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Long-term stability studies of nonlinear Hamiltonian systems require symplectic integra-
tion algorithms which are both fast and accurate. In this paper, we study a symplectic
integration method wherein the symplectic map representing the Hamiltonian system is
refactorized using polynomial symplectic maps. This method is analyzed for the three
degree of freedom case. Finally, we apply this algorithm to study a large particle storage
ring.
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1. Introduction

Numerical integration algorithms are essential to study the long term single particle

stability of nonlinear, nonintegrable Hamiltonian systems. However, standard nu-

merical integration algorithms cannot be used since they are not symplectic.1 This

violation of the symplectic condition can lead to spurious chaotic or dissipative

behavior. Numerical integration algorithms which satisfy the symplectic condition

are called symplectic integration algorithms.1 Several symplectic integration algo-

rithms have been proposed in the literature.2–21 Some of these directly use the

Hamiltonian whereas others use the symplectic map22,23 representing the nonlin-

ear Hamiltonian system. For complicated systems like the Large Hadron Collider

which has thousands of elements, using individual Hamiltonians for each element

can drastically slow down the integration process. On the other hand, the map-

based approach is very fast in such cases.24,25

One class of the map-based methods uses jolt factorization.6,11,17,19 But there

are still unanswered questions on how to best choose the underlying group and

elements in the group.26 Further, some of these methods11,17,19 can be quite difficult

to generalize to higher dimensions. Another class of methods uses solvable maps12,21

or monomial maps.18 Even though they are fairly straightforward to generalize to

higher dimensions, they tend to introduce spurious poles and branch points not

present in the original map.26
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We investigate a new symplectic integration method where the symplectic map is

refactorized using “polynomial maps” (maps whose action on phase space variables

gives rise to polynomials). This does not introduce spurious poles and branch points.

Moreover, it is easy to generalize to higher dimensions. Further, since it is map-

based, it is also very fast. In this paper, we briefly describe the polynomial map

factorization of symplectic maps with three degrees of freedom.27 We also apply it

to study a large particle storage ring.

2. Preliminaries

We restrict ourselves to three degrees of freedom nonlinear Hamiltonian system.

The effect of a Hamiltonian system on a particle can be formally expressed as the

action of a symplectic map M that takes the particle from its initial state z in to

its final state22,23 zf in

zf in = M zin , (1)

where z = (q1, q2, q3, p1, p2, p3). Using the Dragt–Finn factorization theorem,22,28

the symplectic map M can be factorized as shown below:

M = M̂e:f3: e:f4: · · · e:fn: · · · . (2)

Here fn(z) denotes a homogeneous polynomial (in z) of degree n uniquely deter-

mined by the factorization theorem.

As an application, let us consider a charged particle storage ring which typically

comprises thousands of elements (drifts, quadrupoles, sextupoles, etc.). Using the

above procedure, one can represent each element in the storage ring by a symplectic

map. By concatenating22 these maps together using group-theoretical methods,29

we obtain the so-called “one-turn” map representing the entire storage ring. The

one-turn map gives the final state z(1) of a particle after one turn around the ring

as a function of its initial state z(0). We obtain z(1) = Mz(0). To obtain the state

of a particle after n turns, one has to merely iterate the above mapping N times,

i.e.,

z(n) = Mnz(0) . (3)

Since M is explicitly symplectic, this gives a symplectic integration algorithm.

Further, since the entire ring can be represented by a single (or at most a few)

symplectic map(s), numerical integration of particle trajectories using symplectic

maps is very fast.

To obtain a practical symplectic integration algorithm, we follow the perturba-

tive approach and truncate M after a finite number of Lie transformations:

M ≈ M̂e:f3:e:f4: · · · e:fP : . (4)

The symplectic map is said to be truncated at order P . This map is still symplectic.

However, each exponential e:fn: in M still contains an infinite number of terms
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in its Taylor series expansion. We get around the above problem by refactorizing

M in terms of simpler symplectic maps which can be exactly evaluated without

truncation. We use “polynomial maps” which give rise to polynomials when acting

on the phase space variables. This avoids the problem of spurious poles and branch

points present in generating function methods,26 solvable map12,21 and monomial

map18 refactorizations.

3. Symplectic Integration Using Polynomial Maps

As mentioned earlier, polynomial maps are symplectic maps which have a poly-

nomial action on phase space variables. A simple example of a polynomial map is

exp(: a1q
3
1 + a2p1 :) where a1, a2 are real constants. Its explicit action on phase

space variables is given by27

q
f in
1 = qin

1 − a2 , p
f in
1 = pin

1 + a1a
2
2 − 3a1a2q

in
1 + 3a1(q

in
1 )2 . (5)

We note that the final values of the phase space variables are polynomial functions

of the initial variables and therefore involve no poles or branch points. This is an

example of a polynomial map.

We now determine the classes of symplectic maps which are also polynomial

maps. We obtain the following simple principles which are equally applicable in

higher dimensions27:

(1) All polynomials of the form h(z) where both phase space variable and its canon-

ically conjugate variable30 do not occur simultaneously give rise to symplectic

polynomial maps via exp(: h(z) :). We will call such h(z)’s polynomials of the

first type.

(2) If a canonically conjugate pair qi, pi is present in the polynomial h(z) and it

appears either in the form [a(z̄)qi + g(pi, z̄)]m or [a(z̄)pi + g(qi, z̄)]m (where

m = 1, 2 . . ., z̄ = {qj , pk} with j 6= k 6= i and a, g are polynomials in the

indicated variables), then this polynomial h(z) again gives rise to a symplectic

polynomial map via exp(: h(z) :). If a product/sum of such factors appears

in h(z), each term in the product/sum is a function of different canonically

conjugate pairs. We will call h(z)’s of the form described above as polynomials

of the second type.

We now obtain a symplectic integration algorithm using polynomial maps. We

restrict ourselves to symplectic maps in a six-dimensional phase space truncated

at order 4. The results obtained below can be generalized to both higher orders

and higher dimensions using symbolic manipulation programs. The Dragt–Finn

factorization of the symplectic map is given by:

M = M̂e:f3:e:f4: , (6)

where f3 = a28q
3
1 + a29q

2
1p1 + · · · + a83p

3
3 and f4 = a84q

4
1 + a85q

3
1p1 + · · · + a209p

4
3.

Here the coefficients a28, . . . , a209 can be explicitly computed given a Hamiltonian
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system22 and are therefore known to us. The numbering of these monomial coeffi-

cients follows the standard Giorgilli scheme.31 The above map captures the leading-

order nonlinearities of the system. Since the action of the linear part M̂ on phase

space variables is well known and is already a polynomial action, we only refactorize

the nonlinear part of the map using N polynomial maps.32 This is done as follows:

M ≈ P = M̂e:h1:e:h2: · · · e:hN : , (7)

where e:hi:’s are symplectic polynomial maps and the numeral appearing in the

subscript indexes the polynomial maps. The polynomial maps are determined by

requiring that P agrees with M up to order 4, that is, when the N polynomial

maps are combined, the resulting symplectic map should have all the monomials

present in f3 and f4 with the correct coefficients up to order 4.

Using the procedure detailed in Ref. 27, it turns out that we require 23 polyno-

mial maps for refactorization:

M ≈ P = M̂e:h1:e:h2: · · · e:h23: . (8)

The hi’s are given as follows:

h1 = q3
1b28 + q2

1q2b30 + q2
1q3b32 + q1q

2
2b39 + q1q2q3b41 + q1q

2
3b46

+ q3
2b64 + q2

2q3b66 + q2q
2
3b71 + q3

3b80 + q4
1b84 + q3

1q2b86 + q3
1q3b88

+ q2
1q

2
2b95 + q2

1q2q3b97 + q2
1q2

3b102 + q1q
3
2b120 + q1q

2
2q3b122

+ q1q2q
2
3b127 + q1q

3
3b136 + q4

2b175 + q3
2q3b177 + q2

2q
2
3b182

+ q2q
3
3b191 + q4

3b205 ,

h2 = [(b29 + b34) + q2(b91 + b106) + p2(b92 + b107) + q3(b93 + b108)

+ p3(b94 + b109)](p1 + q1)
3 ,

h3 = [(−b29 + b34) + q2(−b91 + b106) + p2(−b92 + b107)

+ q3(−b93 + b108) + p3(−b94 + b109)](−p1 + q1)
3 ,

h4 = [(b65 + b68) + q1(b121 + b124) + p1(b156 + b159)

+ q3(b180 + b186) + p3(b181 + b187)](p2 + q2)
3 ,

h5 = [(−b65 + b68) + q1(−b121 + b124) + p1(−b156 + b159)

+ q3(−b180 + b186) + p3(−b181 + b187)](−p2 + q2)
3 ,

h6 = [(b81 + b82) + q1(b137 + b138) + p1(b172 + b173) + q2(b192 + b193)

+ p2(b202 + b203)](p3 + q3)
3 ,

h7 = [(−b81 + b82) + q1(−b137 + b138) + p1(−b172 + b173)

+ q2(−b192 + b193) + p2(−b202 + b203)](−p3 + q3)
3 ,



December 2, 2003 9:50 WSPC/141-IJMPC 00499

Polynomial Map Factorization of Symplectic Maps 851

h8 = (p1 + q1)
2(q2b35 + q3b37 + q2

2b110 + q2q3b112 + p3q2b113 + q2
3b117) ,

h9 = (p1 + q1)
2(p2b36 + p3b38 + p2

2b114 + p2q3b115 + p2p3b116 + p2
3b119) ,

h10 = (p2 + q2)
2(q1b40 + q3b69 + q2

1b96 + q1q3b125 + p3q1b126 + q2
3b188) ,

h11 = (p2 + q2)
2(p1b55 + p3b70 + p2

1b146 + p1q3b160 + p1p3b161 + p2
3b190) ,

h12 = (p3 + q3)
2(q1b47 + q2b72 + q2

1b103 + q1q2b128 + p2q1b134 + q2
2b183) ,

h13 = (p3 + q3)
2(p1b62 + p2b78 + p2

1b153 + p1q2b163 + p1p2b169 + p2
2b199) ,

h14 = p2q
2
1b31 + p3q

2
1b33 + p2

2q1b43 + p2p3q1b45 + p2
3q1b48 + p2q

3
1b87

+ p3q
3
1b89 + p2

2q
2
1b99 + p2p3q

2
1b101 + p2

3q
2
1b104 + p3

2q1b130

+ p2
2p3q1b132 + p2p

2
3q1b135 + p3

3q1b139 ,

h15 = p2
1q2b50 + p2

1q3b52 + p1q
2
2b54 + p1q2q3b56 + p1q

2
3b61 + p3

1q2b141

+ p3
1q3b143 + p2

1q
2
2b145 + p2

1q2q3b147 + p2
1q

2
3b152 + p1q

3
2b155

+ p1q
2
2q3b157 + p1q2q

2
3b162 + p1q

3
3b171 ,

h16 = p1p3q2b57 + p3q
2
2b67 + p2

3q2b73 + p2
1p3q2b148 + p1p3q

2
2b158

+ p1p
2
3q2b164 + p3q

3
2b178 + p2

3q
2
2b184 + p3

3q2b194 ,

h17 = p2q1q3b44 + p2
2q3b75 + p2q

2
3b77 + p2q

2
1q3b100 + p2

2q1q3b131

+ p2q1q
2
3b133 + p3

2q3b196 + p2
2q

2
3b198 + p2q

3
3b201 ,

h18 = p1p2q3b59 + p2
1p2q3b150 + p1p

2
2q3b166 + p1p2q

2
3b168 ,

h19 = p3q1q2b42 + p3q
2
1q2b98 + p3q1q

2
2b123 + p2

3q1q2b129 ,

h20 = p3
1b49 + p2

1p2b51 + p2
1p3b53 + p1p

2
2b58 + p1p2p3b60 + p1p

2
3b63

+ p3
2b74 + p2

2p3b76 + p2p
2
3b79 + p3

3b83 + p4
1b140 + p3

1p2b142

+ p3
1p3b144 + p2

1p
2
2b149 + p2

1p2p3b151 + p2
1p

2
3b154 + p1p

3
2b165

+ p1p
2
2p3b167 + p1p2p

2
3b170 + p1p

3
3b174 + p4

2b195 + p3
2p3b197

+ p2
2p

2
3b200 + p2p

3
3b204 + p4

3b209 ,

h21 = (p1 + q1 + p2
1b105)

3 + (p2 + q2 + p2
2b185)

3 + (p3 + q3 + p2
3b208)

3 ,

h22 = (−p1 − q1 + q2
1b85)

3 + (−p2 − q2 + q2
2b176)

3

+ (−p3 − q3 + q2
3b206)

3 ,

h23 = (p1 + q1)
4b90 + (p1 + q1)

2(p2 + q2)
2b111 + (p1 + q1)

2(p3 + q3)
2b118

+ (p2 + q2)
4b179 + (p2 + q2)

2(p3 + q3)
2b189 + (p3 + q3)

4b207 .
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By forcing the refactorized form P to equal the original map M up to order 4 and

using the CBH theorem,29 we can easily compute these unknown coefficients bi’s in

terms of the known ai’s. These expressions are available from the author as part of

a FORTRAN program implementing the above algorithm.

The explicit actions of the polynomial maps on phase space variables can be

obtained and are given in Ref. 27. This completely determines the refactorized

map P . Each exp(: hi :) is a polynomial map which can be evaluated exactly and

is explicitly symplectic. Thus by using P instead of M in Eq. (3), we obtain an

explicitly symplectic integration algorithm. Further, it is fast to evaluate and does

not introduce spurious poles and branch points.

4. Applications

We have applied the method to a large particle storage ring for storing charged

particles. This storage ring consists of 5109 individual elements (where these ele-

ments could be drifts, bending magnets, quadrupoles or sextupoles). If one tries to

numerically integrate the trajectory of a charged particle through this ring using a

conventional integration algorithm, one has to go through the ring element by ele-

ment where each element is described by its own Hamiltonian. This is cumbersome

and slow and further, does not respect the Hamiltonian nature of the system. On

the other hand, a map-based approach where one represents the entire storage ring

in terms of a single map is much faster.24,25 When this is combined with our poly-

nomial map refactorization, one obtains a symplectic integration algorithm which is

both fast and accurate and is ideally suited for such complex real life systems. The

q1 − p1 phase plot for one million turns around the ring using our polynomial map
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Fig. 1. The q1 − p1 phase space plot for one million turns around a storage ring using the
polynomial map method (only every 1000th point is plotted).
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method is given in Fig. 1. In this case, q1 and p1 represent the deviations from the

closed orbit coordinate and momentum, respectively. From theoretical considera-

tions, we expect the so-called betatron oscillations in these variables. This manifests

itself as ellipses in the phase space plot of q1 and p1 variables. In Fig. 1, we observe

the expected betatron oscillations. We also see the thickening of the ellipses caused

by nonlinearities present in the sextupoles.

5. Conclusions

To conclude, we described a new symplectic integration algorithm based on poly-

nomial map refactorization in three degrees of freedom. We obtained the refactor-

ization of a given symplectic map in terms of 23 polynomial maps. This polynomial

map method can be used to study long term stability of complicated nonlinear

Hamiltonian systems as illustrated by our example using a large particle storage

ring.
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