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Abstract

In arbitrarily coupled dynamical systems (maps or ordinary differential equations), the stability of syn-

chronized states (including equilibrium point, periodic orbit or chaotic attractor) and the formation of pat-
terns from loss of stability of the synchronized states are two problems of current research interest. These

two problems are often treated separately in the literature. Here, we present a unified framework in which

we show that the eigenvalues of the coupling matrix determine the stability of the synchronized state, while

the eigenvectors correspond to patterns emerging from desynchronization. Based on this simple framework

three results are derived: First, general approaches are developed that yield constraints directly on the cou-

pling strengths which ensure the stability of synchronized dynamics. Second, when the synchronized state

becomes unstable spatial patterns can be selectively realized by varying the coupling strengths. Distinct

temporal evolution of the spatial pattern can be obtained depending on the bifurcating synchronized state.
Third, given a desired spatiotemporal pattern, one is able to design coupling schemes which give rise to that

pattern as the coupled system evolves. Systems with specific coupling schemes are used as examples to illus-

trate the general methods.
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1. Introduction

Large arrays or networks of coupled dynamical systems have attracted increasing interest due
to their wide application potential in the study of natural and engineering systems. From biology
to engineering, coupled map or coupled oscillator models have played considerable roles in reveal-
ing the functional mechanism underlying phenomena such as synchronization/coordination, and
the formation of complex patterns [20,21,40,54,33,34,47,39,55,56,36,11]. The essential problems
concerned are usually to know the extent to which the coupling strengths can be varied so that
the synchronized state remains stable and how to vary the coupling strengths in order to realize
some spatial patterns once the synchronized state becomes unstable. Early work has typically
looked at the two problems in systems of very small size or in systems with very specific coupling
schemes (diffusive coupling, global all to all coupling etc. with a single coupling strength)
[14,51,38,6,22,31,5,48,4,18,2,3,30,10,17,58,28]. Recent work introduced the notion of a master sta-
bility function that enables the analysis of general coupling topologies [42,12]. This function de-
fines a region of stability in terms of the eigenvalues of the coupling matrix [27,57]. However, no
explicit constraints on coupling strengths themselves were given. Another area of great interest in
coupled systems is the study of Generalized Turing Patterns (GTPs). These patterns differ from
the classic Turing patterns [50] in the following sense. Whereas classical Turing patterns emerge
from homogeneous equilibrium states, the GTPs emerge from global synchronized limit cycles
or chaotic states. Moreover, the underlying coupled system need not have diffusive coupling.
The GTPs have been the subject of several recent publications [23,41]. These papers mainly rely
on numerical techniques to obtain the threshold of instabilities and no general method to realize a
given GTP is given.

In this paper we focus on providing a unified approach toward the problem of stability and pat-
tern formation in coupled systems by tying together several recent results that have addressed the
question of stability and the question of pattern formation separately [8,45,49]. The paper is or-
ganized as follows. In Section 2 we introduce the general mathematical framework and the notion
of a master stability function. In Section 3, by combining the master stability function and the
Gershgorin disc theorem, we derive explicit constraints on the coupling strengths which give
the stability zone of the synchronized dynamics. We analyze both equilibrium synchronized states
and chaotic synchronized states. In Section 4, we compare the stability regions obtained by the
method in Section 3 and by the exact solution for systems where such solutions are possible. In
Section 5, we show how the coupling strengths can be varied along specific paths in the parameter
space to selectively realize admissible GTPs for that system. Moreover, given a desired GTP, we
present a general method to design a coupled dynamical system that would give rise to this pattern
under time evolution. Our methods are applicable to both coupled maps and coupled ordinary
differential equations (ODEs). Commonly studied coupling schemes are used as illustrative
examples.



936 Y. Chen et al. / Communications in Nonlinear Science and Numerical Simulation 11 (2006) 934–960
2. General stability region

The first step towards a general stability analysis of coupled identical systems is the linear eigen-
value analysis around a given solution. In the following we carry out this analysis for both cou-
pled maps and coupled ODEs.

2.1. Coupled maps

The system we consider is represented by
xiðnþ 1Þ ¼ fðxiðnÞÞ þ 1

N

XN

j¼1

Gij �HðxjðnÞÞ; ð1Þ
where xi(n) is the M-dimensional state vector of the ith map at time n and H : RM! RM is the
coupling function. We define G = [Gij] as the coupling matrix where Gij gives the coupling strength
from map j to map i.

We are interested in the linear stability of the synchronized state x(n) (additional conditions
may be needed to ensure that x(n) is a solution of the system and these will be addressed later).
The synchronized state defines the synchronization manifold in the phase space of the system.
Linearizing Eq. (1) around the synchronized state, which evolves according to x(n + 1) = f(x(n)),
we have
ziðnþ 1Þ ¼ JðxðnÞÞ � ziðnÞ þ 1

N

XN

j¼1

Gij � DHðxðnÞÞ � zjðnÞ; ð2Þ
where zi(n) denotes the ith map�s deviations from x(n), J(Æ) is the M · M Jacobian matrix for f and
DH(Æ) is the Jacobian of the coupling function H. In terms of the M · N matrix S(n) =
(z1(n)z2(n) � � �zN(n)), Eq. (2) can be recast as
Sðnþ 1Þ ¼ JðxðnÞÞ � SðnÞ þ 1

N
DHðxðnÞÞ � SðnÞ �GT: ð3Þ
The linear stability of Eq. (3) is determined by the eigenvalue k of G. Denote the corresponding
eigenvector by e and let u(n) = S(n)e where we have suppressed the dependence on k for notational
simplicity. Then
uðnþ 1Þ ¼ JðxðnÞÞ þ 1

N
k � DHðxðnÞÞ

� �
� uðnÞ for each k: ð4Þ
We note that the stability problem originally formulated in the M · N space has been reduced
to a problem in a M · M space where it is often the case that M� N. Next, we calculate the
Lyapunov exponents (which depend on k) from the above equation. If all Lyapunov exponents
transverse to the synchronization manifold are negative, the synchronized state is stable since
any deviation away from the synchronized manifold will quickly die down. Using this condition,
we later obtain constraints on the coupling strengths which will ensure stability of the synchro-
nized state.
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2.2. Coupled ODEs

The above procedure for reducing the original M · N space problem to a M · M space can also
be applied to coupled identical ODEs written as
1 We

respec

in this
_xi ¼ FðxiÞ þ 1

N

XN

j¼1

GijHðxjÞ; ð5Þ
where xi is the M-dimensional vector of the ith node. Linearizing around the synchronized state x
(which evolves according to the equation _x ¼ FðxÞ) we get
_zi ¼ JðxÞ � zi þ 1

N

XN

j¼1

Gij � DHðxÞ � zj; ð6Þ
where zi denotes deviations from x, J(Æ) and DH(Æ) are the M · M Jacobian matrices for the func-
tions of F and H. Adopting Jordan canonical form, we obtain
_u ¼ JðxÞ þ 1

N
k � DHðxÞ

� �
u; ð7Þ
where k is an eigenvalue of G. It is worth mentioning that this eigenvalue based analysis is valid
even if the coupling matrix G is defective [24]. As before, if all the transverse Lyapunov exponents
are negative, the synchronized state is stable.

In both the cases studied above, stability was characterized in terms of Lyapunov exponents.
We can formulate this in terms of the eigenvalues of G (the coupling matrix) as follows. Treat
k in Eq. (4) or (7) as a complex parameter and calculate the maximum Lyapunov exponent lmax

as a function of k. This is referred to as the master stability function by Pecora and Carroll [42].
The region in the (Re(k), Im(k)) plane where lmax < 0 defines a stability region denoted by X. If
the transverse eigenvalues of the coupling matrix are within X, then the synchronized state is sta-
ble.1 By transverse eigenvalues we mean those eigenvalues in Eq. (4) or (7) which correspond to
dynamics in the manifold transverse to the synchronization manifold. Fig. 1 shows a schematic of
two possible configurations of X. Whether X is an unbounded area [Fig. 1(a)] or a bounded one
[Fig. 1(b)] is contingent on the coupling scheme and other system parameters. We note that, typ-
ically, X is obtained numerically. In some instances analytical results are possible (see below).
3. Stability constraints on coupling strengths

Stability region X gives constraints on the eigenvalues of the coupling matrix which ensure the
stability of the synchronized state. Here, we seek constraints applicable directly on the coupling
strengths. This problem is dealt with by combining the master stability function with the Gershgö-
rin disc theory.
note that, since the Lyapunov exponent hmax is computed from typical initial conditions, the stability here is with

t to the blowout bifurcation. Bubbling transition can occur while the parameters are still within the bound derived

work. For details on these phenomena, see [59–62].



(a)
(b)

Fig. 1. Schematic illustrations of the stability region: (a) unbounded area, (b) bounded area.
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The Gershgörin disc theorem [26] states that all the eigenvalues of a n · n matrix A = [aij] are
located in the union of n discs (called Gershgörin discs) where each disc is given by
z 2 C : jz� aiij <
X
j6¼i

jajij
( )

; i ¼ 1; 2; . . . ; n: ð8Þ
Before applying this theorem, let us consider conditions which ensure that the synchronized
state is a solution of the coupled system (1) or (5). In systems such as neural networks, the syn-
chronized state is an equilibrium state and we want it to be stable even after the individual systems
are coupled together [25,52,1,32,35,53,13]. In this case the origin can be taken to be the equilib-
rium point without loss of generality and the condition H(x) = 0 needs to be imposed in order to
make it a solution of the coupled system. On the other hand, when the individual system is cha-
otic, the condition

PN
j¼1Gij ¼ 0 is imposed to ensure that the synchronized state is a solution. The

Gershgörin disc theorem has to be applied in different ways for these two cases.
3.1. Synchronization of equilibrium states

When the synchronized state is an equilibrium point, the synchronization manifold reduces to a
point, and all eigenvalues of the coupling matrix in Eq. (1) or (5) contribute to the transverse
dynamics. Therefore, if all the Gershgörin discs are restricted to lie within the stability region,
the synchronized equilibrium state will be stable.

Besides Eq. (8), the n Gershgörin discs can also be written in the following alternative forms
[26]:
z 2 C : jz� aiij 6
X
j6¼i

jaijj
( )

; i ¼ 1; 2; . . . ; n:
Combining the two forms of Gershgörin discs, we have the following form which is particularly
suited for neural network models:
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z 2 C : jz� aiij 6
1

2

X
j6¼i

ðjajij þ jaijjÞ
( )

; i ¼ 1; 2; . . . ; n: ð9Þ
This form is more intuitive since it involves both incoming and outgoing coupling strengths for
a given node. Applying Gershgörin disc theorem, the stability conditions for the equilibrium point
can now be stated as follows:

(1) The center Gii (i = 1,2, . . . ,N) of every Gershgörin disc of G lies inside the stability zone X.
(2) The radius of every Gershgörin disc is shorter than the distance from the center of that disc

to the boundary of X.

Let d(x) denote the distance from a point x on the real axis to the boundary of X. Then the
stability of the equilibrium point is ensured if
ðGii; 0Þ 2 X and
1

2

X
j6¼i

ðjGjij þ jGijjÞ < dðGiiÞ ð10Þ
for i = 1,2, . . . ,N.
In the following, we obtain analytical results for specific neural network models.

3.1.1. One-dimensional system

When one-dimensional systems are coupled together, the matrices DF and DH reduce to real
numbers. Representing them by l and m, respectively, the stability zone is easily obtained as
Re(k) < �l/m. The distance from the center of the ith Gershgörin disc to the boundary of X is
given by d(Gii) = �l/m � Gii. Using Eq. (10) we obtain the stability conditions as
1

2

X
j6¼i

ðjGjij þ jGijjÞ þ Gii < �l=m: ð11Þ
This result was obtained before in [25,52].

3.1.2. Two-dimensional coupled oscillator model

Let us consider a network whose functional unit is a cortical column consisting of mutually
coupled excitatory and inhibitory populations [1,32,35,53,13]. The columns are coupled through
mutually excitatory interactions to form the network.

A single column is described by two first-order differential equations
dx
dt
þ ax ¼ �keiQðy;QmÞ þ I;

dy
dt
þ by ¼ kieQðx;QmÞ:

ð12Þ
Here, x, y represent the local field potentials of the excitatory and inhibitory populations, respec-
tively, and I is the input (I = 0 in the subsequent analysis). The constants a, b > 0 are the damping
constants. The parameter kie > 0 gives the coupling gain from the excitatory (x) to the inhibitory
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(y) population whereas kei > 0 represents the strength of the reciprocal coupling. We use a sigmoid
coupling function for Q and we only need to specify that Q(0,Qm) = 0 and Q 0(0,Qm) = 1.

The N columns are coupled together in the following fashion:
dxn

dt
þ axn ¼ �keiQðyn;QmÞ þ

1

N

XN

p¼1

cnpQðxp;QmÞ þ In;

dyn

dt
þ byn ¼ kieQðxn;QmÞ;

ð13Þ
where the columns are indexed by n = 1,2,. . .,N and the coupling strength cnp is the gain from the
excitatory population of column p to the excitatory population of column n.

Here, the synchronized equilibrium is (0,0). Linearizing the above system about this state we
obtain Eq. (7) where
J ¼
�a �kei

kie �b

� �
; G ¼ ½cnp�; DH ¼

1 0

0 0

� �
:

Here, we have used the fact Q 0(0,Qm) = 1.
Applying the generalized Routh–Hurwitz criterion [16] to analyze the eigenvalues of the matrix

ðDFþ k
N DHÞ, we find the stability region X (shown in Fig. 2(a)) to be the region to the left of the

following curve (see Appendix A.1 for additional details)
k2
I ¼
ðNðkeikie þ abÞ � bkRÞðNðaþ bÞ � kRÞ2

bðkR � NaÞ : ð14Þ
The pointed tip of the curve in Fig. 2(a) along the real axis is given by (Nmin(a + b, a + kiekei/b), 0)
and it corresponds to the boundary of X for the symmetric coupling case. The distance d(Gii)
from the center of the ith Gershgörin disc to the boundary is (see Appendix A.2 for additional
details)
dðGiiÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ai þ 2N

ffiffiffiffiffi
Bi

pq
; i ¼ 1; 2; . . . ;N ; ð15Þ
where
Ai ¼ ðNa� GiiÞ2 � ðNbÞ2 � 2N 2kiekei;

Bi ¼ Nkiekei½2bðNðaþ bÞ � GiiÞ þ Nkiekei�:
The stability conditions [cf. Eq. (10)] for the symmetric coupling case are therefore given by
Gii < N minðaþ b; aþ kiekei=bÞ; 1

2

X
j6¼i

ðjGjij þ jGijjÞ <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ai þ 2N

ffiffiffiffiffi
Bi

pq
; i ¼ 1; 2; . . . ;N :
We note that since the boundary curve of the stability region asymptotically approaches the
straight line kR = Na, we can approximate the boundary by this line. In this case, we obtain sim-
pler stability constraints as follows. The distance to the new boundary is easily found to be
di ¼ jNa� Giij ð16Þ



(a)

(b)

Fig. 2. Stability region of synchronized equilibrium points: (a) a neural network model with M = 2, (b) a neural

network model with M = 4.
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and the stability condition simplifies to
1

2

X
j6¼i

ðjGjij þ jGijjÞ þ Gii < Na; i ¼ 1; 2; . . . ;N : ð17Þ
This simplified condition is a good approximation if min(a + b, a + kiekei/b) is sufficiently close
to a. We further note that Eq. (17) is satisfied if
jGijj < a; i; j ¼ 1; 2; . . . ;N :
That is, the equilibrium point is stable if
jcnpj < a 8 n; p ¼ 1; 2; . . . ;N :
This simple stability bound on the individual coupling strengths can be very useful in practice.
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3.1.3. Example of a four-dimensional coupled oscillator model

The previous model represents a neural population using first-order differential equations. This
has the property that its impulse response has a instantaneous rise phase. Here, we consider an-
other model where the neural population is modelled using second-order differential equations
possessing a finite rise and decay impulse response. Each individual column is described by a sys-
tem of two second-order differential equations [13]:
d2x
dt2
þ ðaþ bÞ dx

dt
þ abx ¼ �keiQðy;QmÞ þ I;

d2y
dt2
þ ðaþ bÞ dy

dt
þ aby ¼ kieQðx;QmÞ:

ð18Þ
The parameters have the same interpretation as before. The N column equations are given
by
d2xn

dt2
þ ðaþ bÞ dxn

dt
þ abxn ¼ �keiQðyn;QmÞ þ

1

N

XN

p¼1

cnpQðxp;QmÞ þ In;

d2yn

dt2
þ ðaþ bÞdyn

dt
þ abyn ¼ kieQðxn;QmÞ:

ð19Þ
We first consider the stability of the single column equations given in Eq. (18). When the input I is
zero, the origin x = 0, y = 0 is an equilibrium point. In order to study its stability properties, we
convert the above second-order differential equations to the following system of first-order differ-
ential equations:
dz1

dt
¼ z2;

dz2

dt
¼ �ðaþ bÞz2 � abz1 � keiQðz3;QmÞ;

dz3

dt
¼ z4;

dz4

dt
¼ �ðaþ bÞz4 � abz3 þ kieQðz1;QmÞ;
where
z1 ¼ x; z2 ¼
dx
dt
; z3 ¼ y; z4 ¼

dy
dt
:

The Jacobian matrix J is obtained as
J ¼

0 1 0 0

�ab �ðaþ bÞ �kei 0

0 0 0 1

kie 0 �ab �ðaþ bÞ

0
BBB@

1
CCCA: ð20Þ
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Here, we have used the fact that Q 0(0,Qm) = 1. For stability of the origin, the real parts of all
eigenvalues of J should be less than zero. The eigenvalues are determined from the characteristic
equation:
k4 þ 2ðaþ bÞk3 þ ða2 þ 4abþ b2Þk2 þ 2ða2bþ ab2Þkþ kiekei þ a2b2 ¼ 0:
Applying the Lienard–Chipart criterion [16], we get the following condition which ensures that
the origin is stable for the single column equations
kiekei < abðaþ bÞ2: ð21Þ

Next, we consider the stability of a network of coupled columns given in Eq. (19). Here
G ¼ ½cnp�;

and
DH ¼

0 0 0 0

1 0 0 0

0 0 0 0

0 0 0 0

0
BBB@

1
CCCA:
As before, we examine the eigenvalue a of the matrix Jþ k
N � DH as a function of k. The char-

acteristic polynomial of this matrix is given by
f ðaÞ ¼ a4 þ 2ðaþ bÞa3 þ ðaþ bÞ2 þ 2ab� k
N

� �
a2 þ 2abðaþ bÞ � k

N
ðaþ bÞ

� �
a

þ a2b2 � ab
k
N
þ kiekei

� �
: ð22Þ
For complex k, we are not able to obtain an analytical form for the stability zone X, since the
characteristic equation results in a eighth-order polynomial when applying the generalized
Routh–Hurwitz criterion [16]. However, numerical results are always possible. Fig. 2(b) shows
the stability region X when a = 0.22, b = 0.72, kie = 0.1, kei = 0.4. After numerically finding the
distance d(Gii) from the center of the ith Gershgörin disc to the boundary curve, Eq. (10) can again
be used to give the stability criteria.

If the coupling is symmetric, which implies that k is real, the stability boundary is just the right-
most tip of the curve along the real axis in Fig. 2(b). Then the distance d is given by the absolute
difference between the coordinates of the tip point (j, 0) and the center of the ith Gershgörin disc.
This tip (j, 0) can be determined by applying the Lienard–Chipart criterion as (see Appendix A.3
for details)
j ¼ min N
kiekei þ a2b2

ab
; 2Nab; g1

� �
; ð23Þ
where g1 ¼ Nðaþ bÞ2 þ N
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðaþ bÞ4 � 4½abðaþ bÞ2 � kiekei�

q
. Therefore, the distance function

d(Gii) is given by
dðGiiÞ ¼ jj� Giij; i ¼ 1; 2; . . . ;N : ð24Þ
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Applying Eq. (10), we obtain the following stability condition for the present model with sym-
metric couplings:
1

2

X
j6¼i

ðjGjij þ jGijjÞ þ Gii 6 j; i ¼ 1; 2; . . . ;N : ð25Þ
As we discussed before, this condition is satisfied if the individual coupling strengths obey the
following stability constraints:
jcnpj <
j
N

for cnp ¼ cpn; n; p ¼ 1; 2; . . . ;N : ð26Þ
3.2. Synchronization of chaotic states

When the synchronized state is chaotic, the condition
PN

j¼1Gij ¼ 0 needs to be imposed as dis-
cussed earlier. Then k = 0 is always an eigenvalue of G and its corresponding eigenvector is
ð 1 1 � � � 1 ÞT which is tangential to the synchronization manifold. However, for stability of
the synchronized state, we only require the transverse eigenvalues to lie in X. Therefore, we need
to remove k = 0 before applying the Gershgörin disc theorem. In other words, for synchronized
chaotic systems, the stability region does not include the origin. In order to exclude k = 0, we ap-
peal to an order reduction technique in matrix theory [19] which leads to a (N � 1) · (N � 1) ma-
trix D whose eigenvalues are the same as the eigenvalues of G except for k = 0.

Suppose that, for a given matrix G, we have knowledge of one of its eigenvalues ~k and the
eigenvector e. Through proper normalization we can make any one component of e equal to
one. Here, without loss of generality, we assume that the first component is made equal 1, namely,
e ¼ ð1; eT

N�1Þ
T
. We rewrite G in the following block form:
G ¼
G11 rT

s GN�1

 !
ð27Þ
with r = (G12, . . .,G1N)T, s = (G21, . . .,GN1)T and
GN�1 ¼

G22 � � � G2N

..

. ..
. ..

.

GN2 � � � GNN

0
BBB@

1
CCCA: ð28Þ
Choose a matrix P in the form
P ¼ 1 0T

eN�1 IN�1

 !
: ð29Þ
Here, IN � 1 is the (N � 1) · (N � 1) identity matrix. Similarity transformation of G by P yields
P�1GP ¼
~k rT

0 GN�1 � eN�1rT

 !
: ð30Þ
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Since P�1GP and G have identical eigenvalue spectra, the (N � 1) · (N � 1) matrix
D1 ¼ GN�1 � eN�1rT ð31Þ

assumes the eigenvalues of G sans ~k. We can obtain N different versions of the reduced matrix,
which we denote by Dk (k = 1,2,. . .,N), depending on which component of e is made equal 1.

Applying the above technique to the coupling matrix G by letting ~k ¼ 0 and
e ¼ ð 1 1 � � � 1 ÞT we get Dk ¼ ½dk

ij� where dk
ij ¼ Gij � Gkj. From the Gershgörin theorem the

stability conditions of the synchronized dynamics are expressed as

(1) the center of every Gershgörin disc of Dk lies inside the stability zone X. That is,
(Gii � Gki,0) 2 X;

(2) the radius of every Gershgörin disc of Dk satisfies the inequality
XN

j¼1;j6¼i

jGji � Gkij < dðGii � GkiÞ; i ¼ 1; 2; . . . ;N and i 6¼ k:
As k varies from 1 to N, we obtain N sets of stability conditions. Each set provides sufficient
conditions constraining the coupling strengths.

Next we illustrate the general approach by applying the above results to two examples where
analytical results are possible.

3.2.1. Coupled ODE
In this example we consider coupled differential equation systems with H(x) = x [27,57]. It is

easy to see that DH is a M · M identity matrix. The Lyapunov exponents for Eq. (7) are easily
calculated since the identity matrix commutes with J(x). Denoting them by l1(k), l2(k),. . .,lM(k),
we have
liðkÞ ¼ hi þ
1

N
ReðkÞ; i ¼ 1; 2; . . . ;M : ð32Þ
For stability, we require the transverse Lyapunov exponents (k 5 0) to be negative. This is
equivalent to the statement that the maximum transverse Lyapunov exponent is less than zero
for each k 5 0:
lmaxðkÞ ¼ hmax þ
1

N
ReðkÞ < 0; k 6¼ 0: ð33Þ
In other words, the stability zone X is the region defined by Re(k) < �Nhmax (see Fig. 3(a)). The
distance function from the center of each Gershgörin disc to the stability boundary is given by:
d(Gii � Gki) = �Nhmax � (Gii � Gki) (i = 1,. . .,N, i5k). Thus, the kth set of stability conditions is
ðGii � GkiÞ < �Nhmax; ð34Þ

XN

j¼1;j6¼i

jGji � Gkij < �Nhmax � ðGii � GkiÞ; i ¼ 1; 2; . . . ;N ; i 6¼ k: ð35Þ
It is obvious that the second inequality implies the first one. So the stability condition for the
synchronized state is given by



(a)

(b)

Fig. 3. Stability region of synchronized chaotic states: (a) coupled ODEs, (b) coupled maps.
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XN

j¼1;j6¼i

jGji � Gkij þ ðGii � GkiÞ < �Nhmax; i ¼ 1; 2; . . . ;N ; i 6¼ k: ð36Þ
When the coupling is symmetric, i.e. Gij = Gji, Rangarajan and Ding [44] based on the use of
Hermitian and positive semidefinite matrices, derived a very simple stability constraint
Gij > hmax 8 i; j: ð37Þ

We show here that Eq. (37) is a consequence of the more general stability conditions given in

Eq. (36). This can be seen as follows. First consider k = 1. Substituting Gii ¼ �
PN

j¼1;j6¼iGji (syn-
chronization condition for symmetric coupling) and simplifying we get the following equation:
XN

j¼2;j6¼i

jGji � G1ij �
XN

j¼2;j6¼i

Gji � 2G1i < �Nhmax; i 6¼ 1: ð38Þ



Y. Chen et al. / Communications in Nonlinear Science and Numerical Simulation 11 (2006) 934–960 947
If Gji � G1i is positive for all allowed i and j values, it is easy to see that the above stability con-
dition is satisfied given the condition in Eq. (37). However, if more than two such terms are neg-
ative we have a problem. We can get around this by considering the other (N � 1) sets of stability
conditions obtained by setting k = 2,3, . . . ,N in Eq. (36):
XN

j¼1;j6¼i 6¼2

jGji � G2ij �
XN

j¼1;j6¼i6¼2

Gji � 2G2i < �Nhmax; i 6¼ 2;

..

.

XN�1

j¼1;j6¼i

jGji � GNij �
XN�1

j¼1;j6¼i

Gji � 2GNi < �Nhmax; i 6¼ N :

ð39Þ
If we take the average of the inequalities over k, cancellation takes place, resulting in a simpli-
fied inequality. This is satisfied if the sufficient condition given in Eq. (37) is met. In other words,
the previously derived stability condition is obtained as a special case when we require the cou-
pling strengths to meet the N stability conditions simultaneously.

3.2.2. Coupled maps

In the second example, we consider a coupled map with H = f [30,10,17,58,28]. Under this
assumption, DH = J and the linearized equation [cf. Eq. (4)] reduces to
uðnþ 1Þ ¼ k
N
þ 1

� �
JðxðnÞÞuðnÞ: ð40Þ
The Lyapunov exponents for Eq. (40) are easily calculated analytically. Denoting them by
l1(k), l2(k), . . .,lM(k), we have
liðkÞ ¼ hi þ ln
k
N
þ 1

				
				; i ¼ 1; 2; . . . ;M : ð41Þ
For stability, we require lmaxðkÞ ¼ hmax þ ln j k
N þ 1j < 0 for all k 5 0. In other words, the sta-

bility zone (see Fig. 3(b)) is defined by
jkþ N j < N expð�hmaxÞ; k 6¼ 0: ð42Þ

The distance from the center of each Gershgörin disc to the boundary is easily calculated to be

d(Gii � Gki) = Nexp(�hmax) � jN + Gii � Gkij (i = 1, . . .,N, i5k). Thus, the conditions of stability
are
XN

j¼1;j 6¼i

jGji � Gkij þ jN þ ðGii � GkiÞj < N expð�hmaxÞ;

i ¼ 1; . . . ;N ; i 6¼ k; k ¼ 1 or 2 or � � � or N : ð43Þ
For each k from 1 to N, we obtain a set of sufficient stability conditions.
In [44], a simple stability bound for synchronized chaos in the case of symmetric coupling was

obtained as
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½1� expð�hmaxÞ� < Gij < ½1þ expð�hmaxÞ� 8i; j: ð44Þ

This can again be derived from the general stability condition in Eq. (43) with the averaging tech-
nique used above.
4. Comparison of general stability constraints with exact solutions

The general stability constraints on coupling strengths derived above give sufficient conditions
for the stability of the synchronized state. This is useful for those systems where necessary and
sufficient conditions are hard to get. Generally speaking, the closer the sufficient condition ap-
proaches the necessary and sufficient condition, the better it is. Let us look at an example whose
necessary and sufficient condition for the stability of the synchronized state can be derived ana-
lytically. By comparing this condition with our Gershgörin theory based condition, we can get
some idea about how close is the approximate stability region given by Gershgörin theorem to
the exact solution.

Consider a popular system of N identical maps with P nearest neighbor coupling
xjðnþ 1Þ ¼ fðxjðnÞÞ þ
1

2P

XP

p¼1

ap½fðxjþpðnÞÞ þ fðxj�pðnÞÞ � 2fðxjðnÞÞ�; j ¼ 1; 2; . . . ;N : ð45Þ
The coupling matrix is given by
G ¼ N
2P

�2
PP
p¼1

ap a1 � � � aP 0 � � � 0 aP � � � a1

a1 �2
PP
p¼1

ap a1 � � � aP 0 � � � aP � � � a2

� � � � � � � � �

a1 � � � aP 0 � � � 0 aP � � � a1 �2
PP
p¼1

ap

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
: ð46Þ
This matrix is cyclic and shift invariant. Therefore, its eigenvectors have the following form [9]:
el ¼ exp 2pi
l
N

� �
; exp 4pi

l
N

� �
; . . . ; exp 2Npi

l
N

� �� �T

; ð47Þ
where l = 0,1, . . .,N � 1. Here, l = 0 corresponds to the synchronized case. In terms of the eigen-
vectors, we get the eigenvalues of the coupling matrix by the following relation:
kl ¼
eT

l Gel

eT
l el

; l ¼ 0; 1; . . . ;N � 1: ð48Þ
Substituting Eqs. (46) and (47) in Eq. (48), we get
kl ¼ �
2N
P

XP

p¼1

apsin2 ppðl� 1Þ
N

; l ¼ 0; 1; . . . ;N � 1: ð49Þ
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Recasting inequality (42) using the above expressions for eigenvalues and their symmetry, we
get the following exact stability conditions:
1� 2

P

XP

p¼1

apsin2 ppl
N

� �					
					 < expð�h1Þ; l ¼ 0; 1; . . . ;

N
2

or
N � 1

2
: ð50Þ
As a numerical example we consider coupled logistic maps in the chaotic regime where
f(x) = 1 � ax2 with a = 1.9. The maximum Lyapunov exponent h1 is 0.549. For simplicity, we re-
strict ourselves to N = 5 and P = 2. The stability conditions for the synchronized chaotic state are
1� expð�h1Þ < a1sin2ðpl=5Þ þ a2sin2ð2pl=5Þ < 1þ expð�h1Þ; ð51Þ

where l = 1,2. In this numerical example, the matrix G corresponding to our general form is the
following:
G ¼ 5

4

�2ða1 þ a2Þ a1 a2 a2 a1

a1 �2ða1 þ a2Þ a1 a2 a2

a2 a1 �2ða1 þ a2Þ a1 a2

a2 a2 a1 �2ða1 þ a2Þ a1

a1 a2 a2 a1 �2ða1 þ a2Þ

0
BBBBBBB@

1
CCCCCCCA
: ð52Þ
Substituting in Eq. (43), we get the following sufficient conditions:
1� 1

4
ð3a1 þ 2a2Þ

				
				þ 1

2
ja1 � a2j < expð�h1Þ;

1� 1

4
ð2a1 þ 3a2Þ

				
				þ 1

2
ja1 � a2j < expð�h1Þ:
-0.5 0 0.5 1 1.5 2
-0.5

0

0.5

1

1.5

2

a
1

a 2

Fig. 4. Comparison of the our stability bounds (–––) with exact bounds (—).
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Simplifying the absolute values, we find the following bounds:
1� expð�h1Þ <
1

4
a1 þ a2 < 1þ expð�h1Þ;

1� expð�h1Þ < a1 þ
1

4
a2 < 1þ expð�h1Þ:
Comparing this sufficient condition Eq. (53) to the exact solution Eq. (51), we obtain Fig. 4
where solid lines denote the exact solution and dashed lines the sufficient condition. We see that
our conditions are a very good approximation to the exact bound.
5. Pattern formation

5.1. Pattern selection

We now turn to the problem of pattern formation in coupled systems. It turns out this has an
intimate connection with the stability problem we had studied in the previous sections. In the sta-
bility problem, the eigenvalues of the coupling matrix played an important role. In the study of
pattern formation, the eigenvectors of the matrix play an equally important role.

Given a coupled system, using the stability bounds on coupling strengths, we selectively realize
any admissible pattern we desire. This is done by destabilizing a particular eigenmode. This in
turn is achieved by varying the coupling strengths such that we cross the stability boundary along
a particular path. Of course, to do this accurately we need exact expressions for the stability zone
boundaries. However, even the sufficient conditions that we had derived earlier can provide ade-
quate guidance in the absence of such information. We note that our approach of obtaining sta-
bility bounds in terms of the coupling strengths makes pattern selection quite simple. Since the
coupled system is specified in terms of coupling strengths, varying them to achieve pattern selec-
tion is easily done.

Equally important, our approach enables us to obtain generalizations of the classic Turing pat-
terns. In the classic approach, the synchronized state is an equilibrium point which is destabilized
to give a Turing pattern with a simple time evolution of the spatial pattern. In our case, the syn-
chronized state can be chaotic and consequently the temporal evolution of the spatial pattern is
also chaotic. Further, our couplings need not be diffusive. We call the more general spatiotempo-
ral patterns that we obtain as Generalized Turing Patterns (GTPs).

For general couplings, the spatial pattern is not necessary a Fourier mode of the linearized sys-
tem like the Turing�s original case. However when the coupling matrix is shift-invariant, the eigen-
modes will continue to be Fourier modes. In the following we obtain an explicit strategy for
adjusting the coupling parameters to get a specific pattern. The difference in the temporal evolu-
tion of the patterns that emerge from the synchronized equilibrium points and synchronized cha-
otic states is also highlighted.

Let us consider a system of N identical maps with P nearest neighbor coupling whose dynamical
equations are given in Eq. (45). This system has a general non-diffusive coupling which is different
from the diffusive coupling used in reaction–diffusion systems. However, the coupling matrix is
still shift-invariant and therefore the eigenvectors of the coupling matrix shown in Eq. (47) are
the Fourier modes. Further, the inequalities (50) define a stability region in the parameter space



Y. Chen et al. / Communications in Nonlinear Science and Numerical Simulation 11 (2006) 934–960 951
spanned by the coupling strengths ap�s. By selecting a given Fourier mode and choosing a suitable
path in the parameter space we can realize the corresponding GTP. Note that, if one considers
only the nearest neighbor (P = 1) diffusive coupling, the parameter space is one-dimensional
and at most two GTPs can be excited by varying the coupling strengths. By enlarging the param-
eter space we obtain much greater variety in terms of GTPs that can be realized.

As a numerical example we consider coupled logistic maps in the chaotic regime where
f(x) = 1 � ax2 with a = 1.9. For N = 5 and P = 2, we have the stability conditions for the synchro-
nized chaotic state given in Eq. (51). In Fig. 5(a), we exhibit the stability region marked black in
the parameter plane. Next we consider the five eigenvectors [cf. Eq. (47)] which correspond to
Fourier modes in this case. The eigenvector e0 corresponds to the synchronized state and is ex-
cluded. Of the remaining 4 eigenvectors, only 2 are independent by symmetry of Fourier modes.
We take these to be e1 and e2 [cf. Eq. (47)] corresponding to l = 1 and 2, respectively. We call the
l = 1 mode the long-wavelength (LW) pattern and the l = 2 mode the short-wavelength (SW) pat-
tern. The arrows in Fig. 5(a) indicate paths in the parameter space which allow us to selectively
destabilize one of these two modes and realize the corresponding spatial pattern.
Fig. 5. Pattern selection from the synchronized chaotic state in a one-dimensional map lattice (P = 2). In (a) the region

of stable synchronization (black area) and distinct pattern selection directions are shown. In (b) temporal evolution of

the LW pattern is given with a1 = 0.96, a2 = 0.1. In (c) temporal evolution of the SW pattern with a1 = 0.04, a2 = 1.1 is

given.
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The main frame in Fig. 5(b) shows the temporal dynamics of the LW pattern for a1 = 0.96 and
a2 = 0.1. Here, deviations from the synchronization manifold is approximated by
ziðnÞ ¼ xiðnÞ �
XN

j¼1

xjðnÞ
N

; i ¼ 1; 2; . . . ;N
with N = 5. To facilitate visualization, at each time step n, a continuous function is splined
through the six discrete nodes: z1(n), z2(n), . . .,z5(n), and z6(n) = z1(n). Furthermore, to overcome
the distortion due to the two opposite phases of a pattern, we monitor the deviation at a given
node and multiply the deviations at every node by �1 whenever the deviation at the monitored
node becomes negative.

Since the bifurcation undergone by the system at the boundary of the stability region is the
blow-out bifurcation and there is only one attractor prior to the bifurcation, the temporal dynam-
ics in this case is referred to as on–off intermittency [9,10,15,43]. The temporal evolution of the
deviations at a typical node is given by the curve to the left of the main pattern frame. Its bursting
behavior is characteristic of on–off intermittency. The GTP itself is given at the bottom of Fig.
5(b). For a1 = 0.04 and a2 = 1.1 we observe the SW pattern in Fig. 5(c). The same visualization
methods are used to make this figure.

To understand how the synchronized state shapes the temporal properties of the GTP after
desynchronization, we consider a case where the synchronized state is a fixed point. Again we
use the coupled logistic maps and choose a = 0.5. The fixed point is �x ¼ 0:73 and the Lyapunov
exponent is h1 = �0.31. Still letting N = 5, P = 2, from Eq. (51) we get the stability region shown
in Fig. 6(a). Following the arrows we can realize either the long- or the short-wavelength patterns.
Fig. 6(b) gives the LW pattern for a1 = 0.5 and a2 = 2.5 and Fig. 6(c) gives the SW pattern for
a1 = 2.5 and a2 = 0.5. The same methods of plotting as that used for Fig. 1 are used here. Com-
paring Fig. 6(b) and (c) with Fig. 5(b) and (c) we see the same spatial patterns but different tem-
poral behaviors.

In Fig. 6 the final GTPs are the new fixed points displayed as a function of the space coordinate.
Predicting the exact location of these new fixed points requires the non-linear terms dropped in the
linear stability analysis. Although it is often the case that the spatial functions underlying the new
fixed points agree with the respective linear eigenmodes this is by no means a guaranteed fact [37].
On the other hand, when the synchronized state is chaotic, linear analysis will govern the temporal
evolution whenever the phase space trajectory returns close to the synchronization manifold.

5.2. Design couplings using the master stability function

In the previous section, given a coupled system, we showed how to realize a specific GTP by
varying the coupling strengths. In this section, we consider the inverse problem. Given a spatial
pattern with a particular temporal evolution, we design a coupled system that will give this pattern
when dynamically evolved.

From Eq. (3) or (6) we know that if one eigenvalue �k of the coupling matrix G is slightly outside
the stable region X, then the deviations from the synchronized manifold along the corresponding
eigenmode will grow exponentially with time and eventually giving rise to a spatial pattern when
bounded by the non-linearity of the system. Therefore, we can selectively control the pattern



Fig. 6. Pattern selection from the synchronized equilibrium state in a one-dimensional map lattice (P = 2). In (a) the

region of stable synchronization (black area) and distinct pattern selection directions are shown. In (b) the long-

wavelength pattern evolving as a fixed point in time is given with a1 = 0.5, a2 = 2.2. In (c) the short-wavelength pattern

with a1 = 2.2, a2 = 0.5 is shown.
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formation of the system by making the corresponding eigenvalue fall slightly outside the stability
region X.

On the other hand, we may want to just get a specific pattern. This pattern is given by specifying
the ratios bi/b1 (i = 2,3, . . . ,N) where bi is the amplitude of deviation from the synchronized mani-
fold at the ith node. For nearest neighbor coupling the patterns are fixed (the ith ratio is given by the
amplitude of a cosine curve). But we want to specify an arbitrary spatial pattern. Then designing a
coupled system which gives rise to such a pattern is a problem that occurs in areas such as the learn-
ing rule problem in neural networks [46]. We now outline a procedure for solving such problems:

(1) Choose the individual system unless already specified. If the temporal evolution needs to be
chaotic choose the individual system to be chaotic. The number of systems that need to be
coupled together is determined by the dimension N of the vector specifying the desired spa-
tial pattern.

(2) Unless specified, choose a simple coupling function H that will enable easy determination of
the stability region X.

(3) Determine the stability region X as described in Section 2.
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(4) Design a shift-invariant N · N coupling matrix as follows. We want the desired pattern as one
of the eigenvectors of the coupling matrix with its corresponding eigenvalue just outside the
stability region so that it is unstable and grows exponentially. Then the spatial pattern that
results from time evolution would have the same amplitude ratios as the desired pattern.
One of the other eigenvectors is also specified since we start out from a synchronized state.
The eigenvector is ð 1 1 � � � 1 ÞT and the corresponding eigenvalue is 0. Thus, our job
reduces to designing a N · N coupling matrix with the above two eigenvectors and corre-
sponding eigenvalues. Moreover, we want the eigenvalues corresponding to the remaining
N � 2 eigenmodes to lie within the stability region so that they do not grow with time. This
is ensured by constructing the eigenvalue matrix K and the eigenvector matrix E as follows.
The first diagonal entry of K is zero (corresponding to the synchronized state) and the second
diagonal entry should be chosen to lie just outside X. The remaining N � 2 diagonal entries are
chosen to lie within X. All off-diagonal entries are zero. As for E, its first column is taken to be
ð 1 1 � � � 1 ÞT. The desired spatial pattern constitutes the second column. The remaining
N � 2 columns are chosen randomly except that they are linearly independent to one another
and to the first two columns. The coupling matrix G can now be formed: G = EKE�1.

In order to make the whole process concrete, let us consider an example. The desired pattern is
assumed to be (1, �2, 3, �3, 2, �1, 1, �1, 3, �3)T. To realize this, we design a N = 10 coupled
system as follows. We choose the logistic map as the individual system with a = 1.9 which makes
the individual system chaotic. The stability region is �15.78 < Re(k) < �4.22 according to Eq.
(42). Therefore, the eigenvalue matrix can be chosen as K = diag(0,�4,�6,�8,�10,
�5,�9,�11,�6.5,�10.5). The eigenvector matrix is chosen as
E ¼
1 1 1 1 1 1 1 1 1 1

1 �2 3 �3 2 �1 1 �1 3 �3

eight random vectors

0
B@

1
CA

T

:

Therefore, the coupling matrix G is
G ¼

�9:53 7:40 10:20 31:11 5:37 �16:31 �15:26 4:68 3:74 �21:67

�3:06 5:42 13:21 42:37 8:11 �20:38 �21:50 4:09 2:27 �30:53

1:01 3:71 0:41 23:88 5:89 �14:82 �10:83 3:64 2:33 �15:22

�4:43 9:33 10:98 28:99 8:71 �19:97 �19:81 5:41 3:22 �22:43

0:07 6:12 11:40 30:51 �1:95 �19:57 �13:51 5:68 1:46 �20:20

�1:54 10:14 11:73 34:23 7:11 �27:13 �18:52 5:19 2:01 �23:22

�1:48 8:76 11:59 35:11 8:58 �21:09 �25:40 4:59 2:55 �23:22

�2:75 9:43 11:46 36:71 8:13 �19:76 �19:91 �2:27 3:31 �24:34

1:47 6:04 9:80 28:72 4:29 �17:11 �12:22 4:85 �5:13 �20:71

�4:67 10:38 11:65 39:23 8:50 �19:04 �20:37 4:75 2:99 �33:43

0
BBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCA

:

Using the designed coupling matrix and simulating the dynamics, we get the desired pattern as
shown in Fig. 7. The same techniques that were used in Figs. 5 and 6 have been applied to this figure.



Fig. 7. The desired spatiotemporal pattern achieved by designing couplings for 10 coupled logistic maps.
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6. Conclusions

In this work we described a unified framework for analyzing stability and pattern formation in
coupled dynamical systems. This framework focuses on the key role played by the eigenvalues and
eigenvectors of the coupling matrix. Using this framework and applying Gershgörin disc theorem
to the eigenvalues of the coupling matrix, general constraints on the coupling strengths which en-
sure the stability of the synchronized state were obtained. Stability of both synchronized equilib-
rium states and synchronized chaotic states were studied for various examples. Analysis of
synchronized limit cycles can be performed in a similar manner. Within the same framework we
studied pattern formation in coupled systems. By destabilizing a synchronized chaotic state, we ob-
served the emergence of generalized Turing patterns with interesting temporal evolution. Different
patterns were selectively realized in a simple manner by varying the coupling strengths along a spec-
ified path in the parameter space. Finally, given a desired spatiotemporal pattern, we gave a recipe
for designing a coupled system which will realize this pattern under temporal evolution.
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Appendix A

A.1. Derivation of boundary curve

To discover the stability zone we study the eigenvalue a of the matrix ðJþ k
N � DHÞ as a function

of k. The characteristic polynomial of this matrix is given by
f ðaÞ ¼ a2 þ a aþ b� k
N

� �
þ keikie þ ab� b

k
N

� �
:
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For an arbitrary coupling matrix G, its eigenvalues k could be complex:
k ¼ kR þ ikI :
Then the characteristic polynomial becomes
f ðaÞ ¼ a2 þ a aþ b� kR

N
� i

kI

N

� �
þ keikie þ ab� b

kR

N
� ib

kI

N

� �
:

The range of parameter values which gives Re(a) < 0 can be determined by applying the gen-
eralized Routh–Hurwitz criterion. Following this procedure, consider �if(ia):
�if ðiaÞ ¼ ia2 þ a aþ b� kR

N

� �
� ia

kI

N
� i keikie þ ab� b

kR

N

� �
� b

kI

N
:

This has to be put into the following standard form:
�if ðiaÞ ¼ b0a
2 þ b1aþ b2 þ i½a0a

2 þ a1aþ a2�:

Comparing the two equations we get
a0 ¼ 1; a1 ¼ �
kI

N
; a2 ¼ � keikie þ ab� b

kR

N

� �
;

b0 ¼ 0; b1 ¼ aþ b� kR

N

� �
; b2 ¼ �b

kI

N
:

Applying the generalized Routh–Hurwitz criterion, we have Re(a) < 0 if the following two con-
ditions are met:
r2 ¼
1 � kI

N

0 aþ b� kR
N


 �
					

					 > 0
and
r4 ¼

1 � kI
N � keikie þ ab� b kR

N


 �
0

0 aþ b� kR
N


 �
�b kI

N 0

0 1 � kI
N � keikie þ ab� b kR

N


 �
0 0 aþ b� kR

N


 �
�b kI

N

										

										
> 0:
Evaluating the above determinants and simplifying, we get
aþ b� kR

N

� �
> 0;

keikie þ ab� b
kR

N

� �
aþ b� kR

N

� �2

� b
kI

N

� �2 kR

N
� a

� �
> 0:
Solving the inequalities, the stability region X is found to be the region to the left of the curve
k2
I ¼
ðNðkeikie þ abÞ � bkRÞðNðaþ bÞ � kRÞ2

bðkR � NaÞ : ð14Þ
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A.2. Derivation of shortest distance

The distance c from the center (Gii, 0) of the ith Gershgörin disc to any point on the boundary of
the stability zone is given by
c2 ¼ ðkR � GiiÞ2 þ k2
I :
Substituting kI from Eq. (14) and differentiating with respect to kI, we have
dc2

dkR
¼ 2ðkR � GiiÞ �

ðNðaþ bÞ � kRÞ2

ðkR � NaÞ þ ½ðkR � NaÞ2 � ðNbÞ2�ðNðabþ kiekeiÞ � bkRÞ
bðkR � NaÞ2

:

Setting dc2

dkR
¼ 0, we get two solutions:
kR ¼ Na� Nb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nkiekei

2b½Nðaþ bÞ � Gii þ Nkiekei�

s
:

Since the boundary of X lies to the right of the point (Na,0), we can discard the smaller solu-
tion. Substituting the remaining solution in the equation for c2 and taking the square root, we get
the shortest distance as
di ¼ cmin ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ai þ 2N

ffiffiffiffiffi
Bi

pq
; i ¼ 1; 2; . . . ;N ; ð53Þ
where
Ai ¼ ðNa� GiiÞ2 � ðNbÞ2 � 2N 2kiekei;

Bi ¼ Nkiekei½2bðNðaþ bÞ � GiiÞ þ Nkiekei�:
A.3. Derivation of rightmost tip of boundary curve

Applying the Lienard–Chipart criterion on the characteristic polynomial (22), the real parts of
all eigenvalues are negative if the following inequalities are satisfied:
Na2b2 � abkþ Nkiekei > 0;

2Nabðaþ bÞ � kðaþ bÞ > 0;

2ðaþ bÞ > 0;

k2 � 2Nðaþ bÞ2kþ 4N 2ða3bþ 2a2b2 þ ab3 � kiekeiÞ > 0:

ð54Þ
Since a, b are positive, the third inequality is automatically satisfied. After simplification, the
first two inequalities become
k < N
kiekei þ a2b2

ab
;

k < 2Nab:
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The last inequality is of the form
a1k
2 � a2kþ a3 > 0;
where
a1 ¼ 1; a2 ¼ 2Nðaþ bÞ2; a3 ¼ 4N 2½abðaþ bÞ2 � kiekei�:

Note that a1, a2 are obviously positive. It turns out a3 is also positive because of the local sta-

bility condition derived in Eq. (21). The quadratic function a1k
2 � a2k + a3 with a1, a2, a3 positive

has a unique global minimum at k = a2/2a1. Thus, the minimum occurs at a positive value of k. It
is also seen that
a2
2 � 4a1a3 ¼ 4ðaþ bÞ4½ðaþ bÞ4 � 4½abðaþ bÞ2 � kiekei��:
This can be simplified as
a2
2 � 4a1a3 ¼ 4ðaþ bÞ4½ða2 � b2Þ2 þ 4kiekei�;
which is positive since kiekei is positive. Thus, both the zeros of the quadratic function (we will de-
note them g1 and g2 with g1 < g2) are real. Further, since a3 > 0 and the global minimum occurs at a
positive value, g2 > g1 > 0. Consequently, the last inequality is satisfied when k < g1 or k > g2 where
g1;2 ¼ Nðaþ bÞ2 � N
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðaþ bÞ4 � 4½abðaþ bÞ2 � kiekei�

q
:

Note that g1 is explicitly seen to be positive by applying Eq. (21). Further, g2 > N(a + b)2 >
2Nab. Thus, the inequality k > g2 > 2Nab is not possible given the stability condition k < 2Nab
derived earlier. Therefore, the last inequality in Eq. (54) reduces to k < g1.

Summarizing, we get the following set of stability conditions:
k < N
kiekei þ a2b2

ab
;

k < 2Nab;

k < g1:
Let j ¼ minfN kiekeiþa2b2

ab ; 2Nab; g1g, then all these inequalities will be simultaneously satisfied if
k < j:
Thus, the rightmost tip of the boundary curve along the real axis is (j, 0).
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