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Abstract  Long-term stability studies of particle storage rings can not be carried
out using conventional numerical integration algorithms. We require
symplectic integration algorithms which are both fast and accurate. In
this paper, we study a symplectic integration method wherein the sym-
plectic map representing the Hamiltonian system is refactorized using
polynomial symplectic maps. This method is used to perform long term
integration on a particle storage ring.
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1. Introduction

Standard numerical integration algorithms can not be used to study
long term stability of particle storage rings since they are not symplec-
tic [1]. This violation of the symplectic condition can lead to spuri-
ous chaotic or dissipative behavior. Numerical integration algorithms
which satisfy the symplectic condition are called symplectic integra-
tion algorithms [1]. Over the last few years, there has been consider-
able efforts devoted to developing such symplectic integration algorithms
[2,3,4,5,6,7,8,9,10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21]. In our
approach, we use the the symplectic map [22, 23] representing the par-
ticle storage ring. For complicated storage rings like the Large Hadron
Collider which has thousands of elements, using individual Hamiltoni-
ans for each element can drastically slow down the integration process.
On the other hand, the map based approach is very fast in such cases
[24, 25].

We investigate a new symplectic integration method where the sym-
plectic map is refactorized using “polynomial maps” [27, 28]. This
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method has the advantage of not introducing spurious poles and branch
points. Further, since it is map-based, it is also very fast.

2. Preliminaries

We restrict ourselves to three degrees of freedom nonlinear Hamilto-
nian system. We start by defining certain mathematical objects. Let us
denote the collection of six phase-space variables ¢;, p; (i = 1,2,3) by
the symbol z:

z = (q1,P1, 92, P2, 3, D3)- (1)
The Lie operator corresponding to a phase-space function f(z) is denoted
by : f(z):. It is defined by its action on a phase-space function g(z) as

shown below

1f(2):9(2) = [f(2), 9(2)]. (2)
Here [f(2), g(z)] denotes the usual Poisson bracket of the functions f(z)
and ¢(z). Next, we define the exponential of a Lie operator. It is called
a Lie transformation and is given as follows:

) =i f(2)"
e.f()zz_:o (Z') .

n:

3)

Powers of : f(z): that appear in the above equation are defined recur-
sively by the relation

F(2)"9(2) = f(2)" 7 [f(2),9(2)], (4)
with

:f(2):9(2) = g(2). (5)
For further details regarding Lie operators and Lie transformations, see

Ref [22].
The time evolution of the Hamiltonian system over one period can
be represented by a symplectic map M[22]. Symplectic maps are maps
whose Jacobian matrices M (z) satisfy the following symplectic condition

M(z)JM(z)=J (6)

where M is the transpose of M and .J is an antisymmetric matrix defined
as follows:

0 1 0 0 0 O
-1 0 0 0 0 O
0 0 0 1 0 O
J= 0 0 -1 0 0 O (7)
0 0 0 0 0 1
0 0 0 0 -1 0
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Matrices M satisfying Eq. (6) are called symplectic matrices and the
corresponding maps M symplectic maps. It can be shown[22] that the
set of all M’s forms an infinite dimensional Lie group of symplectic
maps. On the other hand, the set of all real 6 x 6 symplectic matrices
forms the finite dimensional real symplectic group Sp(6,R).

Using the Dragt-Finn factorization theorem|[22, 29], the symplectic
map M can be factorized as shown below:

M = Mefsefe | gifnt (8)

Here M gives the linear part of the map and hence has an equivalent
representation in terms of the Jacobian matrix M (0) of the map M at
the origin[22]:

MZi = Miij = (MZ)Z (9)

Thus, M is said to be the Lie transformation corresponding to the 6 X 6
matrix M belonging to Sp(6,R). The infinite product of Lie transforma-
tions exp(: fn:) (n = 3,4,...) in Eq. (8) represents the nonlinear part
of M. Here f,(z) denotes a homogeneous polynomial (in z) of degree n
uniquely determined by the factorization theorem.

As an application, let us consider a charged particle particle storage
ring which typically comprises thousands of elements (drifts, quadrupoles,
sextupoles etc.) Using the above procedure, one can represent each el-
ement in the storage ring by a symplectic map. By concatenating [22]
these maps together using group-theoretical methods [30], we obtain the
so-called ‘one-turn’ map representing the entire storage ring. The one-
turn map gives the final state z(!) of a particle after one turn around the
ring as a function of its initial state z(9):

20 = Mz, (10)

To obtain the state of a particle after n turns, one has to merely iterate
the above mapping N times i.e.

2(M = M0, (11)

Since M is explicitly symplectic, this gives a symplectic integration al-
gorithm. Further, since the entire ring can be represented by a single
(or at most a few) symplectic map(s), numerical integration of particle
trajectories using symplectic maps is very fast.

To obtain a practical symplectic integration algorithm, we follow the
perturbative approach and truncate M after a finite number of Lie trans-
formations:

M~ Mefs efe | eilfr, (12)
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The symplectic map is said to be truncated at order P. This map is still
symplectic. However, each exponential e/»* in M still contains an infi-
nite number of terms in its Taylor series expansion. We get around the
above problem by refactorizing M in terms of simpler symplectic maps
which can be evaluated exactly without truncation. We use ‘polynomial
maps’ which give rise to polynomials when acting on the phase space
variables. This avoids the problem of spurious poles and branch points
present in generating function methods [26], solvable map [12, 21] and
monomial map [18] refactorizations.

3. Symplectic Polynomial Maps

We start by describing the difference between monomial maps and
polynomial maps with respect to presence of poles and branch points.
This difference can be illustrated using the following examples. Consider
the monomial symplectic map exp(: ¢?p; :). Its action on g1, p1 in a two
dimensional phase space is given as follows:

q1
= ;L =exp(igip1 )p = p1(1+aq)? (13)
1+ aq1

This map has a pole at ¢; = —1.

On the other hand, consider the symplectic map exp(: a1q3 + asp; :
) where aj, ap are real constants. We determine its action on phase
space variables as follows. Note that the symplectic map is of the form
exp(: h(z) :) where h(z) is a function which depends only on the phase
space variables z and is independent of time ¢. If we take h(z) to be the
Hamiltonian function, then solving the Hamilton’s equations of motion
for this Hamiltonian from time ¢t = ¢* to time t = ¢/ is equivalent to the
following symplectic map action [22]:

2(t =) = exp[—(t — V) : h(z) Jz(t = ). (14)

Equivalently, obtaining the action of the symplectic map exp[—(t/ —t?) :
h(z) :] on the phase space variables is the same as solving the Hamilton’s
equations of motion with h(z) as the Hamiltonian from time ¢* to ¢/.
Setting t = 0 and t/ = —1 we have the following equivalence: Obtaining
the action of the symplectic map exp(: h(z :) on phase space variables is
equivalent to solving the Hamilton’s equations of motion using h(z) as
the Hamiltonian from time ¢ = 0 to time ¢ = —1. In this case, z(0) will
correspond to the initial values of the phase space variables and z(—1)
to the final values obtained after the action of the map exp(: h(z :).
Returning to our symplectic map, we obtain its action using the above
procedure. Thus we get

a™ = qi" —as, p|™ =p" + a1ad - 3a1asq” + 3a1(¢")? (15)

qi = exp(: ¢ip1 )@
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We note that the final values of the phase space variables are polynomial
functions of the initial variables and therefore involve no poles or branch
points. This is an example of a polynomial map.

We now turn to the question of which symplectic maps have polyno-
mial action. It can be shown [31] that the following results are true

1 All polynomials of the form h(z) where both a phase space variable
and its canonically conjugate variable [32] do not occur simulta-
neously give rise to symplectic polynomial maps via exp(: h(z) :).
We will call such h(z)’s as polynomials of the first type.

2 If a canonically conjugate pair ¢;, p; is present in the polynomial
h(z) and it appears either in the form [a(Z)q;+9g(pi, 2)]™ or [a(Z)p;+
9(qi, 2)|"™ (where m = 1,2..., Z = {q;,px} with j # k # i and
a, g are polynomials in the indicated variables), then this poly-
nomial h(z) again gives rise to a symplectic polynomial map via
exp(: h(z) :). If a product/sum of such factors appears in h(z),
each term in the product/sum is a function of different canonically
conjugate pairs. We will call h(z)’s of the form described above as
polynomials of the second type.

4. Symplectic Integration using Polynomial
Maps

In this section, we return to the problem of symplectic integration. We
restrict ourselves to symplectic maps in a six dimensional phase space
truncated at order 4. The results obtained below can be generalized to
both higher orders and higher dimensions using symbolic manipulation
programs. The Dragt-Finn factorization of the symplectic map is given
by:

M = Mels efa) (16)
where
3 = azsq:f + a29CI%P1 + -+ a83p§a
fi = asaqi +assgipr + - + azo0ps. (17)
Here the coefficients aog, ..., a9 can be explicitly computed given a

Hamiltonian system|[22] and are therefore known to us. The numbering
of these monomial coefficients follows the standard Giorgilli scheme [33].
The above map captures the leading order nonlinearities of the system.
Since the action of the linear part M on phase space variables is well
known [cf. Eq. (9)] and is already a polynomial action, we only refactor-
ize the nonlinear part of the map using N polynomial maps [27]. This
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is done as follows:

M %P:Mezhl:e:hgzu_e:hl\;:’ (18)
where e*’s are symplectic polynomial maps and the numeral appearing
in the subscript indexes the polynomial maps. The polynomial maps are
determined by requiring that P agree with M up to order 4. That is,
when the N polynomial maps are combined, the resulting symplectic
map should have all the monomials present in f3 and f4 with the correct
coefficients up to order 4.

Using the above procedure, it turns out that we require 23 polynomial
maps for refactorization:

M P = Mehiehs ... ghest (19)
The h;’s are given as follows:

hi = ¢} bas+qi q2bs0 + qi g3 bs2 + 4165 bso + @1 g2 g3 bar + @1 G5 bag +
a5 bea + 45 q3 bes + 42 43 br1 + 3 bso + ¢ bsa + q; g2 bss + G q3 bss +
a; 45 bos + a5 g2 g3 bor + a3 43 b1o2 + q1 43 bi2o + q1 43 g3 braz +
01 q2 43 b127 + q1 43 bize + g3 bizs + g3 g3 birr + 43 43 bisa +
g2 q3 b1o1 + g3 b2os,

ha = [(b2g + b34) + g2 (bo1 + b1o6) + P2 (bo2 + b1o7) + g3 (be3 + bios) +
p3 (boa + bioo)] (p1 + @1)°,

hs = [(=bg + b34) + g2 (—bo1 + b10s) + p2 (—bo2 + bio7) +
g3 (—bos -+ b1os) + ps (—bos + b1oo)] (—p1 + q1)°,

hs = [(bes + beg) + q1 (D121 + b124) + p1 (D156 + b159) +
g3 (biso + biss) + ps (bis1 + bis7)] (p2 + @2)°,

hs = [(=bes + bes) + q1 (—b121 + b12s) + p1 (—b1s6 + b159) +
g3 (—biso + biss) + p3 (—bis + bisy)] (—p2 + @),

he = [(bs1 +bs2) +q1 (b1s7 + biss) + p1 (b172 + b173) + g2 (brg2 + bio3) +
p2 (b2o2 + b2o3)] (ps + q3)°,

hr = [(—bs1 +bs2) + q1 (—bi37 + bi3s) + p1 (—bi72 + bi73) +
g2 (—biga + b193) + pa (—bao2 + b2o3)] (—ps + a3)°,

hs = (p1+a) (Q2 bss + g3 bs7 + @3 biio + q2 g3 b2 + p3 g2 bz + @3 b117) )

2

p1+q1)” (p2bse + 3 bss + 3 biia + p2 g3 biis + pa p3 biis + P b119) ;

[\

(Ch bao + g3 beo + G5 bos + q1 g3 b125 + P3 @1 bi2e + G3 b188) ,
*(

( )
hio = (p2+¢q)
( )

P2+ q2)° (p1bss + p3bro + p? bras + p1 g3 bieo + p1 3 biet + P 5190) ;
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hia = (p3s+q3)° (Q1 baz + g2 bra + @5 b1o3 + q1 g2 b1as + P2 q1 b13s + @3 b183) ,
his = (p3+q3)° (pl bez + p2 brs + % bisz + p1 g2 bigs + p1 p2 bieo + P 5199) ;
hia = paqibst + p3qibss + p3qr bas + p2p3 g1 bas + pi q1 bas + P2 ¢ by +

P34 bso + 3 4 beg + P2 p3 i bror + 3 4 broa + P3 q1 biso +
P5 P3 q1 bis2 + P2 p3 q1 biss + P @1 biso,
his = piqabso+ pTasbsz + p1 g3 bsa + P12 g3 bss + p1 a3 ber + T g2 brar +
P} 3 baz + i @5 bias + i G2 g3 biar + pT g3 bisa + p1 @3 biss +
P13 43 bist + P1 g2 43 bigz + 1 g5 b,

hie = p1P3q2bst + p3 a3 ber + p3 g2 brs + T ps g2 bias + p1 ps g5 biss +
P1 D3 q2 biga + p3 @5 birs + p3 q5 bisa + 3 g2 broa,

hir = paqiqsbaa + p3qsbrs + p2q3 brr + p2 ¢F g3 bioo + ph q1 g3 bist +
P21 q3 biss + p3 g3 bios + P53 a3 bros + P2 43 baot

his = p1P2qsbso + pT p2 g3 biso + P13 g3 bies + p1 P2 G5 bies,

hio = D31 q2baz + P3qi g2 bos + 3 q1 G5 bras + P3 q1 g2 bi2o,

hoo = Pibag + pipabsi + pipsbss + p1p3 bss + p1p2ps3 beo + P13 bes +

3 bra + 3 p3 brg + pa p3 bro + P4 bss + P brao + pi p2 braz +
P} p3 braa + pT p3 biag + pi p2 p3 bist + pi p3 bisa + p1p3 bies +
P1 D3 D3 bigr + p1 p2 3 bizo + p1P3 bira + pa bios + P p3 bior +
3 P3 baoo + p2 P3 baoa + 3 bago,

ha1 = (pl +q1 +pi 1)105)3 + (p2 + g2 + P> b185)3 + (ps + g3+ p3 b208)37
3 3
hao = (*101 -+ 585) + (*102 @+ @ b176) +
(—P3 — g3+ q3 b206)37

has = (p1+q) b0+ (p1 + 1) (P2 + @) bur + (p1 + @1)* (p3 + @3)? buig
+(p2 4 q2)* biro + (p2 + ¢2) (D3 + @3) baso + (p3 + g3)* baor.

Here b;’s are at present unknown coefficients. As mentioned above, by
forcing the refactorized form P to equal the original map M up to order
4 and using the CBH theorem|[30], we can easily compute these unknown
coefficients in terms of the known a;’s. These expressions are available
from the author as part of a FORTRAN program implementing the
above algorithm.

The explicit actions of the polynomial maps on phase space variables
can be obtained. This completely determines the refactorized map P.
Each exp(: h; :) is a polynomial map which can be evaluated exactly and
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is explicitly symplectic. Thus by using P instead of M in Eq. (11), we
obtain an explicitly symplectic integration algorithm. Further, it is fast
to evaluate and does not introduce spurious poles and branch points.
The above factorization is not unique. However, the principles outlined
earlier impose restrictions on the possible forms and this eases consid-
erably the task of refactorization. Moreover, we require the coefficients
b; to be polynomials in the known coefficients a;. Otherwise this can
lead to divergences when a;’s take on certain special values. Finally,
we minimize the number of polynomial maps in the refactorized form.
Our studies show that different polynomial map refactorizations obeying
the above restrictions do not lead to any significant differences in their
behavior.

5. Applications

We now consider two applications of the above method. The first ex-
ample is to find the region of stability of the following simple symplectic
map:

M = Mexp[: (q +p1)* ], (20)
where
~ cosf sinf
M_(—sine cos@)’ (21)

and ¢ = §. We chose this example since the exact action of the above
map is known and hence the exact region of stability can also be de-
termined. We found excellent agreement between results obtained using
polynomial maps and the exact results.

We have also applied the method to a large particle storage ring for
storing charged particles. This storage ring consists of 5109 individ-
ual elements (where these elements could be drifts, bending magnets,
quadrupoles or sextupoles). If one tries to numerically integrate the
trajectory of a charged particle through this ring using a conventional
integration algorithm, one has to go through the ring element by ele-
ment where each element is described by its own Hamiltonian. This
is cumbersome and slow and further, does not respect the Hamiltonian
nature of the system. On the other hand, a map based approach where
one represents the entire storage ring in terms of a single map is much
faster [24, 25]. When this is combined with our polynomial map refac-
torization, one obtains a symplectic integration algorithm which is both
fast and accurate and is ideally suited for such complex real life systems.
The g1 — p1 phase plot for one million turns around the ring using our
polynomial map method is given in Figure 1. In this case, ¢; and p; rep-
resent the deviations from the closed orbit coordinate and momentum
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Figure 1.  This figure shows the g1 —p1 phase space plot for one million turns around
a storage ring using the polynomial map method (only every 1000th point is plotted).

respectively. From theoretical considerations, we expect the so-called
betatron oscillations in these variables. This manifests itself as ellipses
in the phase space plot of ¢; and p; variables. In Figure 1, we observe
the expected betatron oscillations. We also see the thickening of the
ellipses caused by nonlinearities present in the sextupoles.

6. Conclusions

To conclude, we described in detail a new symplectic integration al-
gorithm based on polynomial map refactorization. The absence of poles
and branch points in this method was highlighted. We studied the types
of symplectic maps which give rise to polynomial actions on phase space
variables. For three degrees of freedom, we obtained the refactorization
of a given symplectic map in terms of polynomial maps. This refactor-
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ized map was then used to study long term stability of a complicated
particle storage ring.
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