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An array of identical maps with Ising symmetry, with both positive and negative couplings, is
studied. We divide the maps into two groups, with positive intra-group couplings and negative
inter-group couplings. This leads to antisynchronization between the two groups which have the
same stability properties as the synchronized state. Introducing a certain degree of randomness in
signs of these couplings destabilizes the anti-synchronized state. Further increasing the randomness
in signs of these couplings leads to oscillator death. This is essentially a frustration induced
phenomenon. We explain the observed results using the theory of random matrices with nonzero
mean. We briefly discuss applications to coupled differential equations. © 2013 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4812797]

We study coupled maps on a random network. When we
introduce positive as well as negative couplings on such a
network, geometric frustration is introduced, leading to
reduction of eigenvalues and oscillator death. We give an
analytic explanation of these results using theory of ran-
dom matrices with nonzero mean.

. INTRODUCTION

Amplitude/oscillator death is a phenomenon in which
two or more autonomously oscillating systems approach a
stable zero-amplitude state when coupled. Amplitude death
in coupled oscillators has been studied in various contexts
and several routes to amplitude death have been reported.'
Here, we report another route to amplitude death in coupled
identical oscillators on a network. The network has both pos-
itive and negative couplings.” Presence of couplings of both
signs induces frustration and leads to amplitude death.
Though not studied extensively, it is known that negative
and positive couplings could co-exist in several networks. In
neurons, both excitatory and inhibitory synaptic inputs co-
exist while in ecological webs interactions between species
could have both signs.** They are also observed in labora-
tory systems such as coupled lasers.” Equations with nega-
tive Laplacian appear in the context of several pattern
forming systems. Examples of this type are Kuramoto-
Sivashinsky and Swift-Hohenberg equations.® With negative
coupling, anti-synchronization can occur as well. We study
both anti-synchronization and amplitude death in this
system.

We divide the oscillators into two groups. First, we
choose positive intra-group and negative inter-group cou-
plings. This leads to an antisynchronized state with the same
stability properties as the synchronized state for all positive
couplings. These states are shown to have the same stability
properties as the synchronized state obtained for all negative
couplings or anti-synchronized state for negative intra-group
and positive inter-group couplings. If we relax the condition
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of having uniform signs for intra-group or inter-group
couplings, the synchronized or anti-synchronized state does
not exist. Given enough randomness in the connections, all
the oscillators approach O state, i.e., amplitude death. We
explain these observations by carrying out a stability analysis
of this state. This work is perhaps the first application of the
recently developed theory of random matrices with nonzero
mean.

The above phenomena are not merely of theoretical in-
terest. There are various examples where the system is seen
to be divided into groups and couplings within a group are
different from couplings outside the group. For example, in
magnetic systems there are layered systems called metamag-
nets in which couplings within a layer are ferromagnetic and
those between layers are anti-ferromagnetic.” Such connec-
tions are also found in social networks.®

The plan of the paper is as follows. In Sec. II, we define
the model and demonstrate the equivalence between the state
of synchronization of all elements and that of anti-
synchronization between two groups. In Sec. III, we intro-
duce a specific random-neighbor model which is studied in
detail. We show that frustration in connections indeed leads
to amplitude death in coupled maps and explain these results
analytically. In Sec. IV, we study coupled Lorenz systems on
such networks. In Sec. V, we present our conclusions and
possible directions for further research.

Il. MODEL

Our model is that of a coupled map lattice on an arbi-
trary network of n elements

W41 = Y A (500, 0

where A; is (i, j)th element of the adjacency/connectivity
matrix A of the underlying network. The indices i and j take
values from 1 to n. We focus on systems with Ising symme-
try where the function f{x) has an antisymmetric form
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f(=x) =—f(x). (For a similar usage, see Miller and Huse.?) In
particular, we choose f(x) = ox® + (1 — a)x.

First, we consider a system without frustration. The n
elements are decomposed into two groups U (comprising the
first m elements) and V (comprising the next n — m elements).
Let all the connections be positive. Let the connectivity ma-
trix be row stochastic, that is E};l Aj; = r for all i, so that
synchronized state can exist. The connectivity matrix can be
written in block form as

_(P 0
(2 9) >

where P and S are intra-group connections, while Q and R
are inter-group connections. Stability of synchronized state
can be inferred from the Jacobian. The elements of Jacobian
are given by Jjj(r) = Ox;(t+ 1)/0x;(t) = A;;f'(xj(r)) When
xj(t) =x*(¢) for all j, J;(t) =A;f (x*(r)) and hence
J(t) = Af'(x*(¢)). Thus, the Jacobian for synchronous state is
the connectivity matrix A multiplied by f'(x*(7)).

Now, if we change the signs of all inter-group couplings
we get a connectivity matrix A" where

/ P _Q
(", 2) o
We can have an antisynchronized state for this network.
The elements of Jacobian for this state are given by
Jij = A f'(x*(r)) or A’;f'(—x*(¢)) depending on the group
the site j belongs to. However, since our map has odd parity,
its derivative has even parity and f'(—x*(¢)) = f'(x*(¢)).

Thus J = A’f’(x*(¢)) for the antisynchronized state.
Define a matrix

1, 0
D - < 0 Inm)’ (4)

where [, and I,_, are identity matrices in m and n — m
dimensions. It is easily seen that A’ = D~'AD. Therefore,
matrices A and A’ are related by a similarity transforma-
tion and hence have the same eigenvalues. As we have
seen above, the Jacobian for the synchronized or anti-
synchronized state is simply the appropriate connectivity
matrix (A or A’, respectively) multiplied by f'(x*(¢)).
Since A and A’ are related by a similarity transformation,
the stability of synchronized state with all positive cou-
plings is the same as stability of the anti-synchronized
state with positive intra-group and negative inter-group
couplings.

What happens if we reverse signs of all the couplings of
matrix A? Eigenvalues of the connectivity matrix change
their signs, but not their magnitudes. Stability properties,
since they depend only on eigenvalue magnitudes, remain
unchanged. The synchronized state is still a possible state
since the matrix remains row stochastic. However, all varia-
bles change signs at all odd times. We also note that matrix
—A is related to —A’ by the same similarity transformation as
above. As noted above, this transformation changes signs of
the elements of the second group. Hence, stability of the
synchronized state with all negative connections is the same
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as that of the antisynchronized state with negative intra-
group and positive inter-group connections.

In summary, synchronized state with all positive (or
negative) connections and anti-synchronized state with posi-
tive (negative) inter-group and negative (positive) intra-
group connections have the same stability properties.

In Sec. III, we address the following question: What
happens if there is inconsistency in the signs of connections.
First, the synchronized or antisynchronized state may not
even exist. For example, the connectivity matrix should be
row stochastic for synchronized state and this will not be the
case any longer. However, the amplitude death state still
exists. This is a synchronized state and its stability is deter-
mined by eigenvalues of A multiplied by f/(0) for any cou-
pling scheme. This is because the elements of the Jacobian
are given by J;;(r) = Ox;(r+ 1)/0x;(t) = A f'(x;j(r)). When
x;(t) = 0 for all j (amplitude death state), J;; = A;; f'(0) and
hence J = Af’(0).

lll. RANDOM NEIGHBOR MODEL

We now investigate in some detail amplitude death in
the presence of inconsistency in the signs of connections for
a specific topology, namely a random-network type topol-
ogy, although similar results would hold for other networks.
Let matrix A be of the following type. Each site i is con-
nected with k randomly chosen neighbors. The value of A;;
is randomly chosen as 1/k or —1/k for connected sites and is
0 if the sites are not connected. This model is similar to
Erdos-Rényi type network in which every site is connected
to exactly k randomly chosen sites.'*"!!

The above connectivity scheme leads to synchronized
chaos for all positive connections since this is a row stochas-
tic matrix.'> We separate the sites in two groups with m and
n —m elements and impose a condition that inter-group con-
nections be negative (—1/k) and intra-group connections be
positive (1/k). (We have taken m = n/2 in simulations.) This
leads to antisynchronized chaos under the same conditions.

Now, we consider the following case. Let the
intra-group couplings be positive with probability p; and
inter-group couplings be negative with probability p,. As
explained above, for p; = p, = 1 (or p; = p» = 0) we see an
antisynchronized state. For p;=1,p, =0 or p,=1,
p1 = 0, we obtain a synchronized state. What happens when
we depart from these extreme conditions? When the cou-
plings are not consistent, some intra-group connections will
be negative and some inter-group connections will be posi-
tive. Hence, frustration is induced and antisynchronization is
reduced. However, around p; = p, = 1/2 there is a big area
where the oscillators are again synchronized (as well as anti-
synchronized). This is a state of amplitude death where
Xj(f) = OVi.

What are conditions under which the amplitude death
state can be observed? We consider the system of coupled
antisymmetric cubic maps introduced earlier (cf. Eq. (1)).
For the amplitude death state to be stable we need all the
eigenvalues of the Jacobian matrix (evaluated at the ampli-
tude death state) to be inside the unit circle in the complex
plane. For our system, this means that all the eigenvalues of



033104-3 P. M. Gade and G. Rangarajan

0.8 r

0.6 r

P2

1-0)| < 1 +
lDomalin Deaj[h g

A

max (

0 02 04 06 0.8 1
P1

FIG. 1. Domain of oscillator death for k=49, o« = 3.999 in p; — p, plane
(marked by crosses). We also plot values of p; — py for which A, |f'(0)| =
Jmax|l —A| < 1 (marked by + symbol). Both domains match as expected.

Af'(0) are less than 1 in magnitude. Equivalently, denoting
the maximum eigenvalue of A by A, we have |l
<[U/F/(O)]. For f(x) = + (1= 2)x, /(0) = (1 —a) =
—2.999 when o = 3.999. In Fig. 1, in p; — p» space, we have
plotted values of p; and p, for which this condition holds.
(We have taken n =200 and k=49.) We have also plotted
the numerical values of p, and p, for which amplitude death
is observed. There is an excellent match between the two.
Domain of oscillator death in p; — p, plane is diamond
shaped. The borders are lines of type p; — p» = constant
(parallel to p; = p,) and of type p; + p» = constant. It is
clear that the domain of oscillator death is centered around
the point of maximum frustration, i.e., p; = p, = 1/2.

In Fig. 2, we have plotted the absolute value of largest
eigenvalue of the adjacency matrix A. It again shows an
interesting symmetry. It has the shape of an inverted pyramid
cut at the bottom. It is possible to explain this shape using
arguments given later which also lead to an Ansatz for the
largest eigenvalue of the adjacency matrix. Using the same
logic as in Sec. II, we argue that the points (py,p2), (1 — p1,
1 —p2), (1 = p1,p2) and (p1, 1 — p,) have the same stability
properties. This explains the 4-fold symmetry in p; — p»
plane. The fact that the domain is bounded by lines with con-
stant p; + p» or p; — p» demonstrates that the largest eigen-
value is dependent solely on the number of “wrong”

0.8
Amax | 08
0.4

0.2

FIG. 2. We plot | max| for the adjacency matrix in p; — p, plane A |Ayq| =
1 /\/l; plane demonstrates that eigenvalues are bounded from below by
1/+v/k. The symmetry is evident.
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FIG. 3. Eigenvalues of the adjacency matrix are plotted in complex plane
for n=1000 and k =49 for various values of p. We see that n — 1 eigenval-
ues are in a circle of radius 1/7 in complex plane. Circle of radius 1/7 is
drawn for reference. There is also an outlier at 1 — 2p.

connections compared to the nearest vertex. For example, for
p1 <1//2,ps < 1/2, the number of wrong connections
(with respect to (0,0) would be (p;+p2)/2 and for
p1 > 1/2,py < 1/2, the number of wrong connections (with
respect to (0,1)) would be (p; + (1 — p2))/2.

To simplify matters, let us construct an adjacency matrix
with k nonzero connections in each row. The value of entry
is —1/k with probability p and 1/k with probability 1 — p.
Fig. 3 shows the eigenspectrum of such a matrix for k =49,
n=1000 at various values of p. We see a circle of radius
1//49 = 1/7 in the complex plane and an outlier eigen-
value. This outlier eigenvalue changes from 1 to —1 as we
change p from p =0 to p = 1. It can be well fitted by (1 —2p)
(when 1 —2p > 1/ Vk). In Fig. 4, Jmax| 1s plotted a function
of p. It can be fitted by (1 — 2p) as long as (1 —2p) > 1/vk
and the eigenvalue is given by v/k near p = 1/2. The case of
p=0 (or p=1) has already been worked out in Ref. 12.
However, the case of generic p was not worked out.
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FIG. 4. Magnitude of largest eigenvalue of adjacency matrix is plotted as a
function of p for k=16 and k=49. Lines at 1/v/k are also plotted as refer-
ence. It is clear that eigenvalue is max((1 — 2p), 1/vk).
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First, we study the most random case p; =p, = 1/2
(and thus p =1/2). This matrix can be viewed as a matrix
with O entries having probability 1 — 27 and entries +1/k or
—1/k having probability r=k/(2n) each. This distribution
has a zero mean and the variance is ¢ = 1/kn. Thus
oy/n = 1/+/k. This distribution clearly has a bounded 2 + &
moment for ¢ > 0. The theorem by Tao and Vu suggests that
eigenvalues of A+/k will fall within an unit disc in the com-
plex plane. Thus, the largest absolute value that eigenvalues
of A can take is l/\/%.m’14

For p # 1/2, the entries do not have mean zero any lon-
ger and most random matrix results do not apply. Random
matrices with nonzero mean have been studied as far back as
1964.'5 Later, it was understood that such matrices could be
seen as rank one perturbation of random matrix with zero
mean. In our case, we can write a given matrix asA =B + P
where B;j = A;j — p/n and P;; = p/n where u/n where yu =
(1 —2p) is the expected sum of row elements and y/n is the
mean. For A;; =1/k,0 and —1/k, B;j=1/k—p/n,—1/n
and —1/k — u/n respectively. Thus matrix B is an iid ran-
dom matrix with zero mean. The matrix P can be written as
P = jile >< e| where |e >=n"1/21,,.

Recent studies have shown that random iid matrices
with nonzero mean have an outlier when the mean is large
enough.'® Theorem 1.4 and 1.7 in Ref. 16 explain our obser-
vations very well if we assume that the theorem works for
sparse matrices as well and recast the matrices appropriately.
Sparse matrices differ from standard iid matrices since the
mean and variance of entries are not independent of n.
Consider the matrix B defined above. For B, the variance of
the entries is g(1 —p)(1/k — u/n)* + qp(—1/k — u/n)* +
(1 —q)(—u/n)* where g=kin. For k < n, a* ~ 1/(kn).
Hence matrix B/o = \/ﬁB has entries with unit variance
and zero mean. This is X,, in Tao’s notation. Now Theorem
1.4 of Tao implies that X,//n = VkB has eigenvalues
within the unit circle. We know that vkA = kB + VkP.
The perturbation matrix C,, = v/kP has rank-one: One eigen-
value is (1 —2p)vk and the remaining ones are zero.
Theorem 1.7 of Tao'® gives the eigenvalue distribution for
matrix X,,//n+C, = VkB + kP = VKA. n — 1 eigenval-
ues of V/kA lie within the unit circle while one is given by
the eigenvalue of C,, i.e., (1 — 2p)v/k provided it is outside
the unit circle. It follows that n — 1 eigenvalues of A are
within a circle of radius 1/ \//E and the one outside is given
by (1 —2p) if |1 — 2p| > 1/v/k. Otherwise, all the eigenval-
ues of A lie within a circle of radius 1/ k.'® This latter result
explains the flattening of the bottom part of the inverted pyr-
amid in Fig. 1.

Instead of treating the adjacency matrix as a perturba-
tion from a zero mean iid matrix, we can take a different
viewpoint and try out first order perturbation theory starting
from the adjacency matrix for p=0. Let us write A =
B’ + C' where B’ is the adjacency matrix for p=0, i.e., all
nonzero entries are positive. We know that B”’s largest
eigenvalue is 1 with right eigenvector e, = n='/2[1,1,...1]
= |e >. What is the left eigenvector of B? The matrix B
can be viewed as a matrix with nonzero entries 1/k with
probability k/n and O entries with probability 1 — k/n. The
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right eigenvector of such a matrix is close to vector |e >."”
Thus we can assume that both the left and right largest eigen-
vectors of B’ are given by |e > The nonzero entries of C’ are
—2/k with probability pk/n and other entries are zero. Hence,
first order perturbation in the largest eigenvalue of B’
obtained by adding C’ is given by (e|C'le)/(ele) = —2p.
Thus near p =0, the largest eigenvalue is (1 — 2p).

IV. COUPLED OSCILLATORS

Next we try to understand how this work translates to
coupled oscillators. We couple oscillators in exactly the
same manner as earlier

B 1) = 3 A F(5(0), )
=

where x is a M dimensional vector, the function F(x) is such
that F(0) =0. This system has an amplitude death state as a
possible state. We investigate the stability of such a system.
When we linearize around the amplitude death state, the re-
sultant Jacobian is a direct product of connectivity matrix A
and the Jacobian of a single oscillator. One may guess that
the eigenvalues of such a Jacobian are a direct product of
eigenvalues of the connectivity matrix A and eigenvalues of
the Jacobian for a single system. If a single linearized system
has (say) real eigenvalues ry, 1, and r3, and if coupling ma-
trix A is of type studied in Sec. III with (say) p=0, we
expect the eigenvalues of the linearized system to be 7, 7,
r3 and 3n — 3 eigenvalues (from the connectivity matrix)
which are located within circles in the complex plane with

[rl  |ral |3

radii AN This expectation is indeed fulfilled. For a

standard Lorenz system with ¢ = 10, p =28 and f§ = 8/3,
eigenvalues of the linearized (single) system are —22.82,
11.82 and —8/3. We observe that for a coupled system with
k=9, the three eigenvalues of the individual system are
retained and other eigenvalues are located within circles in
the complex plane with radii 22.82/3, 11.82/3, and 8/9. For
p=0.5, we only see eigenvalues inside these three circles
centered at origin in complex plane. Real part of these eigen-
values can be positive or negative. The eigenvalue spectrum
for n =500 is shown in Fig. 5. Since the real parts of all
eigenvalues need to be negative for stability, it is clear that
amplitude death state cannot be stabilized with such
connectivity.

We try another connectivity. Let us consider coupled
Lorenz systems with dynamics given by

N
ti=o(y —xi) + Y _elAx; — |Ailx),

J=1
N (6)
J=1

Zi = xiyi — Pz

For € = 0, the dynamics is that of a single uncoupled oscilla-
tor. We choose e =2, 6 =10, p =28 and f =8/3. The
coupling matrix A is same as discussed in Sec. III with k=9.



033104-5 P. M. Gade and G. Rangarajan

10 f i

FIG. 5. Eigenvalues of the Jacobian of amplitude death state of coupled
Lorenz oscillators with random connectivity is plotted for p =0, n =500 and
k=9. We have also drawn circles centred at origin with radii |r1|/3, |r2|/3,
and |r3|/3 for reference. (Eigenvalues of single Lorenz oscillator are given
by r; = —22.82, r, = 11.82 and r3 = —8/3.) Three eigenvalues of original
oscillator are retained and 3 n — 3 eigenvalues are in these circles.

Eigenvalues of this system are not obvious. However, some
features of the eigenvalues of matrix A are carried over. We
have seen that the largest eigenvalue for amplitude death
state is non-degenerate for p = 0. This eigenvalue belongs to
the eigenvector [1, 1, ...1]. Hence, we expect the dynamics to
be close to synchronized state for small values of p and
desynchronized dynamics for larger values of p. This expec-
tation is indeed fulfilled. For p =0, we observe synchronized
state. For small p, the system is not exactly synchronized.
However, all the systems are clustered in a small part of
phase space. In fact, we find sub-clusters within this cluster
at a finer scale. On further increasing p, we find synchronized
as well as anti-synchronized clusters. For p=1, we find
synchronized as well as anti-synchronized clusters in equal
proportion. Unlike coupled maps, the cases of p=0 and
p =1 are no longer equivalent for coupled oscillators. Single
Lorenz system has a large positive eigenvalue at 11.82 and
from eigenvalue analysis, amplitude death state is stabilized
for large values of € and p > 0 (say e = 60 and p =1.) Thus,
we observe a synchronization-desynchronization transition
induced by negative coupling or even amplitude death for
large perturbation.

We would like to note another difference between the
two coupling schemes studied above. Given arbitrary differ-
ential equations, it is not guaranteed that the system has an
attractor. Lorenz system has an attractor, i.e., the trajectories
are confined to a part of phase space and do not go to infin-
ity. If we have a collection of N uncoupled Lorenz systems,
it will have attractor as well. We can hope that, for very
small couplings, the coupled system will continue to have an
attractor. In our first example, we cannot have any limiting
case in which system is reduced to N uncoupled Lorenz
equations for the given connectivity matrix. However, in the
second example, for e =0 the system reduces to N
uncoupled Lorenz oscillators and consequently the system
has an attractor. Hence, we find that the trajectories do not
escape to infinity in this system which is a continuous defor-
mation of the system of N uncoupled Lorenz oscillators.
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Our results are somewhat different from those in Resmi
et al.* The main difference is that they have an extra dynami-
cal variable which can change the stability of original sys-
tem. Thus, the phase space of two coupled Lorenz oscillators
is not six dimensional but seven dimensional owing to the
extra control variable in the above Ref. 2. Dynamics of this
control variable is very similar to adaptive control of chaos
which has been used for a single oscillator.'® We have con-
centrated on possible dynamics of the system solely in pres-
ence of different types of couplings and without the extra
control variable.

V. CONCLUSIONS

We have studied the stability of the oscillator/amplitude
death state of a coupled map lattice in which we have two
sublattices/groups. If all intra-group connections are of the
same sign and if inter-group connections are also consis-
tently of the same sign, the oscillators do not get frozen. We
can observe chaotic synchronization and chaotic antisynch-
ronization in this case. However, when we do not have this
consistency we observe oscillator death which is most pro-
nounced when the couplings have random signs. We have
used random matrix theory arguments to show that in many
cases there is an oscillator death in the system. We have
focused primarily on a random network in this paper.
However, we expect similar results to hold even for other
networks. In particular, introduction of a few negative ele-
ments in a positive matrix will reduce spectral radius of a
matrix in general. We have also briefly commented on a pos-
sible  synchronization-desynchronization transition in
coupled oscillators in the presence of negative couplings.

We would like to note that for competing interactions,
Antal er al.® have given a concept of balanced network. A
balanced network is one in which all its constituent triangles
are balanced. Interestingly, such a balanced network falls
within the class of networks we have studied in this work.
As Antal et al. note, “A fundamental result from these stud-
ies is that balanced societies are remarkably simple: either
all individuals are mutual friends (we call such a state "para-
dise’), or the network segregates into two antagonistic cli-
ques where individuals within the same clique are mutual
friends and individuals from distinct cliques are enemies (we
call such a state “bipolar’).®” We find that such balanced
“paradise” or “bipolar” connectivity induces a synchronized
or antisynchronized state while imbalanced/inconsistent con-
nectivity leads to oscillator death. In the context of social
networks, if an individual has a choice of not taking any side
in a conflict, all individuals are likely to have no opinion in a
frustrated network. On the other hand, all of them will hold
the same opinion in a “paradise” network and will split into
two groups of diverging opinions in a “bipolar” network.

A physical system that fits into our framework is the
metamagnet introduced earlier. Instead of an Ising system,
the Blume-Capel model could be simulated on such connec-
tivities." In Blume-Capel model, spin can take +1, —1 and
0 values. It is clear that ferromagnetic state will be a low
energy state if all connections are positive and antiferromag-
netic state with opposing magnetization will be a low energy
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state if we have two groups with ferromagnetic intra-group
and antiferromagnetic inter-group interactions. However, it
would be of interest if we can reach an entirely nonmagnetic
(spin 0) state on a frustrated network.
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