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EXPRESSION FOR A GENERAL ELEMENT
OF AN SO(n) MATRIX
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We derive the expression for a general element of an SO(n) matrix. All elements
are obtained from a single element of the matrix. This has applications in recently
developed methods for computing Lyapunov exponents.
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1. Introduction. Matrix representations of the SO(n) group have played an
important role in mathematical physics [5, 6]. They continue to be used in
many fields to this day [4, 7, 8]. They also play a crucial role in new methods
for computing Lyapunov exponents [2, 3].

In this paper, we obtain the expression for a general element of an SO(n)
matrix Q™ for n = 3. This offers significant advantages in generalizing the
recent Lyapunov spectrum calculation methods [2, 3] to higher dimensions.
We demonstrate that expressions for all elements can be obtained from the
expression of a single matrix element by suitable operations. As an example
of the application of these results, we derive the elements of an SO(3) matrix
in Section 3. The standard expressions are obtained as expected.

2. General element of an SO(n) matrix. In this section, we derive the ex-
pression for a general element of an SO(n) matrix denoted by Q™ (for n = 3).
In all the expressions below, it is implicitly assumed that n > 3.

We start by deriving the expression for the element Q(fy‘t). Then we prove that
all other elements of Q™ can be obtained from this single element and give
explicit expressions for these elements. This method is based on the represen-
tation of the group SO(n) as a product of n(n—1)/2 nxn matrices, which are
simple rotations in the (i — j)th coordinates [1].

PROPOSITION 2.1. AnSO(n) matrix Q™ can be represented as the following
product of simple rotations (see [1]):

QMW =203 ... o0m .. gh-1n), (2.1)

where O%J) s given as
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1, ifk=1%1,J;
cos0,, ifk=1=1ioryj;
oy’ =1sin0,, ifk=1i,1=j;
—-sin0y, ifk=j,1=1;
0, otherwise,
wherer = (i—1)(2n—1i)/2+j—1i.
Let

T = 012003 ... ol
T® — 023ped ... gen

T® — kk+D) gkk+2) . olkm),

T — on-1,n)

(2.3)

We see that the matrix 7" depends only on the first (n—1) 0;’s, namely, 0,

921---101’1—11

T depends only on the next (n—2) 6;’s, namely,

01, 0n41,...,02,_3, and so on. Finally, the matrix T~ depends only on one 6;,
namely, 0,,(n-1),2. Thus, a general matrix T®) is parameterized by the following
0i’s, namely, O n.k), Ommni)+1,---» Opn,k), where m(n, k) and p(n,k) are given

by

QW — TOIT@ . Tn-1)

Therefore,

The matrix T®) (k = 1,2,...,n—1) is given by

0

1 0
0 0 0

R&)
0

(2.4)

(2.5)

where R%® is an (n —k + 1) X (n — k + 1) matrix parameterized by 0k +1,
Omnk)+2,---,Opn,k), where m(n,k) and p(n,k) are given by (2.4) and (2.5),
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respectively. The elements of R®) are given as follows:

p(n,k)
RY = T[] cosé, 2.8)
r=m(n,k)
(k) _

Ry =sin0mmnk), (2.9)

and for j =3,4,...,n—(k—1),

-3
R(k) ( 1_[ €08 Omn, k)+r> SN O (n k) +j—2- (2.10)

r=0

The second row (j =1,2,...,n—(k—1)) is given by

0

=—— R, (2.11)
00mmn,k)

(k)
R, 1 -

The rest of the rows (i = 3,4,...,n—(k—1)and j = 1,2,...,n—(k—1)) are
given by

0
R(k) S 2.12
00mmnp+i—2 (2.12)

where 55“‘) Coefficient of 1_[, 0COS O (nk)+r IN R”
Puttlng everything together, from (2.6) we have the following lemma.

LEMMA 2.2. Let Q™ be an SO(n) matrix (n > 3). Then the element Q\"" is
given by the expression

n-1 n

(n) (1 (2) (3)

Z Z ’ Z Z Ry Ry R -1 Rina-12, (2.13)
Jn-2=2 jn-3=2 jo=2 j1=2

where j,1 = 2.

Next, we prove that all other elements of Q™ can be obtained from the
single element Qﬁﬁ) (derived above). To show this, we need some preliminary
results contained in Lemmas 2.3 and 2.4 proved below.

LEMMA 2.3. Consider a general SO(n) matrix Q™ (m = 3). The expressions
for Q;, (n) 5 ,1=1,2,...,n—1, do not involve the term cos 0pn,1)(= cos0y_1) in
them.

PROOF. We can write the matrix Q™ as

QM =RWT (since TV =RW), (2.14)
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where T is of the form

1 0 0
R 0
[=7@1®...TM=D = | . (2.15)
: Am-1)
0
Here A~V is a general SO(n — 1) matrix parameterized by ,,, 8,11, ..., Onn-1)/2-
Thus, Qiﬁ) (i=1,2,...,n—1)is given by
< (1 1
Q= DR AL (2.16)

k=2

From this equation, we see that Rill)'s (i=1,2,...,m—1) are absent in the ex-
pressions for Q\"” (i = 1,2,...,n - 1). Also, by (2.9), (2.10), (2.11), and (2.12),
which give the expressions for RE}‘)’S, we see that the term cos 0, is absent
in all the Ré,l)’s, where i = 1,2,...,n—1 and k = 2,3,...,n. Finally, A®~1 is
parameterized by 0y, 0y1,...,0,mn-1),2 and hence does not contain the term
cos 0,,_1. Therefore, Qﬁﬁ) (i=1,2,...,n—1) does not involve the term cos0,,_1.

This proves the lemma. |
LEMMA 2.4. Forn =3, Q) = [1{21 cosOp i), where p(n,k) = k(2n—k —

1)/2.

PROOF. This lemma is easily proved by mathematical induction and hence
we omit the proof. O

We are now in a position to prove that we can obtain all rows of Q™ given
only the first row.

LEMMA 2.5. Let Q™ be an SO(n) matrix n = 3). Let Q%’i‘), i=1,2,...,n be
its first row. Then the second row is given by the following equation:

aQ(VL)
(n) _ 11 —
Qy' = 30, 1=1,2,...,n. (2.17)
The other rows are given by the following_
oy
QW =""1 i=34,..,n1=12,...,n, (2.18)
00i1
where
i-2

B\)" = Coefficient of [ | cos @, in Q7. (2.19)
r=1
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PROOF. A general SO(n) matrix Q™ is given by
QM =T1Wr, (2.20)

where T and T are given by (2.3) and (2.15), respectively. The matrix T"
is parameterized by the following (n — 1) 0’s, namely, 01,0-,...,0,_1 while
I is given by (2.15), where A™~D is an SO(n — 1) matrix, parameterized by
(n-1)(n-2)/2 0’s,namely, 0,,0,1,...,0nmn-1),2. Thus, Q11 ,i=1,2,...,nis
given by

Qi =R} 2.21)

Using this equation and (2.11), we obtain

(n)
(n) aQu
= — 2.22
QZl ael ( )
Also, from (2.12), we have
sy
(1) _ il P—
Ry’ = 30, i=3,4,...,n, (2.23)
where (see (2.21) and (2.19))
1
gy =i (2.24)
Thus,
Py a9y oy m
= =R =Q; =3,4,...,n. 2.2
aei_] 591'_1 il Qll ’ 12 3, ) yn ( 5)
Now, for [ = 2,3,...,n, we have
QY = z R AT (2.26)
Putting i = 1, we get
Q' = S RWAIY.,. (2.27)

k=2
Since A,((rﬁ]}l)_l’s do not involve the first (n—1) 0’s, namely, 0, 0-,...,0,,_1, we
obtain (for k = 2,3,...,n)

0 (L) 4(n-1) (1) 4(n-1)
60 (le Aknll 1) Ry A1y (2.28)
Summing over k (k = 2,3,...,n) and using (2.27) and (2.22), we get

d
EQ(1 =QyW, 1=1,2,...,n. (2.29)
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Thus, the second row of Q ™, namely, Q;_’l” (l=1,2,...,n) obeys the hypothesis
(2.17). We will now prove the hypothesis for the rest of its rows.
Let

i-2
94 = Coefficient of []cos6, in Ry}, i=3,4,...,n, (2.30)
r=1
i-2
%;x = Coefficient of H cos 6, in Rﬁ’A;ﬁflll, i=3,4,...,n; k=2,3,...,n.
r=1
(2.31)
Therefore, (see (2.27) and (2.19))
n
S G =B, (2.32)
k=2
Since A,(:ﬁfl)_l’s do not involve 64, 05,...,0,_1, we have from (2.31)
Gix = A9 (2.33)
where &ﬁ,lc) = Coefficient of [].23 cos 0, in Rﬁ().
Thus, (see (2.12))
ik _ ,m-n 9% _ o) )
00, = A1 00; 1 = Ap-p -1 Ry - (2.34)
Summing both sides over k (k = 2,3,...,n), we obtain
n n
0ik (1) 4(n-1) (n)
> 8071 = D RYAL = Q. (2.35)
k=2 Vil k-
But, from (2.32),
& 0k _ 3(Sioa) _ 0By 2.36)
i 00i1 00i1 00; 1" ’
Thus,
a%g” (n)
30 Qi (2.37)
where %il") = Coefficient of []-25 cos 0, in Qﬂ” forl=2,3,...,n.
Combining the above equation with (2.25), we obtain the following:
OBy
Q=210 i=3,4,...,m1=12,...,n, (2.38)
00i_1

where %il”) = Coefficient of [["23 cos 0, in QY[). Thus, (2.29) and (2.38) prove
the lemma. O
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We next prove a result analogous to Lemma 2.5, but for columns instead of
rows. Combining Lemmas 2.5 and 2.6 will give us the desired result of obtaining
all elements of Q™ from a single element.

LEMMA 2.6. For n = 3, given the nth column of Q™, the (n—1)th column
is given by the following expression:

oo )
i=1,2,...,n. (2.39
an 1= agp(nn 1) )
The other columns are given by
0@\
QW= i=1,2,..m1=12,..,n-2, (2.40)
00p )

(n) _ (n)

where %@, = Coefficient of e, cos Opnm) N Q.

PROOF. The proof of this lemma is by induction and is straightforward
(though laborious). So we omit the proof. O

Lemma 2.6 implies that given the last column of Q™ , we can derive the
other columns. In particular, given Q({,‘l) (Lemma 2.2), we can obtain the first
row. Once the first row is known, using Lemma 2.5, all other rows can be de-
rived. Therefore, we see that from one element of Q ™, namely, ) we can
generate the whole SO(») matrix by performing suitable operatlons. Thus we

have proved the following theorem.

THEOREM 2.7. Consider ann xn SO(n) matrix Q™ (m = 3). The expression
for Q\") is given by

(1 (2) (3)
z Z Z Z Ry Ry 1R Rina-12, (2.41)
Jn-2=2 jn-3=2 J2=2 1=

where ju_ = 2 and the matrices R are given by (2.9} (2.12). All other
elements of Q™ can be derived from this single element. Elements of the first
row are given by

(n) aQ
(2.42)
Ql,n 1 aep (i 1)
w_2@)
Qlp = 1=1,2,....,n-2, (2.43)
aev(n l)
where QZ)” = Coefficient of T1lL_,., cos Opn,m) N QY,;). Elements of the second
row are given by
a (n)
Q) = Quy 1=1,2,...,n. (2.44)

00, ’

We Changed
“to” to “and”.
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Elements of the remaining rows are given by

a%(n)
ael—l

QY = i=3,4,...m;1=1,2,...,n, (2.45)
where 973(”) Coefficient of 1_[, 1€0S 0, in QU .

3. Example: SO(3). We will now derive the SO(3) matrix using_
We will first get the expression for Q%) (see (2.41)):

We changed
“the theorem Q¥ =RYRZ +RIVRYD. (3.1)
proved in the
previous From (2.9) and (2.10), we have
section” to
“Theorem R\Y =sin@y, R = cos 0, sin 6. (3.2)
2.7". Please
check. From (2.9) and (2.11), we get
Rizz) = sin 03, Rézz) = €0s03. (3.3)
Therefore, we obtain
%> = sin 07 sin 03 + cos 04 sin 0, cos O5. (3.4)

From (2.42), Q{} is given as

Q¥ = 6(2913 = sin 0, cos 05 — cos 0; sin 0 sin O3, (3.5)
3

and from (2.43), Q11 is given as

BQDG)
i = 30, (3.6)
where QDH — Coefficient of []5,_, cos 0p3,m) in Qg). Thus,
531) = cos 07 cos 0. 3.7)
The second row of Q® is given by (2.44):
BQ(S)
(3) _
Qy = 20, 1=1,2,3. (3.8)
Therefore,
S) = —sin@; cos 0>,
Q§_32) = c0s 07 cos 03 + sin 0; sin 0, sin O3, 3.9)

Q§33) = cos 0, sin 03 —sin 0, sin 6, cos O3.
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The last row is given by (2.45):

_ %y

30, ’ 1=1,2,3, (3.10)

where %é?) = Coefficient of Hizl cos 0, in Qﬁ). Therefore, we have:

Q?l) = —sin6y,
§32) = —cos 0, sin O3, (3.11)

Q%) = cos 0, cos 03.

The Q® matrix that we have derived agrees with the standard representation
as expected.

ACKNOWLEDGMENT. The work o_ was supported in part by
a research grant from ISRO and DRDO, India through the Nonlinear Studies
Group, Indian Institute of Science.

REFERENCES

[1] L M. Gelfand, R. A. Minlos, and Z. Ya. Shapiro, Representation of the Rotation and
Lorenz Groups and Their Applications, Pergamon, New York, 1963.

[2]  T.M. Janaki, G. Rangarajan, S. Habib, and R. D. Ryne, Computation of the Lyapunov
spectrum for continuous-time dynamical systems and discrete maps, Phys.
Rev. E 60 (1999), no. 6, 6614-6626.

[3] G.Rangarajan, S. Habib, and R. D. Ryne, Lyapunov exponents without rescaling and
reorthogonalization, Phys. Rev. Lett. 80 (1998), 3747-3750.

[4]  R. Schneider, P. L. Levin, and M. Spasojevic, Multiscale compression of BEM equa-
tions for electrostatic systems, IEEE Trans. Dielectrics and Electrical Insula-
tion 3 (1996), 482-493.

[5] S. Sternberg, Group Theory and Physics, Cambridge University Press, Cambridge,
1994.

[6] E.C.G. Sudarshan and N. Mukunda, Classical Dynamics: A Modern Perspective,
Wiley-Interscience, New York, 1974.

[7]1 L. S. Wang, S. J. Chern, and C. W. Shih, On the dynamics of a tethered satellite
system, Arch. Rational Mech. Anal. 127 (1994), no. 4, 297-318.

[8] W. S. Wong, Matrix representation and gradient flows for NP-hard problems, ]J.
Optim. Theory Appl. 87 (1995), no. 1, 197-220.

T. M. Janaki: Department of Mathematics, Indian Institute of Science, Bangalore
560 012, India

Govindan Rangarajan: Department of Mathematics and Centre for Theoretical Stud-
ies, Indian Institute of Science, Bangalore 560 012, India

Current address: Jawaharlal Nehru Centre for Advanced Scientific Research, Banga-
lore 560 064, India

E-mail address: rangaraj@math.iisc.ernet.in

We changed
“GR” to “G.
Rangarajan.”
Please check.



mailto:rangaraj@math.iisc.ernet.in

2000 Mathematics Subject Classification

It is of particular importance to check the validity and correctness of the 2000
Mathematics Subject Classification codes in your paper. For your convenience,
the codes in your paper along with their descriptions are listed below. Kindly
note that the complete list of the 2000 MSC codes can be found at
http://www.ams.org/msc. If you need to delete, add, or change some of the
codes below, please indicate that on the corrected proofs. Thank you for your
attention.

AUTHOR PLEASE PROVIDE.



