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Abstract Simultaneous recordings of spike trains from
multiple single neurons are becoming commonplace.
Understanding the interaction patterns among these spike
trains remains a key research area. A question of interest is
the evaluation of information flow between neurons
through the analysis of whether one spike train exerts
causal influence on another. For continuous-valued time
series data, Granger causality has proven an effective
method for this purpose. However, the basis for Granger
causality estimation is autoregressive data modeling, which
is not directly applicable to spike trains. Various filtering
options distort the properties of spike trains as point
processes. Here we propose a new nonparametric approach
to estimate Granger causality directly from the Fourier
transforms of spike train data. We validate the method on
synthetic spike trains generated by model networks of
neurons with known connectivity patterns and then apply it
to neurons simultaneously recorded from the thalamus and
the primary somatosensory cortex of a squirrel monkey
undergoing tactile stimulation.

Keywords Point processes . Nonparametric granger
causality . Spectral factorization . Spike trains

1 Introduction

Advances in the hardware and computer technology have
made it comparatively easy to simultaneously record spike
trains from multiple single neurons. Such data can be
used to study how neurons interact with one another to
generate thought and behavior and how the cooperative
activity breaks down in disease (Brown et al. 2004).
Mathematically, neuronal spike trains are modeled as
stochastic point processes (Bartlett 1963; Rosenberg et al.
1989, 1998; Brillinger 1992; Halliday et al. 1995; Dahlhaus
et al. 1997; Brown et al. 2004). Although tools such as
cross correlation, coherence, partial correlation, and partial
coherence constitute the core of multiple spike train
analysis, they offer limited insights into how information
flows from one neuron to another. For continuous-valued
signals, e.g. EEG and local field potential (LFP), recent
work has shown that Granger causality is suited for this
purpose (Granger 1969; Baccala and Sameshima 2001;
Albo et al. 2004; Brovelli et al. 2004; Seth 2005; Chen
et al. 2006a, b; Ding et al. 2006; Wu et al. 2008). In
particular, directional information afforded by Granger
causality has played a pivotal role in generating testable
hypothesis regarding the function of cortical oscillatory
networks (Brovelli et al. 2004; Ding et al. 2006; Bollimunta
et al. 2008; Zhang et al. 2008). The effort to extend Granger
causality to point processes, however, faces considerable
challenges (Brown et al. 2004; Okatan et al. 2005; Truccolo
et al. 2005).

Granger causality is a statistical measure based on the
concept of time series forecasting. Specifically, if the
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current state of a time series is better predicted by
incorporating the past knowledge of a second one, the
second series is said to have a causal influence on the first.
The estimation of Granger causality relies on autoregressive
(AR) models. For continuous-valued data such as EEG and
LFP, AR model fitting is straightforward, and has been
tested extensively with excellent outcome. For multivariate
spike trains, AR modeling is not directly applicable. Recent
work converts spikes trains into continuous time series by
using a low pass filter or a smoothing kernel (Sameshima
and Baccala 1999; Fanselow et al. 2001; Kaminski et al.
2001; Zhu et al. 2003). While this approach has been
applied to both simulated and experimental data with
generally acceptable results, it is cautioned that the
smoothing operation violates the point process character
of spike trains, and may introduce spurious effects
(Truccolo et al. 2005).

The goal of this work is to present an alternative way of
estimating Granger causality for point processes that is
nonparametric and bypasses the step of autoregressive
model fitting. The theoretical basis is three-fold: (1) the
well-established spectral representation of point processes
and its role in point process forecasting (Daley and Vere-
Jones 2003, 2007), (2) factorization of spectral matrices
(Wilson 1972), and (3) formulation of Granger causality in
the spectral domain (Geweke 1982, 1984). Second-order
statistical properties of multiple spike trains are summarized
in the form of a spectral matrix (Rosenberg et al. 1989,
1998; Halliday et al. 1995; Dahlhaus et al. 1997; Jarvis and
Mitra 2001; Brown et al. 2004). Combining spectral matrix
factorization with Geweke’s spectral formulation of Granger
causality leads to the estimation of both pairwise and con-
ditional Granger causality for multivariate point processes.
We first tested the validity of the method by considering
simulated spike train data and then applied it to data recorded
simultaneously from the somatosensory cortical area 3b and
the ventroposterior nucleus of the thalamus from a squirrel
monkey (Jain et al. 2001) experiencing tactile stimulation.

2 Methods

2.1 Multivariate point processes and parameter estimation

Spikes are very brief in duration (∼1 ms) and can be
considered point events. A given spike train often has a
random appearance and is treated as one realization of an
underlying stochastic point process (Rosenberg et al. 1998).
Let N1(t) be a counting variable denoting the number of
spikes in the time interval (0,t]. The process N1(t)is said to
be wide-sense stationary, mixing, and orderly, if (1) the
statistical properties of the process are time-invariant, (2)
the number of events occurring in intervals separated
widely in time are independent, and (3) given a sufficiently
small interval, the number of events in that interval is at
most one (Conway et al. 1993; Halliday et al. 1995). The
number of events in a small time interval dt is dN1 tð Þ ¼
N1 t þ dtð Þ � N1 tð Þ. Then E dN1 tð Þf g ¼ P1dt where E stands
for the expectation operator and

P1 ¼ lim
h!0

Pr N1 event in t; t þ hð Þf g
�

h ð1Þ

Here P1 is called the mean intensity of the process N1(t)
(Conway et al. 1993; Halliday et al. 1995; Rosenberg et al.
1998). For theoretical and practical convenience the zero-
mean process N1(t)−P1t will be considered henceforth and
renamed N1(t) (Jarvis and Mitra 2001).

The spike trains generated by a group of m neurons are
realizations of an m-dimensional multivariate stochastic
point process. The vector counting variable is N tð Þ ¼
N1 tð Þ;N2 tð Þ; . . . ;Nm tð Þð ÞTwhere T stands for matrix trans-
pose. The second-order cross-product density between the
ith and jth components of N(t) at lag u is defined through
the relation (Conway et al. 1993; Halliday et al. 1995;
Rosenberg et al. 1998):

E dNi t þ uð ÞdNj tð Þ
� � ¼ Pij uð Þdudt ð2Þ

where Pij(u) is defined as:

Pij uð Þ ¼ lim
h;h0!0

Pr Ni event in t þ u; t þ uþ hð � and Nj event in t; t þ h0ð �� ��
hh0 ð3Þ

The value of Pii(u) at u=0 is such that the above function
is continuous at this point.

By considering the zero-mean process, the cross-covariance
density function qij(u) at lag u is (Conway et al. 1993;
Halliday et al. 1995; Rosenberg et al. 1998):

cov dNi t þ uð Þ; dNj tð Þ
� � ¼ qij uð Þdudt ð4Þ

where qij (u) is related to the intensity functions for u≠0 by

qij uð Þ ¼ Pij uð Þ � PiPj: ð5Þ
For i=j, the auto-covariance density function turns out to be:

cov dNi t þ uð Þ; dNi tð Þf g ¼ d uð ÞPi þ qii uð Þð Þdudt ð6Þ
where δ(u) is the classical Kronecker delta function.
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For a single neuron the mean firing intensity can be
estimated by dividing the time axis into bins of size, say k,
and calculating the probability of spiking in each bin. For a
pair of neurons, the cross covariance is estimated in a
number of different ways. One of the common estimates is
the cross correlogram (also called the covariogram; Nowak
and Bullier 2000). Consider several realizations of spike
trains from ith and jth neurons. In our case, we only need to
estimate Pij(u) since we are considering zero-mean pro-
cesses (consequently Pi=Pj=0). Initially, we divide the
time axis into bins of size, say k. We call one neuron, say
jth neuron, as the reference neuron. Consider the first trial.
We set time to be zero when the reference neuron spikes for
the first time. Then we bin the spikes from the ith neuron
with respect to the new shifted time scale. Let D denote the
binned data vector. Next we set time to be zero when the jth
neuron spikes for the second time and again repeat the
process of binning the spikes from the ith neuron. We add
this binned data vector to D. We repeat the procedure till we
reach the last spike of the jth neuron. Thus the rth element
of the final vector D is the value of dNi (t+rk) dNj(t) for one
realization. Taking the mean of vector D over different
realizations or trials gives us an estimate of E{dNi (t + rk)
dNj(t)} and when plotted as histogram, it is called the cross
correlogram between neuron i and neuron j (with jth neuron
as reference).

2.2 Spectral representation of point processes

The power spectrum Sii (f) for the process Ni (t) can be
defined as the Fourier transform of the auto-covariance
density (Bartlett 1963):

Sii fð Þ ¼ Pi

2p
þ 1

2p

Z1
�1

exp �i2pfuð Þqii uð Þdu: ð7Þ

As f ! 1, Sii (f) tends to P1/2π (the spectrum of a
Poisson process). Similarly, the cross-spectrum Sijðf Þ
between the processes Ni and Nj is defined as the Fourier
transform of the cross-covariance density (Bartlett 1963):

Sij fð Þ ¼ 1

2p

Z1
�1

exp �i2pfuð Þqij uð Þdu ð8Þ

where i≠ j. The spectral matrix for the multivariate point
process N(t) is:

S fð Þ ¼
S11 fð Þ ::: S1p fð Þ
::: ::: :::

Sp1 fð Þ ::: Spp fð Þ

0
@

1
A ð9Þ

with diagonal terms representing auto-spectra and off-
diagonal term cross-spectra.

The spectral matrix from a multivariate spike train of
length T can be estimated using the multitaper method
(Thomson 1982; Jarvis and Mitra 2001; Walden 2000). We
start by applying K data tapers hkf gzk¼1, one after the other,
to the ith channel spike train data and taking the Fourier
transform:

eNi f ; kð Þ ¼
ZT
0

hk tð Þ exp �i2pftð ÞdNi tð Þ

¼
X
j

hk tj
� �

exp �i2pftj
� � ð10Þ

where
RT
0
hk tð Þ2dt ¼ 1. In the multitaper method, the set of K

orthogonal data tapers used (given by the discrete prolate
spheroidal sequences) are optimal in that they have good
leakage properties. We then obtain estimates for the matrix
elements Sij( f ) of the spectral matrix using the taperedeN1 fð Þ in the following expression (Rosenberg et al. 1998)

bSij fð Þ ¼ 1

2pKT

XK
k¼1

eNi f ; kð Þ eNj f ; kð Þ*: ð11Þ

In case of multiple realizations (trials), Eq. (11) gives an
estimate of cross spectrum using one realization. Averaging
these estimates over all trials will give the estimate of all
the elements of spectral matrix. Note that in case of binned
data set, hk(tj) in equation (10) is replaced by hk(tj)ηj where
ηj is the number of spikes in the jth bin. While the
multitaper method is used here to estimate the spectral
density matrix (Mitra and Pesaran 1999), our method will
work with the spectral density matrix obtained with any
other non-parametric method.

2.3 Granger causality via spectral matrix factorization

For multivariate continuous-valued time series, an auto-
regressive (AR) model can be fit to the data. From the
model one computes the spectral matrix according to

S fð Þ ¼ H fð ÞΣH* fð Þ ð12Þ
where H( f ) is the transfer function which depends on the
coefficients of the AR model, Σ is the covariance matrix of
the error terms in the AR model, and * denotes matrix
transposition and complex conjugate (Ding et al. 2000,
2006). The three entities in Eq. (12) are the basis for
estimating Granger causality in the spectral domain
(Geweke 1982, 1984). For point processes, the spectral
matrix S( f ) is estimated from data using Eq. (11). To
compute Granger causality we still require the other two
entities in Eq. (12). These can be obtained by applying
spectral matrix factorization (Wilson 1972) which decom-
poses S( f ) into a unique corresponding transfer function
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H( f ) and the noise covariance matrix Σ (Dhamala et al.
2008a, b).

Now we are in a position to compute Granger causality
for point processes. First, consider two spike trains
represented by the point processes Ni (t) and Nj (t).We start
with the 2×2 spectral submatrix formed by taking the
appropriate entries from the overall spectral matrix in
Eq. (9). After spectral factorizing this 2×2 spectral matrix,
Granger causality from Nj (t) to Ni (t) at frequency f is given
by (Ding et al. 2006):

INj!Ni fð Þ ¼ ln
Sii fð Þ

Sii fð Þ � Σjj �Σ2
ij

.
Σii

� �			Hij fð Þ		2 : ð13Þ

Reversing i and j gives the Granger causality from Ni (t)
to Nj (t). In a system of three or more spike trains, it is often
desirable to find out whether a causal influence between
any pair of neurons is direct or mediated by others. The
above pairwise measure of causality is not able to resolve
this issue (Chen et al. 2006b). This has led to the
development of the conditional Granger causality (Geweke
1984). The formulations for the frequency domain condi-
tional Granger causality are complex and the reader is
referred to Ding et al. (2006) for a complete exposition.

For mathematical simplicity, only two or three interact-
ing neurons are considered above. In fact, the framework
can be extended to two or three nonoverlapping groups of
interacting neurons, where there is no restriction on the
number of neurons in each group. Thus, the method can
work, in principle, for any number of neurons in a given
recording. In practice, the computational capacity imposes
constraints on the maximum number that can be analyzed.

2.4 Assessment of statistical significance

A random permutation procedure (Brovelli et al. 2004) can
be used to build a baseline null-hypothesis distribution from
which statistical significance is derived. Consider two point
processes with many repeated realizations. We can reason-
ably assume that the data from different realizations are
approximately independent of one another. Randomly
pairing data for neuron 1 with data for neuron 2 from a
different trial leads to the creation of a synthetic ensemble
of trials for which there is no interdependence between the
two spike trains based on construction, but the temporal
structure within a neuron is preserved. Performing such
random pairing with many different permutations will result
in a distribution of causality corresponding to the null
hypothesis of no statistical interdependence. The calculated
value from the actual data is compared with this baseline
null hypothesis distribution for the assessment of signifi-
cance levels.

2.5 Summary of the algorithm

A step by step algorithm for computing nonparametric
Granger causality from spike train data is given below. A
Matlab code implementing this algorithm can be provided
to interested readers upon request.

Step 1 The spike trains generated by m neurons are taken
as one realization of an m dimensional multivariate
stochastic point process denoted by N(t). The spike
trains are binned where the bin width was chosen
to be 1 ms for this work. For smaller bin width,
many of the bins will contain no spikes, leading to
poor estimation of the spectral density matrix.

Step 2 The Fourier transform of N(t) is estimated using
Eq. (10).

Step 3 The spectral density matrix S( f ) for the stochastic
process N(t) is obtained by using Eq. (11).

Step 4 For a given pair of neurons (say, neuron i and
neuron j), the spectral submatrix corresponding to
this neuron pair is factorized using the spectral
factorization algorithm (Wilson 1972; Dhamala
et al. 2008a, b), thus giving the decomposition in
Eq. (12).

Step 5 Granger causality from neuron j to neuron i is
evaluated as a function of frequency by substituting
the transfer function H( f ) and the noise covariance
matrixΣ in Eq. (13). This function can be examined
for frequency characteristics of causal influences or
summed over all frequencies to obtain a single time-
domain causal influence. A similar procedure is
carried out to evaluate causality from neuron i to j.

Step 6 The statistical significance of the causality values
obtained above are ascertained using the method
of random permutation described above.

Step 7 Steps 4 to 6 is repeated for all neuron pairs of
interest. In case of three or more neurons, the
conditional Granger causality can also be evaluated.

3 Results

3.1 Simulation

The model neuron has two variables (Izhikevich 2003):

dv

dt
¼ 0:04v2 þ 5vþ 140þ u� I ; ð14aÞ

du

dt
¼ a bv� uð Þ; ð14bÞ

with after-spike resetting (v is reset to c and u is reset to u+
d if v≥30 mV). Here v is the membrane potential of the
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neuron, u is a membrane recovery variable, I is the synaptic
current or injected DC current, a is the time scale of u, b is
the sensitivity of u to subthreshold fluctuations in v, c is the
spike reset values of v and d is the spike reset value of u.
The values chosen for this study are: a ¼ 0:2; b ¼ 0:2; c ¼
�65 mV; d ¼ 2: The input synaptic current I is taken to be
a normally distributed random Gaussian variable.

Example 1. Two neurons were coupled in such a way that
the output of the first neuron was fed into the
second neuron with a time delay of 10 ms, i.e.,
neuron 1→neuron 2 (see Fig. 1). The output
spike train data was modeled as a bivariate
point processes N1 (t) and N2 (t). Each
realization was 1s in duration. A total of one
hundred realizations were simulated. The mean
firing rate for the driver neuron (i.e. neuron 1)
is 15.93 spikes per second and for the driven
neuron (i.e. neuron 2) is 8.33 spikes per
second. These firing rates are consistent with
those typically found in thalamic and cortical
neurons. The spectral matrix was estimated
using the multitaper method. The pairwise
Granger causality spectra were derived after
the spectral matrix factorization procedure and
shown in Fig. 2. The causal influence from
neuron 1 to neuron 2 is high while there is no
corresponding driving from neuron 2 to neuron
1. This is in agreement with model construc-
tion. As no specific meaning is assigned to
frequency, the time domain Granger causality
is used henceforth which is obtained by
integrating spectral causality over the entire
frequency domain. Table 1 displays the inte-
grated time-domain values. The significance of
these values (at the 10% significance level)
was tested using the random permutation
procedure with 1,000 permutations. We found
that Granger causality from neuron 1 to 2 is
highly significant whereas Granger causality
from neuron 2 to 1 is not significant (NS).

Note that, in this example, the probability that a spike in
neuron 1 is followed by a spike in neuron 2 after 10 ms is

0.004. Despite this low value, the connectivity pattern is
correctly recovered. However, if we increase the firing rate to
about 100 spikes per second, this probability has to be greater
than 0.1 for the method to work. For a firing rate around 200
spikes per second, the probability needs to be around 0.25.

The same data was also subjected to a cross-correlogram
analysis using a bin size of 10 ms (Nowak and Bullier
2000). With neuron 1 as the reference, the cross-correlo-
gram gives a peak value of 5.8 for the bin corresponding to
a positive time lag of 10–20 ms, thus implying that neuron
1 drives neuron 2, whereas there is no corresponding peak
in the opposite direction (see Fig. 3). This demonstrates
that, for this simple example, the directionality information
determined by Granger causality is also supported by a
cross-correlogram analysis.

Example 2. Generally, the relation between two neurons
(e.g. neuron 1 and neuron 2 above) may have
three contributing factors: neuron 1→ neuron
2, neuron 2→ neuron 1 and a possible common
input (see Fig. 4). The cross-correlogram is
expected to fail when the common input is
strong while the Granger causality would still
be able to recover the correct connection
pattern. We tested this idea by simulating the
case of common input. Here an unknown
source, which is assumed to be not measured,
drives both neurons 1 and 2 with a delay of
10 ms. There is no direct causal relation
between these two neurons. The cross-correlo-
gram with neuron 2 as reference neuron gives
significant peaks in both directions yielding
the wrong conclusion that the two neurons are
reciprocally coupled. Granger causality analy-
sis does not suffer from this problem and
gives the correct result that there is no causal
relation between the two neurons.

Example 3. To demonstrate the utility of conditional
Granger causality, three spiking neurons were
connected in such a way that neuron 1 drives
neuron 2 with a delay of 10ms and neuron 2 in
turn drives neuron 3 with the same delay (see
Fig. 5). A total of 100 trials each of duration
1s were simulated. The results from a pair-
wise Granger causality analysis are shown in
Table 2. Values that are not significant (NS)
at the 10% significance level are so indicated.

From the table a causal influence from neuron 1 to neuron 3
is observedwhile no such connectionwas built into the model.
This connection is spurious and is due to the mediated
influence through neuron 2. To resolve this, conditional
Granger causality analysis was applied and the result is shown

10ms delay 

Neuron 1 Neuron 2 

Fig. 1 Schematic diagram depicting the neuronal model in example 1.
Neuron 1 drives neuron 2 with a delay of 10 ms. The probability that a
spike in neuron 1 is followed by a spike in neuron 2 with 10 ms delay
is 0.004
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in Table 3. Clearly, when neuron 2 is conditioned out, the
causality value from neuron 1 to neuron 3 falls below the
significance level. No change in network connectivity is
noted from other conditional causality values. Thus the true
connectivity pattern is recovered from conditional Granger
causality analysis (Chen et al. 2006b; Ding et al. 2006). Such
an analysis is not possible with the conventional cross-
correlogram technique.

3.2 Experimental data

An array of 16 Teflon coated stainless steel microwires
(50 µm uncoated diameter) was implanted in area 3b of an
adult squirrel monkey in the hand region such that the wires
spanned representations of digit 2 to digit 5. In addition, a
bundle of 16 wires was implanted in the ventroposterior
lateral (VPL) nucleus of the ipsilateral thalamus. All animal
procedures were approved by the Institutional Animal Care

and Use Committee and followed NIH guidelines. The
receptive fields of the neurons recorded from the VPL
spanned from digit 3, digit 4, digit 5, palm and wrist on the
forelimb to parts of the leg and foot (including toes) on the
lower limb. Single neuron activity was recorded simulta-

–100 –50 0 50 100
0

1

2

3

4

5

6

7

Time in ms

co
un

ts
/b

in

Correlogram between 1 & 2 with neuron 1 as reference
(binsize: 10ms)

Fig. 3 Crosscorrelogram between neuron 1 and neuron 2 with neuron
1 as reference neuron. A significant peak is obtained corresponding to
10–20 ms bin showing causal relation from neuron 1 to neuron 2 with
a delay between 10–20 ms

Table 1 Time-domain Granger causality values between neuron 1 and
neuron 2 for both directions for example 1

Direction of causality Causality

1 → 2 25.1082a

2 → 1 0.2178

aMeans statistically significant value

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

frequency in Hz

c
a

u
s
a

lit
y

Causality: 

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

frequency in Hz

c
a

u
s
a

lit
y

Causality: 

1  >2

2  >1

1      >2

2      >1

Fig. 2 A simulation of two
spiking neurons where the first
neuron drives the second
neuron. Pairwise Granger
causality spectra from neuron 1
to neuron 2 and vice versa
are shown
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neously from the cortex and the thalamus (see Jain et al.
2001). The spikes were sorted and recorded using a 32
channel Multichannel Neuronal Acquisition Processor
(MNAP) system (Plexon, Dallas, TX). A Chubbuck type
stimulator was used to stimulate contralateral radial wrist at
1 Hz for 360 s. The probe contacted the skin for 20 ms in
every cycle.

For this study the data from three neurons were considered
(two cortical, one thalamic). One cortex–thalamus pair of
simultaneously recorded neurons (DSP06a, DSP25a) had
overlapping receptive fields and another pair (DSP10a,
DSP25a) had nearly disjoint but adjacent receptive fields.
The data were epoched into trials triggered on stimulus onset
(0 ms). The peristimulus time histograms (PSTH) for all three
neurons are shown in Fig. 6. All neurons exhibited brief but
vigorous response to stimulus input. The time period 0–
30 ms was chosen for Granger causality analysis. The result
is shown in the table embedded in Fig. 6. Significant causal
influence, at a 10% level of significance, was observed from
thalamus to cortex for the neuron pair that had overlapping

receptive fields, whereas the causality in the reverse direction
(i.e. from cortex to thalamus) was not significant, reflecting a
sensory-driven feed forward activation (Kaas et al. 2002).
For the neuron pair where the receptive fields sharing a small
overlap, the causality was not significant in both directions, a
consequence of the somatotopic nature of thalamo-cortical
projections (Kaas et al. 2002). These Granger causality
results and their physiological and anatomical interpretability
provide validation of our nonparametric estimation algorithm
in the analysis of actual neural data.

4 Discussion

In neural systems, as in many other systems in science and
engineering, analyzing causal relations between recordings
from different neurons or different brain sites is of increasing
interest. Granger causality has emerged in recent years as a
useful empirical method for this purpose. The evaluation of
Granger causality could be carried out either in the time
domain (Granger 1969; Pierce 1979; Boudjellaba et al. 1992;
Goebel et al. 2003; Hesse et al. 2003; Chen et al. 2004;
Salazar et al. 2004; Roebroeck et al. 2005) or in the frequency
domain (Geweke 1982, 1984; Bernasconi and Konig 1999;
Bernasconi et al. 2000; Kaminski et al. 2001; Brovelli et al.
2004; Kus et al. 2004; Chen et al. 2006a, b; Ding et al. 2006;
Bollimunta et al. 2008; Zhang et al. 2008). Both time-domain
and frequency-domain Granger causality have enabled

Table 3 Time-domain conditional Granger causality values between
distinct pairs of neurons (conditioned on the neuron indicated in
column 2) for example 3

Direction of causality Conditioned on Conditional causality

1 → 2 3 10.0617a

2 → 1 3 0.0801
1 → 3 2 0.2016
3 → 1 2 0.1791
2 → 3 1 7.3845*
3 → 2 1 0.1493

aMeans statistically significant value.

Table 2 Time-domain Granger causality values between distinct pairs
of neurons for example 3

Direction of causality Causality

1 → 2 10.0373a

2 → 1 0.0734
1 → 3 0.7986a

3 → 1 0.1741
2 → 3 7.9877a

3 → 2 0.1251

aMeans statistically significant value

Neuron 1 

Neuron 2 Neuron 3 

10ms delay                                                        20ms delay
Spurious causality 

10ms delay 

Fig. 5 Schematic diagram depicting the neuronal model in example 3.
Here neuron 1 drives neuron 2 with a delay 10 ms and neuron 2 drives
neuron 3 with delay of 10 ms. Pairwise analysis yields a spurious
causality from neuron1 to neuron 3. The probability that a spike in
neuron 1 is followed by a spike in neuron 2 with 10 ms delay is 0.006
and the probability that a spike in neuron 2 is followed by a spike in
neuron 3 with 10 ms delay is 0.005

  10ms delay 

10ms delay 

Common 

Source 

Neuron 1 Neuron 2 

Fig. 4 Schematic diagram depicting the neuronal model in example 2.
A common source is driving both neurons with a delay of 10 ms
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insights into sensory and cognitive processing not possible
with other methods (Bernasconi and Konig 1999; Bernasconi
et al. 2000; Goebel et al. 2003; Hesse et al. 2003; Brovelli
et al. 2004; Salazar et al. 2004; Chen et al. 2006b; Ding et al.
2006; Bollimunta et al. 2008; Zhang et al. 2008).

Despite its promise, the Granger causality technique has
mainly been applied to continuous-valued time series data,
such as EEG and local field potentials. For neuronal spike
trains, which are point processes, the present parametric
approach used for Granger causality estimation is not
directly applicable. In this paper we have proposed a new
nonparametric method to compute Granger causality directly
from the Fourier transforms of spike train data. Factorization
of the spectral matrix and Geweke’s spectral domain
formulation of Granger causality play a central role in this
approach. The main advantage of the proposed method is
that it gives both the time-domain and frequency-domain
Granger causality while preserving the point-process struc-
ture inherent in the data. The method was first validated by

simulated examples where the answer is known, and then
applied to experimental recordings to obtain results that were
physiologically and anatomically interpretable.

It should be pointed out that the Granger causality method in
its present form has two weaknesses: requirement of statio-
narity and reliance on second-order statistics. While the first
weakness may be overcome with a moving window approach,
to overcome the second weakness, one needs to incorporate the
full conditional density function. The work by Truccolo et al.
(2005) provides a framework in that direction and Okatan
et al. (2005) used the framework for connectivity analysis.

In closing, we comment that there are other ways of
analyzing interaction patterns in multivariate neural data. For
example, Okatan et al. (2005) and Truccolo et al. (2005)
considered state-space modeling of neural spike trains. By
comparing relative estimates of conditional probability
density one can achieve the goal of inferring directional
information. A different idea based on the information theory
has been put forth by Lungarella and Sporns (2006) and

Fig. 6 PSTH of three neurons and the table of Granger causal
influences. Granger causality for neuron DSP25a from the ventropos-
terior (VP) nucleus of thalamus paired with neurons DSP06a or
DSP10a from cortical area 3b. All three neurons had receptive fields in
the region of radial wrist and the adjacent thenar pad. The receptive
fields of neurons DSP25a [see (a)] from the VP nucleus and DSP06a
(b) from area 3b completely overlapped. Responses from 0–30 ms
were selected for analysis. Causality was significant from the VP

nucleus neuron to the area 3b neuron with overlapping receptive fields
[see table in (d)]. Causality was not significant in the reverse direction.
Neuron DSP10a of area 3b had receptive field on the radial part of
proximal thenar pad which is adjacent and partially overlapping with
that for DSP06a and DSP25a. Although this neuron is also activated
by the stimulus [see (c)], causality between the thalamic neuron
DSP25a and this neuron was not significant. Insets in (a–c) show the
spike waveforms and the receptive fields (arrows) of the neurons
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applied to the analysis of sensorimotor networks. The
temporal evolution of correlated states using the maximum
entropy method was investigated by Tang et al. (2008).
These methods and the method proposed in this paper are
different in both their initial conceptualization and their
framework of estimation. A detailed comparison of each
method’s performance against well-characterized neurophys-
iological data would serve to identify their relative strengths
and weaknesses.
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