexify � near the origin via
the map � given by:

w1 �→ �1(w) = w1

w2 �→ �2(w) = w2 − i
2∑

j,k=1

∂2ρ(0)

∂z j∂zk
w jwk .

Owing to the inverse function theorem, � is a local biholomorphism on some neigh-
borhood U of 0. We may further shrink U so that the strong convexity of�(∂�∩U )
at 0 propagates to all of �(∂� ∩U ). We collect the following key observations:

• JR�(0) = Id.;

• If ρ̂ := ρ ◦�−1, then ρ̂(w) = − Imw2 +
2∑

j,k=1

∂2ρ(0)

∂z j∂zk
w jwk + o(|w|2).

• Let p denote the Levi-polynomial of ρ, lρ̂ (z, w) be the Cauchy–Leray map of ρ̂,
and ∂ρ̂(�(w)) denote ∂ρ̂ evaluated at�(w). Then, for any neighborhoodU1 � U
of the origin, there is a τ > 0 such that, on {(z, w) ∈ C

2 ×U1 : ||z − w|| ≤ τ },

|p(z, w)− lρ̂ (�(z),�(w))| = |p(z, w)− lρ̂ (�(z),�(w))| (5.14)

≤
∣∣∣〈∂ρ(w), z − w

〉
−
〈
∂ρ̂(�(w)), JR�(w)(z − w)

〉∣∣∣

+ 1

2

∣∣∣∣∣∣
2∑

j,k=1

(
∂2ρ(w)

∂z j∂zk
+ 2i

∂ρ̂(�(w))

∂w2

∂2ρ(0)

∂z j∂zk

)
(z j − w j )(zk − wk)

∣∣∣∣∣∣
≤
∣∣∣〈∂ρ(w), z − w

〉
−
〈
�∗(∂ρ̂)(w), z − w

〉∣∣∣

+ 1

2

∣∣∣∣∣∣
2∑

j,k=1

(
∂2ρ(0)

∂z j∂zk
+ o(1)+ (−1 + o(|w|)) ∂

2ρ(0)

∂z j∂zk

)
(z j − w j )(zk − wk)

∣∣∣∣∣∣
≤ e(w)||z − w||2,

for some e ∈ C(U ) with e(0) = 0.

Main Local EstimateWe combine the maps constructed above:

Lemma 5.5 Fix an ε > 0. Let � ⊂ C
2 be a C4-smooth strongly pseudoconvex

domain and ρ a strictly plurisubharmonic defining function of�. Assume that 0 ∈ ∂�,
∇ρ(0) = (0, 0, 0,−1) and M(ρ)(0) = λ. Then, there exists a neighborhood U of
the origin, a C2-smooth origin-preserving diffeomorphism on U that carries�∩U
onto Sλ ∩ (U ), and a constant τ > 0 such that

• 1 − ε ≤ vol( (V ))

vol(V )
≤ 1

1 − ε , for every Jordan measurable V ⊂ U;

• 1 − ε ≤ vol3( (J )
′)

vol3(J ′)
≤ 1

1 − ε , for every Jordan measurable J ⊂ ∂� ∩U; and
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• if p is the Levi polynomial of ρ and lλ is the Cauchy–Leray map of ρλ, then

|p(z, w)− lλ( (z), (w))| ≤ ε(|p(z, w)| + |lλ( (z), (w))|)

on (U ×U ) ∩�τ .
Proof The needed map is� ◦� (from Lemma 5.4 and the convexification procedure
above). The mapping and volume distortion properties follow from those of� and�.
The estimate is a combination of (5.14), (5.7) and (5.1). ��

The following lemma is an application of Lemma 3.2 and gives us a local version
of our main theorem.

Lemma 5.6 Let �, f and ρ be as in Theorem 1.1. Fix an ε ∈ (0, 1/3) and a point
q ∈ ∂�. Then, there exists a neighborhood Uq,ε of q such that for every Jordan
measurable pair J, H ⊂ ∂� ∩Uq,ε such that J ⊂ int∂�H,

(1 − ε)31 lkor λ(q)
1
2 s(J )

3
2√

n
≤ v(�;Pn(J ⊂ H ; f )) ≤ (1 − ε)−19 lkor

λ(q)
1
2 s(J )

3
2√

n

for sufficiently large n, where λ(q) := 4M(ρ)(q)

||∇ρ(q)||3 and s is the Euclidean surface area

measure on ∂�.

Proof First, we set ε̂ = cε, where c < 1 will be revealed later. Let ρ be the strictly
plurisubharmonic defining function of � for which (1.3) in Theorem 1.1 holds. Let
A : C2 → C

2 be a holomorphic isometry that takes q to the origin and the outer unit
normal at q to (0,−i ||∇ρ(q)||). Set ρ̂(z) := ||∇ρ(q)||−1ρ(A−1z). Then, A(�) and
ρ̂ satisfies the hypotheses of Lemma 5.5, with M(ρ̂)(0) = λ(q). Suppose ,U and τ
are the map, neighborhood and constant, respectively, granted by Lemma 5.5, and p̂
is the Levi polynomial of ρ̂. Then,

|p̂(z, w)− lλ(q)( (z), (w))| ≤ ε̂(|p̂(z, w)| + |lλ(q)( (z), (w))|) (5.15)

on (U ×U ) ∩ A(�)τ . Also note that

||∇ρ(q)||p̂(Az, Aw) = p(z, w). (5.16)

Next, set Uq := A−1(U ) and  q :=  ◦ A. Note that  q maps � to Sλ(q) locally
near q. We define

f̃ (z, w) := f (z, w)

||∇ρ(q)|| ; (5.17)

g(z, w) := fSλ(q)
(
 q z, qw

); and (5.18)

g̃(z, w) := a(w,w)lλ(q)
(
 q z, qw

) = a(w,w)
i

2λ(q)
fSλ(q)

(
 q z, qw

)
. (5.19)

123



1056 P. Gupta

So, when defined,

C(w, δ; f̃ ) = C (w, ||∇ρ(q)||δ; f ) ; and (5.20)

C(w, δ; g̃) = C

(
w,

2λ(q)

|a(w,w)|δ; g
)
. (5.21)

Thus, for our point of interest, there is little difference between f and f̃ (and, between
g and g̃). Keeping this observation in mind, we will apply Lemma 3.2 to f̃ , g̃ ∈ C(�×
(∂�∩Uq)) (see Remark 3.3). To bound | f̃ (z, w)− g̃(z, w)| from above, we estimate
| f̃ (z, w) − a(z, w)p̂(Az, Aw)|, |a(z, w)p̂(Az, Aw) − a(z, w)lλ(q)

(
 q z, qw

)| and
|a(z, w)lλ(q)

(
 q z, qw

)− g̃(z, w)|.
By (1.3), we can find a τ1 ∈ (0, τ ] such that

| f̃ (z, w)− a(z, w)p̂(Az, Aw)| = | f (z, w)− a(z, w)p(z, w)|
||∇ρ(q)||

≤ ε̂

||∇ρ(q)|| |p(z, w)| on �τ1 . (5.22)

By Lemma 5.5, (5.16), (5.19) and the continuity of a on �τ , we shrink τ1 so that on
(Uq ×Uq) ∩�τ1 ,

|a(z, w)p̂(Az, Aw)− a(z, w)lλ(q)
(
 q z, qw

)|
≤ |a(z, w)||p̂(Az, Aw)− lλ(q)

(
 q z, qw

)|
≤ ε̂|a(z, w)| (|p̂(Az, Aw)| + |lλ(q)

(
 q z, qw

)|)

= ε̂|a(z, w)|
( |p(z, w)|

||∇ρ(q)|| + |g̃(z, w)|
|a(w,w)|

)

≤ ε̂
(
max�τ |a(z, w)|

||∇ρ(q)||
)

|p(z, w)| + ε̂
(
max�τ |a(z, w)|
min∂� |a(w,w)|

)
|g̃(z, w)|, (5.23)

and

|a(z, w)lλ(q)
(
 q z, qw

)− g̃(z, w)| = |a(z, w)− a(w,w)| · |lλ(q)
(
 q z, qw

)|
≤ ε̂

min∂� |a(w,w)| |g̃(z, w)|. (5.24)

Lastly, by (1.3), there exist τ2 ∈ (0, τ1] and l > 0 such that

|p(z, w)| ≤ l| f̃ (z, w)| on �τ2 . (5.25)

Now, set

c = 1

2
min

{
1,

||∇ρ(q)||
l

,
||∇ρ(q)||

l max�τ |a(z, w)| ,
min∂� |a(w,w)|
max�τ |a(z, w)| ,min

∂�
|a(w,w)|

}
.
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Then, adding (5.22), (5.23) and (5.24), and using (5.25), we get

| f̃ (z, w)− g̃(z, w)| ≤ ε
(
| f̃ (z, w)| + |g̃(z, w)|

)
on (Uq ×Uq) ∩�τ2 .

We now need to show that g̃ satisfies the remaining hypotheses of Lemma 3.2. But
these are conditions on the cuts of g̃, which are identical to the cuts of g (by (5.21)).
So, we work with g instead. LetUq,ε � Uq be an open neighborhood of q, and δ0 > 0
be such that C(w, δ; g) ⊂ Vq for all w ∈ Uq,ε ∩ ∂� and δ < δ0. Then, there is a
diffeomorphism

 q =  ◦ A : C(w, δ; g)→ C
(
 qw, δ; fSλ(q)

)
, (5.26)

for w ∈ Uq,ε ∩ ∂� and δ < δ0. Therefore, exploiting Lemma 6.1, we get

(1) C(w, δ; g) is Jordan measurable for all w ∈ Uq,ε ∩ ∂� and δ < δ0;
(2) If w1, . . . , wm ∈ Uq,ε ∩ ∂�, m ∈ N+, then

vol

⎛
⎝ m⋃

j=1

C(w j , (1 + t)δ; g)
⎞
⎠ ≤ 1

1 − ε vol
⎛
⎝ m⋃

j=1

C( qw
j , (1 + t)δ; fSλ(q) )

⎞
⎠

≤ (1 + t)3

1 − ε vol

⎛
⎝ m⋃

j=1

C( qw
j , δ; fSλ(q) )

⎞
⎠

≤ (1 + t)3

(1 − ε)2 vol

⎛
⎝ m⋃

j=1

C(w j , δ; g)
⎞
⎠ ,

for all t ∈ (0, 16) and δ j ≤ δ0/16, j = 1, . . . ,m. Thus, g satisfies the doubling
property (3.3) with quantifiers δg = δ0/16 and D(t) = (1 − ε)−2(1 + t)3.

Lastly, we further shrink Uq,ε—if necessary—to ensure that for any s-measurable
set J ⊂ (Uq,ε ∩ ∂�),

1 − ε ≤ s(J )

vol3(J ′′)
≤ 1

1 − ε , (5.27)

where J ′′ is the orthogonal projection of J onto Tq∂�, and by vol3(J
′′), we really

mean vol3(A(J
′′)).

We are now ready to estimate. Consider Jordan measurable compact sets J ⊂ H ⊂
(Uq,ε ∩ ∂�) such that J ⊂ int∂�H . By (5.20), (3.4) from Lemma 3.2, (5.21), the
volume-distortion properties of q—seeLemma 5.5 and recall that A is an isometry—
Corollary 4.3 and (5.27), we have that
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lim sup
n→∞

√
n v(�;Pn(J ⊂ H ; f )) = lim sup

n→∞
√
n v(�;Pn(J ⊂ H ; f̃ ))

≤ 1

(1 − ε)2
(
1 + (1 + ε)2

(1 − ε)2 − 1

)3

lim sup
n→∞

√
n v(�;Pn(J ⊂ H ; g̃))

= 1

(1 − ε)2
(
1 + (1 + ε)2

(1 − ε)2 − 1

)3

lim sup
n→∞

√
n v(�;Pn(J ⊂ H ; g))

≤ (1 − ε)−14 lim sup
n→∞

√
n (1 − ε)−1v(Sλ(q);Pn( q J ⊂  q H ; fSλ(q) ))

≤ (1 − ε)−15 lkorλ(q)
1
2 vol3(( q J )

′)
3
2

≤ (1 − ε)− 33
2 lkorλ(q)

1
2 vol3(J

′′)
3
2 ≤ (1 − ε)−18 lkorλ(q)

1
2 s(J )

3
2 .

By a similar argument, but now using (3.5) from the statement of Lemma 3.2, we get
that

lim
n→∞

√
n v(�;Pn(J ⊂ H ; f )) ≥ (1 − ε)30 lkorλ(q) 12 s(J ) 32 .

Therefore, for large enough n, we get the desired estimates. ��

6 Proof of Theorem 1.1

Proof of Theorem 1.1 Fix an ε ∈ (0, 1/3). There exists a tiling {L j }1≤ j≤m of ∂�
consisting of Jordan measurable compact sets with non-empty interior such that

• for each j = 1, . . . ,m, there is a q j ∈ L j for which L j ⊂ Uqj ,ε, where the latter
comes from Lemma 5.6;

• (1 − ε)λ(q) ≤ λ(q j ) ≤ (1 − ε)−1λ(q), for all q ∈ L j .

Then, recalling that λ(q) = 4M(ρ)(q)

||∇ρ(q)||3 , we obtain estimates as follows:

4− 1
3

∫
∂�

σ� =
∫
∂�

4
1
3 M(ρ)(q)

1
3

ds(q)

||∇ρ(q)|| =
m∑
j=1

∫
L j

λ(q j )
1
3 ds(q j )

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

≤ (1 − ε)−1
m∑
j=1

λ(q j )
1
3 s(L j )

≥ (1 − ε)
m∑
j=1

λ(q j )
1
3 s(L j ).

(6.1)

Next, for all j = 1, . . . ,m, we choose compact Jordan measurable sets J j and Hj

such that J j ⊂ int∂�L j ⊂ int∂�Hj ⊂ Uqj ,ε and

s(J j ) ≥ (1 − ε)s(L j ). (6.2)

1. We first estimate v(�;Pn( f )) from above. For j = 1, . . . ,m, choose P j ∈
Pn j (L j ⊂ Hj ; f ) such that vol(� \ P j ) ≤ (1 − ε)−1v(�;Pn j (L j ⊂ Hj ; f )). Let
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P denote the intersection of all these P j ’s. Then, P is an f -polyhedron with at most
n1 + · · · + nm facets. Thus, by Lemma 5.6, for sufficiently large n1, . . . , nm ,

vol(� \ P) ≤ (1 − ε)−1
m∑
j=1

v(�;Pn j (L j ⊂ Hj ; f ))

≤ (1 − ε)−20 lkor

m∑
j=1

λ(q j )
1
2 s(L j )

3
2

√
n j

= (1 − ε)−20 lkor

m∑
j=1

λ(q j )
1
3 s(L j )

(
λ(q j )

1
3 s(L j )

n j

) 1
2

. (6.3)

Now, fix an n ∈ N+. Suppose we set

n j =
⎢⎢⎢⎣ λ(q j )

1
3 s(L j )∑m

j=1 λ(q j )
1
3 s(L j )

n

⎥⎥⎥⎦ , j = 1, . . . ,m. (6.4)

Then,
n1 + · · · + nm ≤ n; (6.5)

and

(1 − ε) λ(q j )
1
3 s(L j )∑m

j=1 λ(q j )
1
3 s(L j )

n ≤ n j . (6.6)

We use (6.5), substitute (6.6) in (6.3) and invoke (6.1) to get

v(�;Pn( f )) ≤ (1 − ε)−21 lkor

⎛
⎝ m∑

j=1

λ(q j )
1
3 s(L j )

⎞
⎠

3
2

1√
n

≤ (1 − ε)−24 lkor
2

(∫
∂�

σ�

) 3
2 1√

n
, (6.7)

for n sufficiently large.
2. Next, we produce a lower bound for v(�;Pn( f )). For this, we first extend the

tiling {L j }1≤ j≤m of ∂� to a thin tubular neighborhood of ∂� in �, denoting the tile
corresponding to L j by L̂ j . This can be done, for instance, by flowing each tile along
the inward normal vector field for a short interval of time. Choose a Pn ∈ Pn( f ) such
that vol(� \ Pn) ≤ (1 − ε)−1v(�;Pn( f )). Let n j be the number of cuts of Pn that
cover J j . Due to the upper bound obtained in (6.7), limn→∞ v(�;Pn( f )) = 0. Thus,
by Lemma 3.1, limn→∞ δ(Pn) = 0. This permits us to choose n sufficiently large so
that

• The n j cuts that cover J j lie in L̂ j .
• Each n j is large enough so that the bounds in Lemma 5.6 hold.
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Thus, invoking Lemma 5.6 and using (6.2), we have that

vol(� \ Pn) ≥
m∑
j=1

vol
(
L̂ j \ Pn

) ≥
m∑
j=1

v(�;Pn j (J j ⊂ L j ; f ))

≥ (1 − ε)31 lkor
m∑
j=1

λ(q j )
1
2 s(J j )

3
2

√
n j

≥ (1 − ε)33 lkor
m∑
j=1

λ(q j )
1
2 s(L j )

3
2

√
n j

.

Now, Hölder’s inequality gives

m∑
j=1

λ(q j )
1
3 s(L j ) =

m∑
j=1

(
λ(q j )s(L j )

3

n j

) 1
3

n
1
3
j ≤

⎛
⎝ m∑

j=1

λ(q j )
1
2 s(L j )

3
2

√
n j

⎞
⎠

2
3
⎛
⎝ m∑

j=1

n j

⎞
⎠

1
3

Thus, using one of the estimates in (6.1),

vol(� \ Pn) ≥ (1 − ε)33 lkor
⎛
⎝ m∑

j=1

λ(q j )
1
3 s(L j )

⎞
⎠

3
2

1√
n1 + · · · + nm

≥ (1 − ε)35 lkor
(

1

41/3

∫
∂�

σ�

) 3
2 1√

n
.

By our choice of Pn ,

v(�;Pn( f )) ≥ (1 − ε)36 lkor
2

(∫
∂�

σ�

) 3
2 1√

n
, (6.8)

for all n sufficiently large.
Finally, we combine (6.8) and (6.7), and recall that ε ∈ (0, 1/3) was arbitrary, to

declare the proof of Theorem 1.1 complete. ��
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Appendix: Power Diagrams in the Heisenberg Group

The Euclidean Plane

Let D(a; r) ⊂ R
2 be a disk of radius r centered at a ∈ R

2. The power of a point
z = (x, y) ∈ R

2 with respect to D = D(a; r) is the number

pow(z, D) = |z − a|2 − r2.

Note that if z is outside the disk D, then pow(z, D) is the square of the length of a
line segment from z to a point of tangency with ∂D. Thus, it is a generalized distance
between z and ∂D. For a collection D of disks in the plane, the power diagram or
Laguerre–Dirichlet–Voronoi tiling of D is the collection of all

cell(D) = {z ∈ R
2 : pow(z, D) < pow(z, D∗), ∀D∗ ∈ D \ {D}}, D ∈ D .

IfD consists of equiradial disks, the power diagram reduces to the Dirichlet–Voronoi
diagram of the centers of the disks. In general, the power diagram of any D gives a
convex tiling of the plane (Fig. 2).

Power diagrams occur naturally and have found several applications (see [2], for
instance). From the point of view of polyhedral approximations, power diagrams (in
R
d−1) are intimately related to the constant ldivd−1 in (1.2) (see [15] and [7] for

explicit details).

The Heisenberg Group

Let K (0; δ) = {z′ ∈ H : |z1|4 + (x2)2 < δ4} be a Korányi sphere inH (see (4.1)). We
define the horizontal power of a point z′ ∈ H with respect to K = K (0; δ) as

hpow(z′, K ) =
{

|z1|2 −√
δ4 − (x2)2, if |x2| ≤ δ2;

∞, otherwise.

Fig. 2 A power diagram in the
plane
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Fig. 3 A {x1 = 0}-slice of a
horizontal power diagram in H

Note that Kc := K ∩ {x2 = c} is a (possibly empty) disk in the {x2 = c} plane, and
hpow((z1, x2), K ) = pow(z1, Kx2), where the right-hand side—being a generalized
distance—is set as∞when Kx2 is empty. hpow is then extended to all Korányi spheres
to be left-invariant under ·H (defined in Sect. 4). For a collectionK of Korányi spheres
inH, define the horizontal power diagram or Laguerre–Korányi tiling ofK to be the
collection of all

hcell(K ) =
{
z′ ∈

⋃
K∈K

K : hpow(z′, K ) < hpow(z′, K ∗), ∀K ∗ ∈ K \ {K }
}
, K ∈ K .

Then, hcell(K ) ⊂ K , for all K ∈ K (Fig. 3).
We now give two reasons why this concept is useful for us. Let

dilξ : (z1, x2) �→ (ξ z1, ξ
2x2),

dilw′,ξ : z′ �→ w′ ·H dilξ (−w′ ·H z′)

be the dilations in H centered at the origin and w′, respectively. Then,

(1) dilw′,ξ (K (w′, δ)) = K (w′, ξδ),
(2) hpow(dilw′,ξ (z′), K (w′, δ)) = ξ2 hpow(z′, K (w′, ξ−1δ)), and
(3) if K = {K j := K (a j , δ j ) : j = 1, . . . ,m}, then, dila j ,ξ hcell

(
Kl
) ∩

dilak ,ξ hcell
(
K j
) = ∅, for all 1 ≤ l < j ≤ m and ξ ≤ 1.

Now, consider the Siegel domain S and the function fS studied in Sect. 4. The cuts
of any fS -polyhedron P over J ⊂ ∂S project to a collection KP of Korányi balls in
C × R that form a covering of J ′. The (open) facets of P project to the horizontal
power diagram of KP . This perspective facilitates the proof of

Lemma 6.1 The cuts of fSλ , λ > 0, are Jordan measurable and satisfy the doubling
property (3.3) for any δ fSλ > 0 and D(t) = (1 + t)3.

Proof The Jordanmeasurability of the cuts is obvious. Now,without loss of generality,
we may assume λ = 1 (the map (z, w) �→ (λz, λw) can be used to handle the other

123



Volume Approximations of Strongly Pseudoconvex Domains 1063

cases). Let H ⊂ ∂S be a compact set, {w j }1≤ j≤m ⊂ H , {δ j }1≤ j≤m ⊂ (0,∞) and
t > 0. For j = 1, . . . ,m, let

C j (t) := C(w j , (1 + t)δ j ; fS),

v j = (w j )′ = (w j
1 , u

j
2),

and (see (4.1))

K j (t) := C j (t)
′ = K

(
v j ;

√
(1 + t)δ j

)
.

ConsiderK = {K j (t) : 1 ≤ j ≤ m} and the corresponding horizontal power diagram
{hcell j (t) = hcell(K j (t)) : 1 ≤ j ≤ m}. Then, setting dz′ = dx1dy1dx2, we have,
by a change of variables and (1), (2) and (3) above, that

vol

⎛
⎝ m⋃

j=1

C j (t)

⎞
⎠

=
∫

∪m
j=1K j (t)

max
1≤ j≤m

{
Re
√
δ2j − (x2 − u j

2 + 2 Im z1w1
j )− |z1 − w j

1 |2
}
dz′

=
∫

∪m
j=1K j (t)

max
1≤ j≤m

{− hpow(z′, K j (t))}dz′

= −
m∑
j=1

∫
hcell j (t)

hpow(z′, K j (t))dz
′

= −(1 + t)2
m∑
j=1

∫
dil
v j , 1√

1+t
(hcell j (t))

hpow
(
dilv j ,

√
1+t (ζ ), K j (t)

)
dζ

= −(1 + t)3
m∑
j=1

∫
dil
v j , 1√

1+t
(hcell j (t))

hpow
(
ζ, K j (0)

)
dζ

≤ (1 + t)3
∫

∪m
j=1K j (0)

max
{− hpow

(
ζ, K j (0)

) : 1 ≤ j ≤ m
}
dζ

= (1 + t)3 vol

⎛
⎝ m⋃

j=1

C j (0)

⎞
⎠ , ∀t ≥ 0.

��

The computations in the above proof also show that

lkor = lim
n→∞

√
n inf

⎧⎨
⎩−

∑
K∈K

∫
hcell(K )

hpow(z′, K )dz′ : I ⊂
⋃

K∈K
K , #(K ) ≤ n

⎫⎬
⎭ ,
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where I is the unit square in C × R (see Sect. 4). Our proof of Lemma 4.1 yields
bounds for lkor as follows:

0.0003 ≈ 4
√
2

π237
≤ lkor ≤ 5

√
5π

3
√
2

≈ 8.2788.

It would be interesting to know if computations, similar to the ones carried out by
Böröczky and Ludwig in [7] for ldiv2, can be done to find the exact value of lkor.
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