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Abstract We compare two popular methods for estimat-
ing the power spectrum from short data windows, namely
the adaptive multivariate autoregressive (AMVAR) method
and the multitaper method. By analyzing a simulated sig-
nal (embedded in a background Ornstein–Uhlenbeck noise
process) we demonstrate that the AMVAR method performs
better at detecting short bursts of oscillations compared to
the multitaper method. However, both methods are immune
to jitter in the temporal location of the signal. We also show
that coherence can still be detected in noisy bivariate time
series data by the AMVAR method even if the individual
power spectra fail to show any peaks. Finally, using data
from two monkeys performing a visuomotor pattern discrim-
ination task, we demonstrate that the AMVAR method is bet-
ter able to determine the termination of the beta oscillations
when compared to the multitaper method.

Keywords Spectral analysis · AMVAR method ·
Multitaper method

1 Introduction

The power spectrum of most signals encountered in practice
change with time as the signals are typically non-station-
ary. These signals include neurobiological signals, speech
signals, etc. Since the nature of the signal changes rapidly
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even over time intervals of the order of one second, one
must examine them using short time windows of 50–100 ms
duration or even shorter. The theoretical basis for divid-
ing the signal into short time windows lies in treating the
time series within such short windows as being generated
by an approximately stationary stochastic process. In other
words, the full time series is viewed as being generated by
a non-stationary stochastic process with locally stationary
segments.

For the 200 Hz sampling frequency used in our study, a
duration of 50–100 ms corresponds to a data string of only
11–21 points. The conventional non-parametric approach to
spectral analysis, based on the discrete Fourier transform,
is not effective for such short data lengths. Even with the
help of advanced windowing techniques, older non-para-
metric methods produce highly biased spectral estimates for
these short data lengths (Granger and Hughes 1968; Jenkins
and Watts 1968; Percival and Walden 1993; Muthuswamy
and Thakor 1998). In this paper, we compare the perfor-
mance of two recent methods when analyzing such short data
lengths: The parametric adaptive multivariate autoregressive
(AMVAR) method and the non-parametric multitaper met-
hod. Earlier papers (Spyers-Ashby et al. 1998; Muthuswamy
and Thakor 1998) have shown that the AMVAR method is
superior to the conventional FFT methods. Similarly, the
multitaper method has been shown to be better than con-
ventional non-parametric methods (Mitra and Pesaran 1999;
Walden 2000).

In Sect. 2, we briefly describe the AMVAR and multita-
per methods. In Sect. 3, we describe our numerical model of
signal plus noise. In Sect. 4, using the above model we com-
pare the performance of the AMVAR and multitaper meth-
ods for short data lengths. In Sect. 5, we analyze LFP data
recorded from the somatosensory area of two monkeys (LU
and GE). We again compare the performance of AMVAR and
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multitaper methods in determining the termination of bursts
of oscillations. Our conclusions are given in Sect. 6.

2 Theoretical considerations

Consider a neurobiological signal recorded using p channels.
We model this using a p-dimensional zero mean stationary
stochastic process X :

X(t) = [X (1, t), X (2, t), . . . , X (p, t)]T, (1)

where T denotes the matrix transposition.
First, we define the elements of the spectral matrix S for

this process as (Jenkins and Watts 1968)

Slm( f ) =
∑

τ

Clm(τ )e(−i2π f τ), 1 ≤ l, m ≤ p, (2)

where Clm(τ ) denotes the cross-covariance function between
channels l and m at lag τ :

Clm(τ ) = E{X∗(l, t)X (m, t + τ)}.
Here E{} denotes the expectation and f ∈ [0, fN ], where fN

is the Nyquist frequency. The asterisk denotes the Hermite-
an conjugation. When l = m, Sll( f ) gives the autospectrum
of the lth channel. For l �= m, one gets the cross-spectrum
between channels l and m.

The (ordinary) coherence (also called “squared coher-
ency”) between a pair of channels l and m is defined by
(Jenkins and Watts 1968)

Cohlm( f ) = |Slm( f )|2
Sll( f )Smm( f )

(3)

provided Sll( f ) �= 0 and Smm( f ) �= 0. It is a measure of
interdependence between channel l and channel m at fre-
quency f . Its value ranges from 0 to 1. If Cohlm( f ) is close
to 1, then there is a maximum interdependence between chan-
nel l and channel m; if Cohlm( f ) is close to 0, it indicates no
interdependence.

2.1 AMVAR method

Here, we briefly recollect the AMVAR method introduced in
Ding et al. (2000) for estimating spectral quantities.

AMVAR modeling can be used as a parametric spec-
tral analysis technique. Here multivariate autoregressive
(MVAR) time series models are adaptively extracted from
the data which becomes the basis for deriving spectral quan-
tities. First, we choose a sliding window of suitable length.
The stochastic process X(t) (cf. Eq. 1) is modeled as a MVAR
process of order M :

M∑

k=0

AkX(t − k) = Z(t). (4)

Here Z(t) is a zero mean uncorrelated p × 1 noise vector
with a p × p covariance matrix � and Ak are p × p coef-
ficient matrices that are obtained by solving the multivari-
ate Yule–Walker equations using the Levinson, Wiggins and
Robbinson (LWR) algorithm (Morf et al. 1978). We define
A0 to be the identity matrix.

The model order M is determined by minimizing the Ak-
aike Information Criterion (AIC) (Marple 1987) given by

AIC(M) = 2 log [det(�)] + 2p2 M

Ntotal
, (5)

where Ntotal is the total number of data points from all trials.
The data from several trials are considered as the realizations
of the same underlying stationary stochastic process and are
combined to produce the estimation of the model coefficients.
The term adaptive refers to the fact that the above procedure
is repeated for each analysis window along the time course
of the data.

Once the model coefficients Ak and � are estimated, the
spectral matrix is estimated as (cf. Eq. 2)

Ŝ( f ) = H( f )�̂H∗( f ), (6)

where

H( f ) = 1(∑M
j=0 Â j e−2π i j f

)

is the transfer function of the system and Â, �̂ denote the
estimated quantities.

2.2 Multitaper method

The multitaper method for estimating the power spectrum
was proposed by Thomson (1982) and is known to have sev-
eral advantages over other non-parametric spectral methods
(Percival and Walden 1993; Mitra and Pesaran 1999; Perci-
val and Walden 2000; Walden 2000). A brief description of
this method follows. Consider a stationary process X(t). Let
the sampling interval between observations be ∆t , so that the
Nyquist frequency is fN = 1/(2∆t). The multitaper spec-
tral estimator (Thomson 1982) utilizes several different data
tapers which are orthogonal to each other. The multitaper
cross-spectral estimator between channel l and m is the aver-
age of K direct cross-spectral estimators between the same
pair of channels (l and m) and hence takes the form

Ŝlm( f ) = 1

K

K−1∑

k=0

Ŝlm
k ( f ). (7)

Here, Ŝlm
k ( f ) is the kth direct cross spectral estimator

between channel l and m and is given by

Ŝlm
k ( f ) = 1

N∆t
[J l

k( f )]∗[J m
k ( f )],
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where

J l
k( f ) =

N∑

t=1

ht,k X (l, t)e−i2π f t∆t .

Here, k = 0, 1, 2, 3, . . . , K . The sequence {ht,k} is the data
taper for the kth direct cross-spectral estimator Ŝlm

k ( f ) and
is chosen as follows.

We choose a set of K orthogonal data tapers such that
each one provides good protection against leakage. These
are given by the discrete prolate spheroidal sequences (dpss)
(Slepian and Pollak 1961) with parameter W and orders k =
0 to K − 1. The maximum order K is chosen to be less than
the Shannon number 2N W∆t . The quantity 2W defines the
resolution bandwidth for the concentration problem (Perci-
val and Walden 1993) and W ∈ (0, fN ). When l = m in Eq.
(7), we get the multitaper estimator for the auto-spectrum of
the lth channel.

In conventional non-parametric spectral analysis
techniques, to reduce variance, we break up the data into
overlapping segments (as in Welch’s overlapped segment
method), estimate the cross-spectrum or power spectrum for
each segment and then average over the segments. Such
methods have severe bias problems for short data. In the
multitaper method, for reducing variance we average over
different tapers using the full data. Since the data length is
not shortened, bias is smaller.

The following is the general approach we follow to per-
form spectral analysis of non-stationary signals:

1. Cover the time series data using highly overlapped time
windows each of which is short enough that the process
in each window can be treated as locally stationary.

2. In the AMVAR method, for each time window, derive a
linear stochastic MVAR model of the process by fitting
the data from an ensemble of trials. Derive the power and
coherence from the model parameters. By adaptively fit-
ting models over successive windows, obtain the tempo-
ral evolution of these spectral quantities.

3. In the multitaper method, for each time window, derive
the power and coherence using multitaper spectral esti-
mators from an ensemble of trials. The evaluation of
these spectral quantities over successive windows as the
analysis window slides along the time axis gives their
temporal evolution.

3 Numerical experiments

We first compare the two methods using numerical experi-
ments. The time series to be analyzed is generated as follows.
The signal part is obtained using a coupled neuron model. The
background noise is modeled using an Ornstein–Uhlenbeck

(OU) process. The final time series data is obtained by super-
imposing a short segment of the signal over the background
noise.

3.1 Generation of the signal

Our simulation model comprises two coupled cortical
columns where each column is made up of an excitatory and
an inhibitory neuronal population (Kaminski et al. 2001).
The equations governing the dynamics of the two columns
are given by

ẍi + (a + b)ẋi + abxi = −kei Q(yi (t), Qm0)

+ki j Q(x j (t), Qm0) + ξxi (t), (8)

ÿi + (a + b)ẏi + abyi = kie Q(xi (t), Qm0) + ξyi (t), (9)

where i �= j = 1, 2. Here x and y represent local field
potentials (LFP) of the excitatory and inhibitory populations,
respectively, kie > 0 gives the coupling gain from the excit-
atory (x) to the inhibitory (y) population, and kei > 0 is the
strength of the reciprocal coupling. The neuronal populations
are coupled through a sigmoidal function Q(x, Qm0) which
represents the pulse densities converted from x with Qm0 a
modulatory parameter. The function Q(x, Qm0) is defined
by,

Q(x, Qm0) =
{

Qm0[1 − e−(ex −1)/Qm0 ], if x > −u0,

−1, if x ≤ −u0,

where u0 = − ln[1 + ln(1 + 1
Qm0

)]. The coupling strength
knp is the gain from the excitatory population of column p
to the excitatory population of column n, with knp = 0 for
n = p. The terms ξ(t) represent independent Gaussian white
noise inputs given to each neuronal population. These vary
from trial to trial.

The above system of equations was integrated to get x1(t)
for t ∈ [0s, 1s]. The initial conditions for x and y are kept
fixed across trials. The integration step size was 5 µs and
the whole data was down sampled to 200 Hz. All simula-
tions were implemented using Matlab. The parameter values
used were: a = 0.22/ms, b = 0.36/ms, kie = 0.1, kei =
0.4, k12 = 0, k21 = 0.1 and Qm0 = 5. The variance for
the Gaussian white noise was chosen as 0.01. Three hundred
realizations of the signal x1(t) were generated. This signal is
a stationary signal and for the above set of parameters it has
a peak around 41 Hz in the power spectrum.

3.2 Generation of OU noise

An OU process is generated by

ẋ(t) = −λx(t) + ξ(t), (10)

where λ is a parameter independent of time t and the driving
function ξ(t) is a Gaussian white noise with mean zero and
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variance σ 2. The quantity τ = 1/λ is called the relaxation
time of the process. This is a continuous, stationary Mar-
kov process. We use this process as a model for background
noise.

The above equation can be integrated using an exact update
formula (see Gillespie 1996) given by (for m = 1, 2, . . .)

xm+1 = xme−λs +
{

σ 2

2λ
[1 − e−2λs]

}1/2

N (0, 1), (11)

where N (0, 1) is the sample value of the Gaussian random
number generator with mean 0 and variance 1. This update
formula is independent of the choice of the step size s used in
the integration of Eq. (10). The theoretical one sided power
spectrum of the OU process is given by (see Bartosch 2001)

S( f ) = 2σ 2

λ2 + (2π f )2 .

Thus, the power spectrum of an OU process decreases mono-
tonically from its maximum value at f = 0. Therefore, it con-
tains stronger contributions from lower frequencies than from
higher frequencies. Hence, an OU process is also referred to
as Gaussian red noise.

We generated 300 realizations of the OU noise. For each
realization, the integration step size was 0.1 ms and the data
was down sampled to 200 Hz. The parameters used were
λ = 0.1, σ = 1.4 and 3. The lower (higher) values of σ

were used to generate a time series with higher (lower) sig-
nal-to-noise ratios.

3.3 Signal embedded in noise

The time series to be analyzed was generated as follows. We
start with a realization of the original signal x1(t). We ran-
domly cut a portion of this signal with a window length of
Lw (e.g. Lw = 150 ms). This chopped signal is weighted
using a sine window function and is then embedded in a
realization z(t) of OU noise (1 s long) at the center (500 ms
along time axis). Mathematically, this can be expressed as
(for k = 1, 2, . . . , 201):

f (tk) = z(tk) + w(tk)x1(tk), if k = 101, . . . 101 + mw;
= z(tk), otherwise,

where tk = (k − 1)s, s = 5 ms, mw = [Lw/s], w(tk) =
sin(π(k − 101)/mw). Here [Lw/s] stands for the integer
part of Lw/s. For obtaining 300 different realizations of the
data, we randomly chopped different portions of the signal
using the same window length Lw and embedded it in 300
different realizations of the OU noise as described above.
Consequently, we get a collection of 300 realizations of the
combined non-stationary time series. A typical plot of one
realization of the combined process is shown in Fig. 1. The
individual power spectra of the signal and noise separately
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Fig. 1 A representative realization of the combined process (signal
plus noise)

are shown in Fig. 2. The OU noise spectrum corresponds to
that of an 1/ f 2 curve. The power spectrum corresponding to
the pure signal shows a peak at 41 Hz as mentioned earlier.

The combined signal plus noise data was analyzed using
the AMVAR and the multitaper methods. For the multita-
per method, the standard routine included in Matlab was
used. For the AMVAR method, an algorithm based on LWR
method was used. Since the combined process is non-station-
ary, we chose an analysis window which slides over the time
series data. The time series data within this analysis window
was considered to be stationary. In each window, the data
from all realizations was used to estimate the power spec-
trum by both methods. The length of the analysis window for
each of the two methods was chosen so as to optimize per-
formance, i.e. an appropriate combination of the two spectra
given in Fig. 2 should be observed depending on the location
of the window along the time axis.

4 Comparison of AMVAR and multitaper methods

4.1 Power spectrum analysis

The AMVAR analysis was performed using sliding windows
of length 50 ms (11 time points), 100 ms (21 time points) and
150 ms (31 time points) and with a model order M = 4
in accordance with the Akaike Information Criterion (Eq. 5).
The multitaper analysis was performed using the same sliding
window lengths and with a time bandwidth product NW∆t =
2. This value of NW gives a better frequency resolution
for the multitaper method. In both methods, the analysis
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Fig. 2 The power spectra of the
signal x1(t) and the OU noise
process
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window was moved from 400 to 725 ms along the time axis
of the data.

For long signals (large Lw) embedded in noise, the qualita-
tive features of the power spectra estimated using the
AMVAR method remained the same irrespective of the slid-
ing window length. For short signal lengths, 50 ms sliding
window gave better results. On the other hand, multitaper
method with 150 ms sliding window gave the best frequency
resolution.

For a sufficiently long signal (Lw = 150 ms) embedded in
OU noise, both AMVAR and multitaper methods were able
to recover the signal as shown in Fig. 3. But the frequency
resolution of AMVAR was better than that of the multitaper
method. When Lw was decreased to 75 ms, both methods
still detected the signal.

When Lw was reduced further to 50 ms, AMVAR (using a
50 ms analysis window) succeeded in detecting the signal sat-
isfactorily while the multitaper method failed to capture the
signal (see Fig. 4). When Lw was reduced further to 25 ms,
AMVAR still detected the signal. However, the frequency
resolution was poorer.

4.2 Jitter analysis

Here, we varied the time point where the signal is embed-
ded in OU noise from trial to trial. In our study, a randomly
selected signal of length Lw = 100 ms was embedded in

OU noise using a small jitter. The jitter length was 30 ms in
one case and 70 ms in the other. This signal plus noise time
series was then analyzed using the AMVAR and the multita-
per methods with a 150 ms sliding window. Both the meth-
ods were able to capture the signal in their power spectrum
despite the introduction of jitter as shown in Fig. 5 (for jitter
length of 70 ms). Of course, as Lw is decreased, the AMVAR
method performed better compared to the multitaper method
as seen in the previous section.

The reason for the success of the methods even when jit-
ter is present is easily understood by considering the manner
in which the power spectra are estimated by the two meth-
ods. In the AMVAR method, the reflection coefficients are
first determined using the time series for each trial. These
reflection coefficients are then averaged over all realizations
and used to estimate the model coefficients. Likewise, in the
multitaper method, the power spectrum was determined for
each trial and only then averaged over all realizations. Since
both the methods evaluate key quantities on a trial by trial
basis before performing the ensemble average, introduction
of jitter does not degrade their performance.

4.3 Coherence analysis

We now use the AMVAR and the multitaper methods to
investigate a related issue. If there is strong coherencepres-
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Fig. 3 The time–frequency
plots of power spectra using
AMVAR and multitaper
methods with Lw = 150 ms
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Fig. 4 The time–frequency
plots of power spectra using
AMVAR and multitaper
methods with Lw = 50 ms
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ent between two noisy channels at a given frequency, is this
coherence more easily detectable compared to peaks at this
frequency in the individual power spectra?

To investigate this, 300 realizations of signal plus noise
were taken from two different channels and coherence

between them was computed. The noises present in the two
channels were independent of each other. We used Lw =
100 ms and analyzed the data using AMVAR and multitaper
method with a sliding window of length 50 and 150 ms,
respectively.
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Fig. 5 The time–frequency
plots of power spectra using
AMVAR and multitaper
methods with jitter length 70 ms
and Lw = 100 ms
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Fig. 6 The top panel gives the
power spectrum for one of the
two noisy channels with low
background noise level
(σ = 3.0). The bottom panel
compares the coherence
obtained for the same data using
the AMVAR method (solid line)
and the multitaper method
(dashed line)
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For a low value of the background OU noise (σ = 3),
the power spectra of both channels show a peak at 41 Hz.
The result for one channel is shown in Fig. 6. The coherence
spectrum of these channels shows a nice peak at the same
frequency when the AMVAR method is used while the mul-
titaper method gives a much broader peak (Fig. 6). When the

background noise level was increased (σ = 5) in both the
channels, the power spectra barely show the peak at 41 Hz
as seen from Fig. 7. The coherence spectrum obtained using
the AMVAR method has a clear peak at 40.75 Hz. On the
other hand, the multitaper method fails to capture this peak
(Fig. 7). When the noise level was increased even further
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Fig. 7 The top panel gives the
power spectrum for one of the
two noisy channels with higher
background noise level
(σ = 5.0). The bottom panel
compares the coherence
obtained for the same data using
the AMVAR method (solid line)
and the multitaper method
(dashed line)
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(σ = 7.5) the power spectrum does not show the signal
while the coherence spectrum using AMVAR shows a peak
at around 43 Hz.

4.4 Signal duration analysis

In this section, we estimate the duration of the embedded
oscillatory signal. The analysis window was chosen to be 5
and 150 ms long for the AMVAR and it was moved along
the time axis by one data point for the time series (signal
plus noise). In multitaper method a 150 ms analysis window
was used since shorter analysis windows failed to capture the
signal.

The duration of the embedded signal is computed as fol-
lows. In both methods, as the analysis window slides, the
power spectrum evolves with time as the window approaches
and recedes from the embedded signal. As the window app-
roaches the signal, the time (ti ) corresponding to the leading
edge of that analysis window in which the peak in the power
spectrum first shows up is noted. Since at least one cycle
of the signal needs to be present in the analysis window in
order to detect the peak, we correct ti by subtracting from
it the time period of the signal (25 ms). When the window
recedes from the signal, the time (tf ) corresponding to the
trailing edge of that analysis window in which the peak in
the power spectrum first disappears is noted. By the same
argument as above, we correct tf by adding one time period
of the signal. The difference between these corrected times
gives the duration of signal.

Table 1 Duration of signal as estimated by AMVAR and multitaper
methods

Actual duration (ms) Duration by Duration by
AMVAR method (ms) multitaper method (ms)

150 130 80
100 90 50

75 75 35
50 50 –

In AMVAR, the 50 ms analysis window gave better esti-
mates of the signal duration when compared to the 150 ms
analysis window. Hence, smaller the analysis window (hav-
ing at least one cycle of the signal) the better is the accuracy of
the estimate in the AMVAR method. For multitaper method,
a 150 ms window was found to give the best performance.
The duration of oscillation as determined by the AMVAR
(50 ms analysis window) and the multitaper (150 ms analysis
window) methods are tabulated in Table 1. It is clear that the
AMVAR method gives a better estimate for the duration of
the signal when compared to the multitaper method.

5 Analysis of experimental data

Here, we consider an experiment in which two well trained
adult male rhesus macaque monkeys (LU and GE) performed
a GO or NO-GO visual pattern discrimination task in experi-
mental sessions of approximately 1,000 trials (Bressler et al.
1993). The experiment was conducted in the Laboratory of
Neuropsychology at the National Institute of Mental Health
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during 1984–1988 and animal care was in accordance with
the institutional guidelines at that time. On each trial the
monkeys depressed a hand lever, and kept it pressed during
a random interval ranging from 0.12 to 2.2 s (wait period)
while waiting for stimulus appearance. On GO trials, a water
reward was provided if the monkey released the lever within
500 ms after stimulus onset.

Micro electrodes were implanted in distributed sites that
were located in the hemisphere which was contralateral to
their dominant hand (left hemisphere in monkey LU and right
hemisphere in GE). These were used to record the Local Field
Potentials (LFP) in each trial from 14 channels for the time
period from −90 to 510 ms. These multivariate LFP time
series were sampled at 200 Hz. Combining the LFP record-
ings from several sessions resulted in a pooled ensemble of
many trials for both monkeys.

We consider only the GO trials. This data has been ana-
lyzed earlier (Brovelli et al. 2004; Chen et al. 2006; Ledberg
et al. 2007). In particular, existence of synchronized
beta-frequency (15–30 Hz) oscillations linking different sen-
sorimotor areas to form a large-scale cortical network was
established. Further, it was hypothesized that the beta oscilla-
tion network in the sensorimotor cortex facilitates the mainte-
nance of steady pressure on the depressed hand lever.
Consequently, in GO trials, as the monkey released the hand
lever following stimulus presentation, the need to maintain

pressure on the lever was removed and the beta oscillation
disappeared. This was demonstrated (Zhang et al. 2005) using
AMVAR analysis. In our study, we determine the time when
the beta oscillation ends for the data recorded from the
somatosensory region (channel 6 in monkey LU and chan-
nel 8 in monkey GE) using both AMVAR and multitaper
methods.

5.1 Data preprocessing

In both methods, for every single trial LFP time series, each
amplitude value was divided by the temporal standard devi-
ation to give equal weight to the data from each recording
site and trial. The ensemble mean time series from each site
was subtracted point wise for each of it’s single trial time
series. This allows the ensemble of single trial time series to
be treated as coming from a zero mean stochastic process.
This preprocessing was applied to the LFP recordings of both
monkeys.

5.2 Spectral analysis

After data preprocessing, the power spectrum was computed
using both methods for each monkey. In the AMVAR method,
we used an analysis window of 80 ms with a model order
M = 8 (40 ms). In multitaper method, we used an analysis

Fig. 8 The time–frequency plot
of power spectrum using
AMVAR method for monkey
GE
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window of 150 ms and time bandwidth product N W∆t = 2
as before.

The power spectrum of full time series data gave a peak
around 23 Hz for monkey LU and at 22 Hz for monkey GE
by both methods. But when we performed short window
spectral analysis by sliding the analysis window (by one
data point) along time axis, the multitaper method failed
to capture the signal for both monkeys. On the other hand,
by the AMVAR method, the peak in the power spectrum
appeared right from the first window and terminated at 150
and 190 ms past the start of the signal for monkey LU and GE,
respectively. The time–frequency plot of the power spectrum
obtained by the AMVAR method for monkey GE is shown
in Fig. 8. A similar result (not shown) was found for monkey
LU.

6 Discussion

AMVAR and multitaper methods are two widely used meth-
ods for spectral analysis of neurobiological data. In this paper,
we compared the performance of the two methods using sev-
eral tests. The AMVAR method performed better compared
to multitaper method while estimating the power spectrum
for short time series. We demonstrated this by analyzing a
short duration simulated signal that was embedded in a back-
ground OU noise process. We also showed that, using the
AMVAR method, coherence can still be detected in a noisy
bivariate time series even though the individual power spec-
tra fail to show any peaks. But, both these methods were
immune to jitter in the temporal location of the signal. Per-
forming short window spectral analysis on experimental data,
we showed that the AMVAR method was able to detect the
termination of beta oscillations in both monkeys LU and GE.
On the other hand, the multitaper method failed to capture
those oscillations for both monkeys.

For general applications, both AMVAR and multitaper
methods are excellent methods for spectral analysis of data.
In this paper, for the applications we tested on, the
AMVAR method was found to perform better. In other con-
texts, it is possible that multitaper method is be a better
choice. For example, when a power spectrum has complex
features or when it is difficult to determine the optimal model
order for the AR model, an optimal non-parametric method
like the multitaper method is a better choice (Mitra and Pes-
aran 1999; Dhamala et al. 2008a,b).
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