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Long-term stability studies of nonlinear Hamiltonian systems require symplectic integra-
tion algorithms which are both fast and accurate. In this paper, we study a symplectic
integration method wherein the symplectic map representing the Hamiltonian system is
refactorized using polynomial symplectic maps. This method is analyzed for the three
degree of freedom case. Finally, we apply this algorithm to study a large particle storage
ring.
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1. Introduction

Numerical integration algorithms are essential to study the long term single particle
stability of nonlinear, nonintegrable Hamiltonian systems. However, standard nu-
merical integration algorithms cannot be used since they are not symplectic.® This
violation of the symplectic condition can lead to spurious chaotic or dissipative
behavior. Numerical integration algorithms which satisfy the symplectic condition
are called symplectic integration algorithms.! Several symplectic integration algo-
rithms have been proposed in the literature.? 2! Some of these directly use the

22,23 yepresenting the nonlin-

Hamiltonian whereas others use the symplectic map
ear Hamiltonian system. For complicated systems like the Large Hadron Collider
which has thousands of elements, using individual Hamiltonians for each element
can drastically slow down the integration process. On the other hand, the map-
based approach is very fast in such cases.?425

One class of the map-based methods uses jolt factorization.51:1719 But there
are still unanswered questions on how to best choose the underlying group and
elements in the group.?% Further, some of these methods'1719 can be quite difficult
to generalize to higher dimensions. Another class of methods uses solvable maps!22!
or monomial maps.'® Even though they are fairly straightforward to generalize to
higher dimensions, they tend to introduce spurious poles and branch points not

present in the original map.26
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We investigate a new symplectic integration method where the symplectic map is
refactorized using “polynomial maps” (maps whose action on phase space variables
gives rise to polynomials). This does not introduce spurious poles and branch points.
Moreover, it is easy to generalize to higher dimensions. Further, since it is map-
based, it is also very fast. In this paper, we briefly describe the polynomial map
factorization of symplectic maps with three degrees of freedom.2” We also apply it
to study a large particle storage ring.

2. Preliminaries

We restrict ourselves to three degrees of freedom nonlinear Hamiltonian system.
The effect of a Hamiltonian system on a particle can be formally expressed as the
action of a symplectic map M that takes the particle from its initial state z'™ to

its final state?2:23 z/in
S g g (1)
where z = (q1, g2, 93, p1, P2, p3). Using the Dragt—Finn factorization theorem,??:28
the symplectic map M can be factorized as shown below:
M = Mefsgifar o opifnt ool (2)

Here f,(z) denotes a homogeneous polynomial (in z) of degree n uniquely deter-
mined by the factorization theorem.

As an application, let us consider a charged particle storage ring which typically
comprises thousands of elements (drifts, quadrupoles, sextupoles, etc.). Using the
above procedure, one can represent each element in the storage ring by a symplectic
map. By concatenating?? these maps together using group-theoretical methods,?’
we obtain the so-called “one-turn” map representing the entire storage ring. The
one-turn map gives the final state z(!) of a particle after one turn around the ring
as a function of its initial state 2(?). We obtain z(!) = Mz(?). To obtain the state
of a particle after n turns, one has to merely iterate the above mapping N times,
ie.,

2 = Mz, (3)

Since M is explicitly symplectic, this gives a symplectic integration algorithm.
Further, since the entire ring can be represented by a single (or at most a few)
symplectic map(s), numerical integration of particle trajectories using symplectic
maps is very fast.

To obtain a practical symplectic integration algorithm, we follow the perturba-
tive approach and truncate M after a finite number of Lie transformations:

M~ Mefaefs. . gifr (4)

The symplectic map is said to be truncated at order P. This map is still symplectic.
However, each exponential e:f»' in M still contains an infinite number of terms
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in its Taylor series expansion. We get around the above problem by refactorizing
M in terms of simpler symplectic maps which can be exactly evaluated without
truncation. We use “polynomial maps” which give rise to polynomials when acting
on the phase space variables. This avoids the problem of spurious poles and branch

12,21

points present in generating function methods,2® solvable map and monomial

map'® refactorizations.

3. Symplectic Integration Using Polynomial Maps

As mentioned earlier, polynomial maps are symplectic maps which have a poly-
nomial action on phase space variables. A simple example of a polynomial map is
exp(: a1¢} + azp1 :) where aj, ay are real constants. Its explicit action on phase
space variables is given by?7

ol " =g —as, p{™=pl"+a103 - 3ara2¢)" + 301 (¢1")* (5)

We note that the final values of the phase space variables are polynomial functions

of the initial variables and therefore involve no poles or branch points. This is an
example of a polynomial map.

We now determine the classes of symplectic maps which are also polynomial

maps. We obtain the following simple principles which are equally applicable in

higher dimensions®7:

(1) All polynomials of the form h(z) where both phase space variable and its canon-
ically conjugate variable®® do not occur simultaneously give rise to symplectic
polynomial maps via exp(: h(z) :). We will call such h(z)’s polynomials of the
first type.

(2) If a canonically conjugate pair ¢;, p; is present in the polynomial h(z) and it
appears either in the form [a(Z)q; + g(p;, 2)|™ or [a(Z)p; + 9(¢:, 2)]™ (where
m = 1,2..., 2 = {¢;,pr} with j # k # i and a, g are polynomials in the
indicated variables), then this polynomial h(z) again gives rise to a symplectic
polynomial map via exp(: h(z) :). If a product/sum of such factors appears
in h(z), each term in the product/sum is a function of different canonically
conjugate pairs. We will call h(z)’s of the form described above as polynomials
of the second type.

m

We now obtain a symplectic integration algorithm using polynomial maps. We
restrict ourselves to symplectic maps in a six-dimensional phase space truncated
at order 4. The results obtained below can be generalized to both higher orders
and higher dimensions using symbolic manipulation programs. The Dragt—Finn
factorization of the symplectic map is given by:

M= Meif3:eifa , (6)

where f3 = assq} + azoqip1 + - + asspy and fi = asaqi + ass@ipr + -+ + az9pi.
Here the coefficients ass, . . ., asgg can be explicitly computed given a Hamiltonian
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system?? and are therefore known to us. The numbering of these monomial coeffi-
cients follows the standard Giorgilli scheme.3! The above map captures the leading-
order nonlinearities of the system. Since the action of the linear part M on phase
space variables is well known and is already a polynomial action, we only refactorize
the nonlinear part of the map using N polynomial maps.?? This is done as follows:

M %7):Z\Zezhyezhm“.eth:7 (7)

h

where e’s are symplectic polynomial maps and the numeral appearing in the

subscript indexes the polynomial maps. The polynomial maps are determined by
requiring that P agrees with M up to order 4, that is, when the N polynomial
maps are combined, the resulting symplectic map should have all the monomials
present in f3 and f4; with the correct coefficients up to order 4.

Using the procedure detailed in Ref. 27, it turns out that we require 23 polyno-
mial maps for refactorization:

M P = Mehiighs .. gihast (8)
The h;’s are given as follows:
h1 = qbas + g qabso + qiqabs2 + q1d5bso + q1q2q3ba1 + q1q3bas
+ gabea + q3q3bes + q23b71 + G3bso + qibss + 4 q2bse + 47 qsbss
+ 1 g5bos + 41 q2q3bor + q7a3b102 + q1G3b120 + G145 q3b122
+ q1q203b127 + q1G3bise + Gabirs + G qsbirr + G5 q3bise
+ q2q3b191 + q3b205 ,
ho = [(bag + b3a) + g2(bo1 + b106) + p2(boz + b107) + ¢3(bes + b10s)
+ p3(boa + b10o)](p1 + 1),
hs = [(—bag + b3a) + g2(—bg1 + b10s) + p2(—bo2 + b107)
+ g3(—bos + b1os) + p3(—boa + broo)](—p1 + ¢1)°,
ha = [(bes + bes) + q1(b121 + b124) + p1(b156 + b159)
+ q3(b1so + bise) + ps(bis1 + bis7)](p2 + q2)°,
hs = [(—bes + bes) + q1(—b121 + bi24) + p1(—bise + b159)
+ q3(—biso + bise) + p3(—bis1 + bis7)](—p2 + @2)°
he = [(bs1 + bsa) + q1(b137 + b13g) + p1(bi72 4 bi73) + g2(b192 + b193)
+ pa(bao2 + ba0s)] (p3 + q3)° ,
h7 = [(—bs1 + bs2) + q1(—b137 + biss) + p1(—bi72 + bi73)
+ q2(—b192 + b1os) + p2(—b2oz + b20s)](—ps + q3)° ,



his

2

=

=P t+a

=1 +a 2

P2+ q2 2

=(
= (p2 + q2)?
=(

P3 +qs3 2

2

)°(
)°(
)°(
)°(
)°(
)°(

~

P3 +q3

Polynomial Map Factorization of Symplectic Maps

q2bss + qsbsr + q3bi10 + G2q3biiz + P3qabiiz + g3biir)
pabss + P3bss + P3bi1a + P2gsbiis + papsbiie + P3bito)
q1bao + q3beo + qibos + q1q3b12s + P3qibize + g3biss) ,

P1bss + psbro + pbias + P1asbico + p1psbier + P3bioo)
q1ba7 + q2br2 + qibios + q1q2bias + P2qibisa + q3biss)

p1bez + p2brs + pibiss + p1gabiss + pipebiso + P3bigg)

= Paqibs1 + P3qibss + P3qibaz + p2p3qibas + P3qibas + P2qibsy

+ p3qibso + P3aibog + P2p3dibior + P3aibioa + Paqibizo

+ p3p3qibisa + pap3q1biss + Piqibise

= Piqabso + Pigsbs2 + P1g5bsa + P1g2gsbse + P1g3be1 + Pigabian

+ pigabiaz + plgabias + pigagsbiar + Pig3bisa + P1dabiss

+ p1g3a3bis7 + P1g2g3biee + P1g3biT1

= P1p3qbst + P3gaber + Pagabrs + pip3gebias + P1p3gibiss

+ p1p3gabies + p3gabizs + P3gibise + pagabio

= P2qiqsbaa + P3q3brs + p2q3brr + P23 gsbioo + P3q1g3bist

+ P2q1G3b133 + Pagsbios + P3a3bios + pagiboot

= p1p2gsbse + PiP2qsbiso + P1P3qsbics + P1p2q3bies »

= P3q1q2baz + P33 gabos + P3q1qabiaz + P3qigabiag

= pibag + pip2bsi + Pipsbss + P1p3bss + P1p2psbeo + P1p3bes

+ piabra + P3pabre + Papabro + Pabss + Pib1ao + Pip2bias

+ Pipsbias + Pip3biag + Pipapsbisi + Pip3bisa + P1pabies

+ p1p3psbier + P1papabizo + p1pabiza + Pabios + Papsbior

+ p3p3baoo + P2p3baoa + Pabaoo

= (p1 + @1 + Pibi0s)® + (p2 + q2 + P3biss)® + (p3 + g3 + P3baos)®

= (—p1 — q1 + ¢}bgs)® +

+(—p3s — g3 + @3b206)”

= (p1+ q@1)*boo + (p1 + @1)*(p2 + ¢2)*b1na

+ (p2 + q2)*b179 +

(p2 + ¢2)*(ps + q3)*b1se

(—p2 — q2 + ¢3bi7e)?

+ (p1 + @) (p3 + g3)°b1is

+ (p3 + g3)*bao7 -
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By forcing the refactorized form P to equal the original map M up to order 4 and
using the CBH theorem,? we can easily compute these unknown coefficients b;’s in
terms of the known a;’s. These expressions are available from the author as part of
a FORTRAN program implementing the above algorithm.

The explicit actions of the polynomial maps on phase space variables can be
obtained and are given in Ref. 27. This completely determines the refactorized
map P. Each exp(: h; :) is a polynomial map which can be evaluated exactly and
is explicitly symplectic. Thus by using P instead of M in Eq. (3), we obtain an
explicitly symplectic integration algorithm. Further, it is fast to evaluate and does
not introduce spurious poles and branch points.

4. Applications

We have applied the method to a large particle storage ring for storing charged
particles. This storage ring consists of 5109 individual elements (where these ele-
ments could be drifts, bending magnets, quadrupoles or sextupoles). If one tries to
numerically integrate the trajectory of a charged particle through this ring using a
conventional integration algorithm, one has to go through the ring element by ele-
ment where each element is described by its own Hamiltonian. This is cumbersome
and slow and further, does not respect the Hamiltonian nature of the system. On
the other hand, a map-based approach where one represents the entire storage ring
in terms of a single map is much faster.?4?> When this is combined with our poly-
nomial map refactorization, one obtains a symplectic integration algorithm which is
both fast and accurate and is ideally suited for such complex real life systems. The
q1 — p1 phase plot for one million turns around the ring using our polynomial map
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Fig. 1. The q1 — p1 phase space plot for one million turns around a storage ring using the
polynomial map method (only every 1000th point is plotted).
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method is given in Fig. 1. In this case, ¢; and p; represent the deviations from the
closed orbit coordinate and momentum, respectively. From theoretical considera-
tions, we expect the so-called betatron oscillations in these variables. This manifests
itself as ellipses in the phase space plot of ¢; and p; variables. In Fig. 1, we observe
the expected betatron oscillations. We also see the thickening of the ellipses caused
by nonlinearities present in the sextupoles.

5. Conclusions

To conclude, we described a new symplectic integration algorithm based on poly-
nomial map refactorization in three degrees of freedom. We obtained the refactor-
ization of a given symplectic map in terms of 23 polynomial maps. This polynomial
map method can be used to study long term stability of complicated nonlinear
Hamiltonian systems as illustrated by our example using a large particle storage
ring.
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