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In this paper a rather unconventional real basis for the real symplectic algebra sp(2n,R) is 
studied. This basis is valid for representations carried by homogeneous polynomials of 
the 2n phase-space variables. The utility of this basis for practical computations is 
demonstrated by giving a simple derivation of the second- and fourth-order indices of 
irreducible representations of sp ( 2n,R ) . 

I. INTRODUCTION 

In this paper we study irreducible representations (ir- 
reps) of the real symplectic Lie algebra sp ( 2n,R ) ’ carried 
by homogeneous polynomials of the 2n phase-space vari- 
ables {qi,pi} (i = 1,2,...,n). These representations of 
sp(2n,R) are the physically interesting ones in classical 
mechanics.* Since these are representations carried by 
functions of canonically conjugate variables, we refer to 
them as canonical representations. 

First, we define a real basis for sp(2n,R). Using this 
basis, h-reps of sp( 2n,R ) carried by homogeneous poly- 
nomials of phase-space variables are obtained. Weight 
vectors corresponding to these irreps are also computed. 
Using these results, we finally give a simple derivation of 
the second- and fourth-order indices corresponding to 
these irreps. 

II. A REAL BASIS FOR sp(Pn,R) 

In this section we obtain a real basis for sp( 2n,R ) . 
Since we are interested in representations carried by func- 
tions of phase-space variables, it is convenient to define 
the operators constituting a basis for sp(2n,R) using 
these variables. This can be done using the concept of a 
Lie operator.’ Let us denote the collection of 2n phase- 
space variables qi, pi (i = 1,2,...,n) by the symbol Z. The 
Lie operator corresponding to a phase-space function 
f(z) is denoted by :f(z) :. It is defined by its action on a 
phase-space function g(z) as shown below: 

d-(z) :g(z) = [ f(z),&) 1. (2.1) 

Here, cf(z),g(z)] denotes the usual Poisson bracket of 
the functions f(z) and g(z): 

[f(z)&(z)]= fi, (~y-~~) * 
i I 1 I 

(2.2) 
We are now in a position to give a basis for sp(2n,R). 
Consider the following set of real operators: 
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:Ljk: = :qj q& j<k, (2.3) 

:Rjk: = :pipk:, j<k, 

where the indices j and k range from 1 to n. We note that 
these are nothing but Lie operators corresponding to the 
set of all quadratic monomials in variables qj and pk It 
can be shown that these operators constitute a real basis 
for the Lie algebra sp(2n,R).3 As expected, there are 
n (2n + 1) elements in this basis. We will denote a gen- 
eral basis element by the symbol wf. 

The commutator of two Lie operators :f: and :g: can 
be shown* to satisfy the following relation: 

{:f:,:g:}s:fi:g: - :g::fi=:[f,g]:. (2.4) 

Using this property, the basis elements are seen to satisfy 
the following commutation relations: 

(2.5) 

Here, the indices j, k, r, and s range from 1 to n. 
The basis given in Pq. (2.3) is not the conventional 

basis used for sp(2n,R).4 It does not contain a basis for 
the unitary algebra u( 3) as a subset. However, this short- 
coming is of no consequence when one studies only the 
symplectic algebra without any reference to its unitary 
subalgebras. In such cases the real basis defined in Eq. 
(2.3) offers several advantages due to its one-to-one cor- 
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respondence with the set of quadratic monomials. These 
advantages will become apparent in the discussions that 
follow. 

N(m) 
~j-~:P;~‘(z) = 1 d’“‘(f,)~;~‘(z), 

/3=1 

III. REPRESENTATION OF sp(Sn,R) 

In this section we first obtain the irreps of sp(2n,R) 
carried by homogeneous polynomials of phase-space vari- 
ables. Next, we compute the weight vectors correspond- 
ing to these irreps. 

a= 1,2 ,..., N(m), (3.6) 

where d’“‘cf2)~ are coefficients multiplying the basis el- 
ements. 

From the previous section it is clear that Lie opera- 
tors corresponding to the set of all quadratic polynomials 
in z constitute the symplectic Lie algebra sp(2n,R). 
Therefore, an N-dimensional representation of sp( 2n,R) 
is obtained by mapping each element (denoted in general 
by :&:) onto an NXN matrix dV;) such that the fol- 
lowing conditions are satisfied for all: f2:, :g2: belonging 
to sp(2n,R): 

AswevaryafromltoN(m)inEq.(3.6),thesetof 
coefficients dcm)(f2)t gives rise to an N(m) xN(m) ma- 
trix, d’“‘(f,), for each :f2: belonging to sp(2n,R). It is 
easily verified that the set of such matrices (obtained by 
letting :f2: range over the entire Lie algebra) gives an 
N(m) -dimensional representation of sp (2n,R ) . It can be 
shown3 that these representations (for each m) are in fact 
irreducible. 

&u-2 + h?*) =Mf*) + Wg,), d=@P, (3.1) 

d( [f*,g*l> =Cebw-2~1. (3.2) 

A representation d is said to be (completely) reducible if 
it can be converted into a block diagonal form using a 
similarity transformation. Otherwise, it is said to be irre- 
ducible. 

Next, we obtain the weight vectors for irreps of 
sp(2n,R) defined above. First, we need the Cartan sub- 
algebra of sp( 2n,R). It is easily verified that the Cartan 
subalgebra of sp(2n,R) is spanned by the following n 
elements: 

Irreducible representations of sp(2n,R) carried by 
homogeneous polynomials in z can be obtained in a 
straightforward fashion. Let P”“‘(z) denote the set of 
all homogeneous polynomials in z of degree m and g,(z) 
denote a general element belonging to this set. Consider 
the following property of the Lie operator :f2: [cf. Eq. 
(2.2)]: 

H1 = :qlpl:, H2= :q2p2:, . . . . H,,= :q,,p,,:. (3.7) 

As expected, the rank of sp(2n,R) is equal to n. The 
N(m)-dimensional irrep of Hi is given by Eq. (3.6). 

To proceed further we need to choose the N(m) basis 
elements PLm’ (z). We make the simplest choice. We 
choose {PLm’(z)) to be the set of all mth degree mono- 
mials in the 2n phase-space variables. Therefore, the gen- 
eral element p’&“)(z) is given by the following relation: 

ph)(Z) =q*~pr2.. . r211- lpr2n 
cl 11 q, n ’ 

:fmn= [fianl =h,m (3.3) 

where h, is an element of Y(“)(z). That is, the elements 
:f2: of sp( 2n,R ) preserve the degree of the polynomial on 
which they act. We therefore get the following relation: 

f*:g,= [ f*,g,]@‘“’ wg&~(~! (3.4) 

In other words, the set of all elements belonging to 
sp ( 2n,R ) leaves !ZP (m) invariant. 

Let [ PLm’ 1 be a basis for the set 9 (m). Typically, we 
choose these basis elements to be the monomials of degree 
m in the 2n phase-space variables. The number of basis 
monomials N(m) of degree m in the 2n phase-space vari- 
ables is given by the relation’V3 

rl + r2 + a-* + r2n=m. (3.8) 

Now, the advantage of using the rather unconven- 
tional basis given in Eq. (2.3) becomes apparent. In this 
basis the N( m)-dimensional h-reps of the Cartan basis 
elements Hi are automatically diagonal! This is true for 
all the irreps defined by Eq. (3.6) Moreover, it is a simple 
matter to calculate the general weight vector. Using IQ. 
(3.8) we obtain the following results: 

N(m)=(2n+c-1). (3.5) 

From Eq. (3.4) and the completeness of the set {PLm)), 
we get the following relation: 

:qipi:PLm’(Z) = (r*i- r*i- l)PLm’(Z), i= 1,2,...,n. 
(3.9) 

The weight vector A(“’ is defined by the relation 

:qip&Pim)(Z) =A~a)P~m)(Z), i= 1,2,...,n. (3.10) 

Comparing Eqs. (3.9) and (3.10) we obtain the result 

Ace)= (r2 - w4 - r3,...,r2n - r2n- 1). (3.11) 

From Eq. (3.11) we see that the highest weight vec- 
tor for the N(m )-dimensional irrep is given by 
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(m,O,...,O). Thus our real basis is valid for the class of 
representations with the highest weight vector of the form 
(m,O ,..., 0) for m = 1,2,3 ,... . 

IV. INDICES OF IRREDUCIBLE REPRESENTATIONS 

Indices of irreducible representation8 play an impor- 
tant part in representation theory. For example, they can 
be used to decompose direct products of representations 
and compute branching rules. In this section we illustrate 
the utility of the basis given in Eq. (2.3) by explicitly 
computing the second- and fourth-order indices of the 
irreps carried by homogeneous polynomials. 

A. Second-order index 

The second-order index is defined as follows:6 

N(m) 
I:)= c [P)]2, (4.1) 

a=1 

where 

[A(a)]*= ,gl [p]*. (4.2) 

Here, n is the rank of sp(2n,R), 11”) is the ith component 
of the ath weight vector, and N(m) is the dimension of 
the irrep carried by the mth degree homogeneous poly- 
nomials [cf. Eq. (3.5)]. The expression for 1:’ in Eq. 
(4.1) can be simplified as follows. From symmetry con- 
siderations we have the following relation: 

N(m) N(m) 
C [Aj”‘12= F, [Aja)]* Vij. (4.3) 

a=1 

Hence, Eq. (4.1) can be rewritten as follows: 

N(m) 
IC)=n 2 [AI”‘]*. (4.4) 

a=1 

Before proceeding further, we first establish the rela- 
tion between the second-order index and the more famil- 
iar Dynkin index.6 Using the fact that dcm) (qipi ) is di- 
agonal, we obtain the relation [cf. Eq. (3.6)] 

a= 1,2 ,..., N(m). (4.5) 

Comparing this with Eq. (3.10) we discover that Eq. 
(4.4) can be rewritten as follows: 

I(*)=. Tr[d’“~(qlp,)d’“~(q,pl)]. m (4.6) 

However, the Dynkin index v(m) is defined by the 
relation7 
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(4.7) 

Since v(m) is independent of the choice for w, and wa, 
we can take both to be equal to qlpl. Then we get the 
relation 

I(*Ly(m)p*) 
m 2 ’ (4.8) 

We now turn to the task of computing 1:‘. From Eq. 
(4.4) we see that we need to sum over squares of the first 
components of the weight vectors corresponding to all the 
monomials PLm’(z) (a = 1,2,...N(m)). Since :qlpl: acts 
only on the q1 andp, variables, we need to know only the 
q1 and p1 content of the basis monomials PLm’ (z). Hence, 
we write the general monomial as follows: 

p(m)(Z)=q~-k-l l 
a Plhk(42,P2,...,4n,Pn), (4.9) 

where hk stands for a monomial of degree k in the 2n - 2 
variables q2,p *,...,pn. The index k varies from 0 to m and 
the index I from 0 to m - k. The total number of mono- 
mials hk of degree k is given by the relation [cf. Eq. (3.5 )] 

From Eqs. (3.11) and (4.9) we find the following 
expression for the first component Ai”’ of the weight vec- 
tor corresponding to the monomial PLm’ (z) : 

AI”‘= -m+k+21. (4.11) 

Since all N’(k) monomials with the same value of k have 
the same weight, we obtain the result 

(4.12) 

However, the following identity can be proved: 

m-k 

& (-m+k+202=2 (;I;+;). (4.13) 

Therefore, we obtain the relation 

1:‘=2n C TI,I (‘“+;-y:+y). (4.14) 

After some manipulation, this can be shown to equal the 
following result: 
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I(‘) = 2n 2n + m 
m ( 1 2n+l ’ 

Similarly, we can derive the relation 
(4.15) N(m) 

It is easily verified that this expression gives the correct 
second-order indices* for the irreps being studied (apart 
from an overall numerical factor). 

From Eq. (4.8) the Dynkin index v(m) is given by 
the relation 

2n + m 
v(m) = 

( ) 
2n+ 1 (2n+2)-‘. (4.16) 

Further, the eigenvalue C,(A) of the second-order 
Casimir operator can be calculated using the following 
relation:7 

C2W =N(2MmVN(m), (4.17) 

where N(2) is equal to the dimension of sp (2n,R). We 
obtain the following result: 

C,(A) = (m2 + 2nm)/4(n + 1). (4.18) 

8. Fourth-order index 

The fourth-order index is defined as follows:6 

I:)= IT,) [ i, cni”‘,‘]‘. (4.19) 

Using symmetry considerations this can be rewritten as 
follows: 

N(m) 
IE)=n C (Ai”‘)4+ n(n - 1) 

a=1 

N(m) 

x 2, (~Ia92(w)2. (4.20) 

Proceeding as before we lind, after some manipula- 
tion, the following relation: 

X [ - 8 + 12(m -k) 

+ 6(m - @l/5. 

Evaluating the sums, we obtain the result 

(4.21) 

(2n2 + 6m2 + 12mn - 7n 

- 3)/(2n + 3)(n + 1). (4.22) 

z, (~~a92(~:a92 
m-l m-k 

= kzo & ( - m + k + 202 

(4.23) 

This can be simplified to the following expression: 

=2~~,’ rL!y2) y$k(-m+k+21)i. 

(4.24) 

Evaluating this double sum, we obtain the result 

(4.25) 

Substituting Eqs. (4.22) and (4.25) in Eq. (4.20), we 
finally get the following relation: 

Ic4) = 2n 2n + m 
m ( 1 2n + 1 (2mn2 + m2n + IOmn + 5m2 

- 6n - 2)/(2n + 3)(n + 1). (4.26) 

Again, it is easily verified that the above expression for 
1:’ gives correct results (up to an overall numerical fac- 
tar). Comparing Eqs. (4.15) and (4.26) we also obtain 
the relation 

1g)=1E)(2mn2 + m2n + 10mn + 5m2 - 6n - 2) 

x[(2n+3)(n+l)lp1. (4.27) 

V. SUMMARY 

In this paper we discuss a real basis for sp (2n,R ) . In 
this basis the Cartan basis elements are automatically di- 
agonal for all h-reps carried by homogeneous polynomials 
of phase-space variables. This fact facilitates the compu- 
tation of various quantities characterizing these irreps. As 
an illustration, we calculate the second- and fourth-order 
indices of these h-reps. 
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