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An array of identical maps with Ising symmetry, with both positive and negative couplings, is

studied. We divide the maps into two groups, with positive intra-group couplings and negative

inter-group couplings. This leads to antisynchronization between the two groups which have the

same stability properties as the synchronized state. Introducing a certain degree of randomness in

signs of these couplings destabilizes the anti-synchronized state. Further increasing the randomness

in signs of these couplings leads to oscillator death. This is essentially a frustration induced

phenomenon. We explain the observed results using the theory of random matrices with nonzero

mean. We briefly discuss applications to coupled differential equations. VC 2013 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4812797]

We study coupled maps on a random network. When we

introduce positive as well as negative couplings on such a

network, geometric frustration is introduced, leading to

reduction of eigenvalues and oscillator death. We give an

analytic explanation of these results using theory of ran-

dom matrices with nonzero mean.

I. INTRODUCTION

Amplitude/oscillator death is a phenomenon in which

two or more autonomously oscillating systems approach a

stable zero-amplitude state when coupled.1 Amplitude death

in coupled oscillators has been studied in various contexts

and several routes to amplitude death have been reported.1

Here, we report another route to amplitude death in coupled

identical oscillators on a network. The network has both pos-

itive and negative couplings.2 Presence of couplings of both

signs induces frustration and leads to amplitude death.

Though not studied extensively, it is known that negative

and positive couplings could co-exist in several networks. In

neurons, both excitatory and inhibitory synaptic inputs co-

exist while in ecological webs interactions between species

could have both signs.3,4 They are also observed in labora-

tory systems such as coupled lasers.5 Equations with nega-

tive Laplacian appear in the context of several pattern

forming systems. Examples of this type are Kuramoto-

Sivashinsky and Swift-Hohenberg equations.6 With negative

coupling, anti-synchronization can occur as well. We study

both anti-synchronization and amplitude death in this

system.

We divide the oscillators into two groups. First, we

choose positive intra-group and negative inter-group cou-

plings. This leads to an antisynchronized state with the same

stability properties as the synchronized state for all positive

couplings. These states are shown to have the same stability

properties as the synchronized state obtained for all negative

couplings or anti-synchronized state for negative intra-group

and positive inter-group couplings. If we relax the condition

of having uniform signs for intra-group or inter-group

couplings, the synchronized or anti-synchronized state does

not exist. Given enough randomness in the connections, all

the oscillators approach 0 state, i.e., amplitude death. We

explain these observations by carrying out a stability analysis

of this state. This work is perhaps the first application of the

recently developed theory of random matrices with nonzero

mean.

The above phenomena are not merely of theoretical in-

terest. There are various examples where the system is seen

to be divided into groups and couplings within a group are

different from couplings outside the group. For example, in

magnetic systems there are layered systems called metamag-

nets in which couplings within a layer are ferromagnetic and

those between layers are anti-ferromagnetic.7 Such connec-

tions are also found in social networks.8

The plan of the paper is as follows. In Sec. II, we define

the model and demonstrate the equivalence between the state

of synchronization of all elements and that of anti-

synchronization between two groups. In Sec. III, we intro-

duce a specific random-neighbor model which is studied in

detail. We show that frustration in connections indeed leads

to amplitude death in coupled maps and explain these results

analytically. In Sec. IV, we study coupled Lorenz systems on

such networks. In Sec. V, we present our conclusions and

possible directions for further research.

II. MODEL

Our model is that of a coupled map lattice on an arbi-

trary network of n elements

xiðtþ 1Þ ¼
Xn

j¼1

Aij f ðxjðtÞÞ; (1)

where Aij is (i, j)th element of the adjacency/connectivity

matrix A of the underlying network. The indices i and j take

values from 1 to n. We focus on systems with Ising symme-

try where the function f(x) has an antisymmetric form
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f(–x)¼ –f(x). (For a similar usage, see Miller and Huse.9) In

particular, we choose f ðxÞ ¼ ax3 þ ð1� aÞx.

First, we consider a system without frustration. The n
elements are decomposed into two groups U (comprising the

first m elements) and V (comprising the next n – m elements).

Let all the connections be positive. Let the connectivity ma-

trix be row stochastic, that is
Pn

j¼1 Aij ¼ r for all i, so that

synchronized state can exist. The connectivity matrix can be

written in block form as

A ¼ P Q
R S

� �
; (2)

where P and S are intra-group connections, while Q and R
are inter-group connections. Stability of synchronized state

can be inferred from the Jacobian. The elements of Jacobian

are given by JijðtÞ ¼ @xiðtþ 1Þ=@xjðtÞ ¼ Aij f 0ðxjðtÞÞ When

xjðtÞ ¼ x�ðtÞ for all j, JijðtÞ ¼ Aij f 0ðx�ðtÞÞ and hence

JðtÞ ¼ Af 0ðx�ðtÞÞ. Thus, the Jacobian for synchronous state is

the connectivity matrix A multiplied by f 0ðx�ðtÞÞ.
Now, if we change the signs of all inter-group couplings

we get a connectivity matrix A0 where

A0 ¼ P �Q
�R S

� �
: (3)

We can have an antisynchronized state for this network.

The elements of Jacobian for this state are given by

Jij ¼ A0ij f 0ðx�ðtÞÞ or A0ij f 0ð�x�ðtÞÞ depending on the group

the site j belongs to. However, since our map has odd parity,

its derivative has even parity and f 0ð�x�ðtÞÞ ¼ f 0ðx�ðtÞÞ.
Thus J ¼ A0f 0ðx�ðtÞÞ for the antisynchronized state.

Define a matrix

D ¼ �Im 0

0 In�m

� �
; (4)

where Im and In�m are identity matrices in m and n – m
dimensions. It is easily seen that A0 ¼ D�1AD. Therefore,

matrices A and A0 are related by a similarity transforma-

tion and hence have the same eigenvalues. As we have

seen above, the Jacobian for the synchronized or anti-

synchronized state is simply the appropriate connectivity

matrix (A or A0, respectively) multiplied by f 0ðx�ðtÞÞ.
Since A and A0 are related by a similarity transformation,

the stability of synchronized state with all positive cou-

plings is the same as stability of the anti-synchronized

state with positive intra-group and negative inter-group

couplings.

What happens if we reverse signs of all the couplings of

matrix A? Eigenvalues of the connectivity matrix change

their signs, but not their magnitudes. Stability properties,

since they depend only on eigenvalue magnitudes, remain

unchanged. The synchronized state is still a possible state

since the matrix remains row stochastic. However, all varia-

bles change signs at all odd times. We also note that matrix

–A is related to �A0 by the same similarity transformation as

above. As noted above, this transformation changes signs of

the elements of the second group. Hence, stability of the

synchronized state with all negative connections is the same

as that of the antisynchronized state with negative intra-

group and positive inter-group connections.

In summary, synchronized state with all positive (or

negative) connections and anti-synchronized state with posi-

tive (negative) inter-group and negative (positive) intra-

group connections have the same stability properties.

In Sec. III, we address the following question: What

happens if there is inconsistency in the signs of connections.

First, the synchronized or antisynchronized state may not

even exist. For example, the connectivity matrix should be

row stochastic for synchronized state and this will not be the

case any longer. However, the amplitude death state still

exists. This is a synchronized state and its stability is deter-

mined by eigenvalues of A multiplied by f 0ð0Þ for any cou-

pling scheme. This is because the elements of the Jacobian

are given by JijðtÞ ¼ @xiðtþ 1Þ=@xjðtÞ ¼ Aij f 0ðxjðtÞÞ. When

xjðtÞ ¼ 0 for all j (amplitude death state), Jij ¼ Aij f 0ð0Þ and

hence J ¼ Af 0ð0Þ.

III. RANDOM NEIGHBOR MODEL

We now investigate in some detail amplitude death in

the presence of inconsistency in the signs of connections for

a specific topology, namely a random-network type topol-

ogy, although similar results would hold for other networks.

Let matrix A be of the following type. Each site i is con-

nected with k randomly chosen neighbors. The value of Ai;j

is randomly chosen as 1/k or �1/k for connected sites and is

0 if the sites are not connected. This model is similar to

Erd€os-R�enyi type network in which every site is connected

to exactly k randomly chosen sites.10,11

The above connectivity scheme leads to synchronized

chaos for all positive connections since this is a row stochas-

tic matrix.12 We separate the sites in two groups with m and

n – m elements and impose a condition that inter-group con-

nections be negative (–1/k) and intra-group connections be

positive (1/k). (We have taken m¼ n/2 in simulations.) This

leads to antisynchronized chaos under the same conditions.

Now, we consider the following case. Let the

intra-group couplings be positive with probability p1 and

inter-group couplings be negative with probability p2. As

explained above, for p1 ¼ p2 ¼ 1 (or p1 ¼ p2 ¼ 0) we see an

antisynchronized state. For p1 ¼ 1; p2 ¼ 0 or p2 ¼ 1;
p1 ¼ 0, we obtain a synchronized state. What happens when

we depart from these extreme conditions? When the cou-

plings are not consistent, some intra-group connections will

be negative and some inter-group connections will be posi-

tive. Hence, frustration is induced and antisynchronization is

reduced. However, around p1 ¼ p2 ¼ 1=2 there is a big area

where the oscillators are again synchronized (as well as anti-

synchronized). This is a state of amplitude death where

xiðtÞ ¼ 08i.
What are conditions under which the amplitude death

state can be observed? We consider the system of coupled

antisymmetric cubic maps introduced earlier (cf. Eq. (1)).

For the amplitude death state to be stable we need all the

eigenvalues of the Jacobian matrix (evaluated at the ampli-

tude death state) to be inside the unit circle in the complex

plane. For our system, this means that all the eigenvalues of
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Af 0ð0Þ are less than 1 in magnitude. Equivalently, denoting

the maximum eigenvalue of A by kmax, we have jkmaxj
< j1=f 0ð0Þj. For f ðxÞ ¼ ax3 þ ð1� aÞx; f 0ð0Þ ¼ ð1� aÞ ¼
�2:999 when a ¼ 3:999. In Fig. 1, in p1 � p2 space, we have

plotted values of p1 and p2 for which this condition holds.

(We have taken n¼ 200 and k¼ 49.) We have also plotted

the numerical values of p1 and p2 for which amplitude death

is observed. There is an excellent match between the two.

Domain of oscillator death in p1 � p2 plane is diamond

shaped. The borders are lines of type p1 � p2 ¼ constant
(parallel to p1 ¼ p2) and of type p1 þ p2 ¼ constant. It is

clear that the domain of oscillator death is centered around

the point of maximum frustration, i.e., p1 ¼ p2 ¼ 1=2.

In Fig. 2, we have plotted the absolute value of largest

eigenvalue of the adjacency matrix A. It again shows an

interesting symmetry. It has the shape of an inverted pyramid

cut at the bottom. It is possible to explain this shape using

arguments given later which also lead to an Ansatz for the

largest eigenvalue of the adjacency matrix. Using the same

logic as in Sec. II, we argue that the points ðp1; p2Þ; ð1� p1;
1� p2Þ; ð1� p1; p2Þ and ðp1; 1� p2Þ have the same stability

properties. This explains the 4-fold symmetry in p1 � p2

plane. The fact that the domain is bounded by lines with con-

stant p1 þ p2 or p1 � p2 demonstrates that the largest eigen-

value is dependent solely on the number of “wrong”

connections compared to the nearest vertex. For example, for

p1 < 1==2; p2 < 1=2, the number of wrong connections

(with respect to (0,0) would be ðp1 þ p2Þ=2 and for

p1 > 1=2; p2 < 1=2, the number of wrong connections (with

respect to (0,1)) would be ðp1 þ ð1� p2ÞÞ=2.

To simplify matters, let us construct an adjacency matrix

with k nonzero connections in each row. The value of entry

is �1/k with probability p and 1/k with probability 1 – p.

Fig. 3 shows the eigenspectrum of such a matrix for k¼ 49,

n¼ 1000 at various values of p. We see a circle of radius

1=
ffiffiffiffiffi
49
p

¼ 1=7 in the complex plane and an outlier eigen-

value. This outlier eigenvalue changes from 1 to �1 as we

change p from p¼ 0 to p¼ 1. It can be well fitted by (1 – 2p)

(when 1� 2p > 1=
ffiffiffi
k
p

). In Fig. 4, jkmaxj is plotted a function

of p. It can be fitted by (1 – 2p) as long as ð1� 2pÞ > 1=
ffiffiffi
k
p

and the eigenvalue is given by
ffiffiffi
k
p

near p¼ 1/2. The case of

p¼ 0 (or p¼ 1) has already been worked out in Ref. 12.

However, the case of generic p was not worked out.

FIG. 1. Domain of oscillator death for k¼ 49, a ¼ 3:999 in p1 � p2 plane

(marked by crosses). We also plot values of p1 � p2 for which kmaxjf 0ð0Þj ¼
kmaxj1� Aj < 1 (marked by þ symbol). Both domains match as expected.

FIG. 2. We plot jkmaxj for the adjacency matrix in p1 � p2 plane A jkmaxj ¼
1=

ffiffiffi
k
p

plane demonstrates that eigenvalues are bounded from below by

1=
ffiffiffi
k
p

. The symmetry is evident.

FIG. 3. Eigenvalues of the adjacency matrix are plotted in complex plane

for n¼ 1000 and k¼ 49 for various values of p. We see that n – 1 eigenval-

ues are in a circle of radius 1/7 in complex plane. Circle of radius 1/7 is

drawn for reference. There is also an outlier at 1 – 2p.

FIG. 4. Magnitude of largest eigenvalue of adjacency matrix is plotted as a

function of p for k¼ 16 and k¼ 49. Lines at 1=
ffiffiffi
k
p

are also plotted as refer-

ence. It is clear that eigenvalue is maxðð1� 2pÞ; 1=
ffiffiffi
k
p
Þ.
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First, we study the most random case p1 ¼ p2 ¼ 1=2

(and thus p¼ 1/2). This matrix can be viewed as a matrix

with 0 entries having probability 1 – 2 r and entries þ1/k or

�1/k having probability r¼ k/(2 n) each. This distribution

has a zero mean and the variance is r2 ¼ 1=kn. Thus

r
ffiffiffi
n
p
¼ 1=

ffiffiffi
k
p

. This distribution clearly has a bounded 2þ d
moment for d > 0. The theorem by Tao and Vu suggests that

eigenvalues of A
ffiffiffi
k
p

will fall within an unit disc in the com-

plex plane. Thus, the largest absolute value that eigenvalues

of A can take is 1=
ffiffiffi
k
p

.13,14

For p 6¼ 1=2, the entries do not have mean zero any lon-

ger and most random matrix results do not apply. Random

matrices with nonzero mean have been studied as far back as

1964.15 Later, it was understood that such matrices could be

seen as rank one perturbation of random matrix with zero

mean. In our case, we can write a given matrix as A¼B þ P
where Bi;j ¼ Ai;j � l=n and Pi;j ¼ l=n where l=n where l ¼
ð1� 2pÞ is the expected sum of row elements and l=n is the

mean. For Ai;j ¼ 1=k; 0 and �1/k, Bi;j ¼ 1=k � l=n;�1=n
and �1=k � l=n respectively. Thus matrix B is an iid ran-

dom matrix with zero mean. The matrix P can be written as

P ¼ lje >< ej where je >¼ n�1=21n.

Recent studies have shown that random iid matrices

with nonzero mean have an outlier when the mean is large

enough.16 Theorem 1.4 and 1.7 in Ref. 16 explain our obser-

vations very well if we assume that the theorem works for

sparse matrices as well and recast the matrices appropriately.

Sparse matrices differ from standard iid matrices since the

mean and variance of entries are not independent of n.

Consider the matrix B defined above. For B, the variance of

the entries is qð1� pÞð1=k � l=nÞ2 þ qpð�1=k � l=nÞ2 þ
ð1� qÞð�l=nÞ2 where q¼ k/n. For k � n; r2 � 1=ðknÞ.
Hence matrix B=r ¼

ffiffiffiffiffi
nk
p

B has entries with unit variance

and zero mean. This is Xn in Tao’s notation. Now Theorem

1.4 of Tao implies that Xn=
ffiffiffi
n
p
¼

ffiffiffi
k
p

B has eigenvalues

within the unit circle. We know that
ffiffiffi
k
p

A ¼
ffiffiffi
k
p

Bþ
ffiffiffi
k
p

P.

The perturbation matrix Cn ¼
ffiffiffi
k
p

P has rank-one: One eigen-

value is ð1� 2pÞ
ffiffiffi
k
p

and the remaining ones are zero.

Theorem 1.7 of Tao16 gives the eigenvalue distribution for

matrix Xn=
ffiffiffi
n
p þ Cn ¼

ffiffiffi
k
p

Bþ
ffiffiffi
k
p

P ¼
ffiffiffi
k
p

A. n – 1 eigenval-

ues of
ffiffiffi
k
p

A lie within the unit circle while one is given by

the eigenvalue of Cn, i.e., ð1� 2pÞ
ffiffiffi
k
p

provided it is outside

the unit circle. It follows that n – 1 eigenvalues of A are

within a circle of radius 1=
ffiffiffi
k
p

and the one outside is given

by (1 �2p) if j1� 2pj > 1=
ffiffiffi
k
p

. Otherwise, all the eigenval-

ues of A lie within a circle of radius 1=
ffiffiffi
k
p

.16 This latter result

explains the flattening of the bottom part of the inverted pyr-

amid in Fig. 1.

Instead of treating the adjacency matrix as a perturba-

tion from a zero mean iid matrix, we can take a different

viewpoint and try out first order perturbation theory starting

from the adjacency matrix for p¼ 0. Let us write A ¼
B0 þ C0 where B0 is the adjacency matrix for p¼ 0, i.e., all

nonzero entries are positive. We know that B0’s largest

eigenvalue is 1 with right eigenvector er ¼ n�1=2½1; 1;…1�
¼ je >. What is the left eigenvector of B? The matrix B0T

can be viewed as a matrix with nonzero entries 1/k with

probability k/n and 0 entries with probability 1 – k/n. The

right eigenvector of such a matrix is close to vector je >.17

Thus we can assume that both the left and right largest eigen-

vectors of B0 are given by je > The nonzero entries of C0 are

�2/k with probability pk/n and other entries are zero. Hence,

first order perturbation in the largest eigenvalue of B0

obtained by adding C0 is given by hejC0jei=hejei ¼ �2p.

Thus near p¼ 0, the largest eigenvalue is (1 – 2p).

IV. COUPLED OSCILLATORS

Next we try to understand how this work translates to

coupled oscillators. We couple oscillators in exactly the

same manner as earlier

_xiðtþ 1Þ ¼
Xn

j¼1

Ai;j FðxjðtÞÞ; (5)

where x is a M dimensional vector, the function F(x) is such

that F(0)¼ 0. This system has an amplitude death state as a

possible state. We investigate the stability of such a system.

When we linearize around the amplitude death state, the re-

sultant Jacobian is a direct product of connectivity matrix A
and the Jacobian of a single oscillator. One may guess that

the eigenvalues of such a Jacobian are a direct product of

eigenvalues of the connectivity matrix A and eigenvalues of

the Jacobian for a single system. If a single linearized system

has (say) real eigenvalues r1, r2, and r3, and if coupling ma-

trix A is of type studied in Sec. III with (say) p¼ 0, we

expect the eigenvalues of the linearized system to be r1, r2,

r3 and 3 n – 3 eigenvalues (from the connectivity matrix)

which are located within circles in the complex plane with

radii
jr1jffiffi

k
p ; jr2jffiffi

k
p ; jr3jffiffi

k
p , This expectation is indeed fulfilled. For a

standard Lorenz system with r ¼ 10; q ¼ 28 and b ¼ 8=3,

eigenvalues of the linearized (single) system are �22.82,

11.82 and �8/3. We observe that for a coupled system with

k¼ 9, the three eigenvalues of the individual system are

retained and other eigenvalues are located within circles in

the complex plane with radii 22.82/3, 11.82/3, and 8/9. For

p¼ 0.5, we only see eigenvalues inside these three circles

centered at origin in complex plane. Real part of these eigen-

values can be positive or negative. The eigenvalue spectrum

for n¼ 500 is shown in Fig. 5. Since the real parts of all

eigenvalues need to be negative for stability, it is clear that

amplitude death state cannot be stabilized with such

connectivity.

We try another connectivity. Let us consider coupled

Lorenz systems with dynamics given by

_xi ¼ rðyi � xiÞ þ
XN

j¼1

�ðAi;jxj � jAi;jjxiÞ;

_yi ¼ qxi � yi þ
XN

j¼1

�ðAi;jyj � jAi;jjyiÞ;

_zi ¼ xiyi � bzi:

(6)

For � ¼ 0, the dynamics is that of a single uncoupled oscilla-

tor. We choose � ¼ 2; r ¼ 10; q ¼ 28 and b ¼ 8=3. The

coupling matrix A is same as discussed in Sec. III with k¼ 9.
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Eigenvalues of this system are not obvious. However, some

features of the eigenvalues of matrix A are carried over. We

have seen that the largest eigenvalue for amplitude death

state is non-degenerate for p¼ 0. This eigenvalue belongs to

the eigenvector ½1; 1;…1�. Hence, we expect the dynamics to

be close to synchronized state for small values of p and

desynchronized dynamics for larger values of p. This expec-

tation is indeed fulfilled. For p¼ 0, we observe synchronized

state. For small p, the system is not exactly synchronized.

However, all the systems are clustered in a small part of

phase space. In fact, we find sub-clusters within this cluster

at a finer scale. On further increasing p, we find synchronized

as well as anti-synchronized clusters. For p¼ 1, we find

synchronized as well as anti-synchronized clusters in equal

proportion. Unlike coupled maps, the cases of p¼ 0 and

p¼ 1 are no longer equivalent for coupled oscillators. Single

Lorenz system has a large positive eigenvalue at 11.82 and

from eigenvalue analysis, amplitude death state is stabilized

for large values of � and p > 0 (say � ¼ 60 and p¼ 1.) Thus,

we observe a synchronization-desynchronization transition

induced by negative coupling or even amplitude death for

large perturbation.

We would like to note another difference between the

two coupling schemes studied above. Given arbitrary differ-

ential equations, it is not guaranteed that the system has an

attractor. Lorenz system has an attractor, i.e., the trajectories

are confined to a part of phase space and do not go to infin-

ity. If we have a collection of N uncoupled Lorenz systems,

it will have attractor as well. We can hope that, for very

small couplings, the coupled system will continue to have an

attractor. In our first example, we cannot have any limiting

case in which system is reduced to N uncoupled Lorenz

equations for the given connectivity matrix. However, in the

second example, for � ¼ 0 the system reduces to N
uncoupled Lorenz oscillators and consequently the system

has an attractor. Hence, we find that the trajectories do not

escape to infinity in this system which is a continuous defor-

mation of the system of N uncoupled Lorenz oscillators.

Our results are somewhat different from those in Resmi

et al.2 The main difference is that they have an extra dynami-

cal variable which can change the stability of original sys-

tem. Thus, the phase space of two coupled Lorenz oscillators

is not six dimensional but seven dimensional owing to the

extra control variable in the above Ref. 2. Dynamics of this

control variable is very similar to adaptive control of chaos

which has been used for a single oscillator.18 We have con-

centrated on possible dynamics of the system solely in pres-

ence of different types of couplings and without the extra

control variable.

V. CONCLUSIONS

We have studied the stability of the oscillator/amplitude

death state of a coupled map lattice in which we have two

sublattices/groups. If all intra-group connections are of the

same sign and if inter-group connections are also consis-

tently of the same sign, the oscillators do not get frozen. We

can observe chaotic synchronization and chaotic antisynch-

ronization in this case. However, when we do not have this

consistency we observe oscillator death which is most pro-

nounced when the couplings have random signs. We have

used random matrix theory arguments to show that in many

cases there is an oscillator death in the system. We have

focused primarily on a random network in this paper.

However, we expect similar results to hold even for other

networks. In particular, introduction of a few negative ele-

ments in a positive matrix will reduce spectral radius of a

matrix in general. We have also briefly commented on a pos-

sible synchronization-desynchronization transition in

coupled oscillators in the presence of negative couplings.

We would like to note that for competing interactions,

Antal et al.8 have given a concept of balanced network. A

balanced network is one in which all its constituent triangles

are balanced. Interestingly, such a balanced network falls

within the class of networks we have studied in this work.

As Antal et al. note, “A fundamental result from these stud-

ies is that balanced societies are remarkably simple: either

all individuals are mutual friends (we call such a state ’para-

dise’), or the network segregates into two antagonistic cli-

ques where individuals within the same clique are mutual

friends and individuals from distinct cliques are enemies (we

call such a state ’bipolar’).8” We find that such balanced

“paradise” or “bipolar” connectivity induces a synchronized

or antisynchronized state while imbalanced/inconsistent con-

nectivity leads to oscillator death. In the context of social

networks, if an individual has a choice of not taking any side

in a conflict, all individuals are likely to have no opinion in a

frustrated network. On the other hand, all of them will hold

the same opinion in a “paradise” network and will split into

two groups of diverging opinions in a “bipolar” network.

A physical system that fits into our framework is the

metamagnet introduced earlier. Instead of an Ising system,

the Blume-Capel model could be simulated on such connec-

tivities.19 In Blume-Capel model, spin can take þ1, �1 and

0 values. It is clear that ferromagnetic state will be a low

energy state if all connections are positive and antiferromag-

netic state with opposing magnetization will be a low energy

FIG. 5. Eigenvalues of the Jacobian of amplitude death state of coupled

Lorenz oscillators with random connectivity is plotted for p¼ 0, n¼ 500 and

k¼ 9. We have also drawn circles centred at origin with radii jr1j=3; jr2j=3,

and jr3j=3 for reference. (Eigenvalues of single Lorenz oscillator are given

by r1 ¼ �22:82; r2 ¼ 11:82 and r3 ¼ �8=3.) Three eigenvalues of original

oscillator are retained and 3 n – 3 eigenvalues are in these circles.
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state if we have two groups with ferromagnetic intra-group

and antiferromagnetic inter-group interactions. However, it

would be of interest if we can reach an entirely nonmagnetic

(spin 0) state on a frustrated network.
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