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In this paper a rather unconventional real basis for the real symplectic algebra sp(2n,R) is
studied. This basis is valid for representations carried by homogeneous polynomials of
the 2n phase-space variables. The utility of this basis for practical computations is
demonstrated by giving a simple derivation of the second- and fourth-order indices of

irreducible representations of sp(2n,R).

. INTRODUCTION

In this paper we study irreducible representations (ir-
reps) of the real symplectic Lie algebra sp(2n,R)! carried
by homogeneous polynomials of the 2n phase-space vari-
ables {q,p,} (i=12,.,n). These representations of
sp(2n,R) are the physically interesting ones in classical
mechanics.? Since these are representations carried by
functions of canonically conjugate variables, we refer to
them as canonical representations.

First, we define a real basis for sp(2n,R). Using this
basis, irreps of sp(2n,R) carried by homogeneous poly-
nomials of phase-space variables are obtained. Weight
vectors corresponding to these irreps are also computed.
Using these results, we finally give a simple derivation of
the second- and fourth-order indices corresponding to
these irreps.

{l. A REAL BASIS FOR sp(2n,R)

In this section we obtain a real basis for sp(2n,R).
Since we are interested in representations carried by func-
tions of phase-space variables, it is convenient to define
the operators constituting a basis for sp(2n,R) using
these variables. This can be done using the concept of a
Lie operator.? Let us denote the collection of 27 phase-
space variables g;, p; (i = 1,2,...,n) by the symbol z. The
Lie operator corresponding to a phase-space function
f(z) is denoted by :f(z):. It is defined by its action on a
phase-space function g(z) as shown below:

f(2):8(2)=[f(2),8(2)]. (2.1)

Here, [f(z),g(z)] denotes the usual Poisson bracket of
the functions f(z) and g(z):

5 (3f(z) 3g(z) af(2) Ag(z)
e= 3 (G2 -5 2.

i=

(2.2)

We are now in a position to give a basis for sp(2n,R).
Consider the following set of real operators:
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Cii=:q; Pi’s
Lj=:9;qxs J<Kk, (2.3)

:Rjk:= 3Pij3, .]<k’

where the indices j and & range from 1 to n. We note that
these are nothing but Lie operators corresponding to the
set of all quadratic monomials in variables g; and p;. It
can be shown that these operators constitute a real basis
for the Lie algebra sp(2n,R).3 As expected, there are
n(2n 4 1) elements in this basis. We will denote a gen-
eral basis element by the symbol w,.

The commutator of two Lie operators ;f: and :g: can
be shown? to satisfy the following relation:

{fvgY= g — gfi=:[ f.g]: (2.4)

Using this property, the basis elements are seen to satisfy
the following commutation relations:

{:CtCri} = Cis — :Ciibir
{:CpiriL} = — Lty — Ly
{:Cxy: Ry} =:Rys:8jr + ‘R85 (2.5)
{LyiLs} =0,

{:RyssiR,si} =0,

{iLjiR s} =:Chgbjp + :Ci8js + :Cjibpy + :Cjibise

Here, the indices j, k, r, and s range from 1 to n.

The basis given in Eq. (2.3) is not the conventional
basis used for sp(2n,R).“ It does not contain a basis for
the unitary algebra u(3) as a subset. However, this short-
coming is of no consequence when one studies only the
symplectic algebra without any reference to its unitary
subalgebras. In such cases the real basis defined in Eq.
(2.3) offers several advantages due to its one-to-one cor-
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respondence with the set of quadratic monomials. These
advantages will become apparent in the discussions that
follow.

ll. REPRESENTATION OF sp(2n,R)

In this section we first obtain the irreps of sp(2n,R)
carried by homogeneous polynomials of phase-space vari-
ables. Next, we compute the weight vectors correspond-
ing to these irreps.

From the previous section it is clear that Lie opera-
tors corresponding to the set of all quadratic polynomials
in z constitute the symplectic Lie algebra sp(2n,R).
Therefore, an N-dimensional representation of sp(2n,R)
is obtained by mapping each element (denoted in general
by :f;:) onto an N XN matrix d(f,) such that the fol-
lowing conditions are satisfied for all: f:, :g,: belonging
to sp(2n,R):

d(af, + bgy) =ad(f,) + bd(g,), a,be??, (3.1)

d([f2.8])={d(g,).d(f2)}. (3.2)

A representation d is said to be (completely) reducible if
it can be converted into a block diagonal form using a
similarity transformation. Otherwise, it is said to be irre-
ducible.

Irreducible representations of sp(2n,R) carried by
homogeneous polynomials in z can be obtained in a
straightforward fashion. Let Z (™ (z) denote the set of
all homogeneous polynomials in z of degree m and g,,(z)
denote a general element belonging to this set. Consider
the following property of the Lie operator :f5: [cf. Eq.
(2.2)]:

:fZ:gm= [fZ:gm]=hm’ (3.3)

where A, is an element of ("™ (z). That is, the elements
:f2: of sp(2n,R) preserve the degree of the polynomial on
which they act. We therefore get the following relation:

S28m=[f28m]€P '™ Vg,eP? ™. (3.4)

In other words, the set of all elements belonging to
sp(2n,R) leaves Z ™ invariant.

Let {P{™} be a basis for the set & ™, Typically, we
choose these basis elements to be the monomials of degree
m in the 2n phase-space variables. The number of basis
monomials N (m) of degree m in the 2n phase-space vari-
ables is given by the relation™*

2n+m-—1
). (3.5)

m

N(m)=(

From Eq. (3.4) and the completeness of the set {P{™],
we get the following relation:

N(m)

SrPIM (2) = B; d™ (f,)8P{ (2),

a=12,..,N(m), (3.6)

where 4™ (fz)g are coefficients multiplying the basis el-
ements.

As we vary a from 1 to N(m) in Eq. (3.6), the set of
coefficients d(’”)(fz)g gives rise to an N(m) X N(m) ma-
trix, d™(f,), for each if5: belonging to sp(2n,R). It is
easily verified that the set of such matrices (obtained by
letting :f,: range over the entire Lie algebra) gives an
N (m)-dimensional representation of sp(2#n,R). It can be
shown?® that these representations (for each m) are in fact
irreducible.

Next, we obtain the weight vectors for irreps of
sp(2n,R) defined above. First, we need the Cartan sub-
algebra of sp(2n,R). It is easily verified that the Cartan
subalgebra of sp(2n,R) is spanned by the following n
elements:

Hy=:q\py, Hy=:qpy, .., H,=:q,p,. (3.7)

As expected, the rank of sp(2n,R) is equal to n. The
N(m)-dimensional irrep of H; is given by Eq. (3.6).

To proceed further we need to choose the N(m) basis
elements Pfx’") (z). We make the simplest choice. We
choose {Pf,’")(z)} to be the set of all mth degree mono-
mials in the 2n phase-space variables. Therefore, the gen-
eral element Pf,’")(z) is given by the following relation:

P‘(zm)(z) =q’l'lp;2. . .q;2n—-lp;2n,
Fot Ty oo Py, (3.8)

Now, the advantage of using the rather unconven-
tional basis given in Eq. (2.3) becomes apparent. In this
basis the N(m)-dimensional irreps of the Cartan basis
elements H; are automatically diagonal! This is true for
all the irreps defined by Eq. (3.6) Moreover, it is a simple
matter to calculate the general weight vector. Using Eq.
(3.8) we obtain the following results:

g PP (2) = (ry;— ryy_ )P (2), i=1,2,...,n.
(3.9)

The weight vector A‘® is defined by the relation
1@ piP (2) =AP P (2), i=12,..n.  (3.10)

Comparing Egs. (3.9) and (3.10) we obtain the result
A@ =(ry— rrys— P3sens?on — Fap 1) (3.11)

From Eq. (3.11) we see that the highest weight vec-
tor for the N(m)-dimensional irrep is given by
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(m,0,...,0). Thus our real basis is valid for the class of
representations with the highest weight vector of the form
(m,)0,...,0) for m=1,2,3,.....

IV. INDICES OF IRREDUCIBLE REPRESENTATIONS

Indices of irreducible representations® play an impor-
tant part in representation theory. For example, they can
be used to decompose direct products of representations
and compute branching rules. In this section we illustrate
the utility of the basis given in Eq. (2.3) by explicitly
computing the second- and fourth-order indices of the
irreps carried by homogeneous polynomials.

A. Second-order index

The second-order index is defined as follows:®

N(m)
P= 2 [A97 (4.1)
a=1
where
[4¢@]2= Z [A{9)2 (4.2)

Here, n is the rank of sp(2n,R), /1,(“) is the ith component
of the ath weight vector, and N(m) is the dimension of
the irrep carried by the mth degree homogeneous poly-
nomials [cf. Eq. (3.5)]. The expression for I») in Eq.
(4.1) can be simplified as follows. From symmetry con-
siderations we have the following relation:

N(m) N(m)
2 AP)12= Y [4¥12 Vi, (4.3)
a=1 a=1
Hence, Eq. (4.1) can be rewritten as follows:
N(m)

If,f’:n E

a=1

[A{®12, (4.4)

Before proceeding further, we first establish the rela-
tion between the second-order index and the more famil-
jar Dynkin index.® Using the fact that d(’")(q,- p; ) is di-
agonal, we obtain the relation [cf. Eq. (3.6)]

qupr:PI™ (2) =d (gip1) 2P (2)

a=12,.,N(m). (4.5)

Comparing this with Eq. (3.10) we discover that Eq.
(4.4) can be rewritten as follows:

IV =n Tr[d"™ (g\p,)d"™ (gp1) ] (4.6)

However, the Dynkin index v(m) is defined by the
relation’

v(m) =Tr[d"™ (w,)d"™ (wg) 1/Tr[d® (w,)
Xd® (wp)]. (4.7)

Since v(m) is independent of the choice for w, and wg,
we can take both to be equal to ¢p;. Then we get the
relation

ID =y(m)IP. (4.8)

We now turn to the task of computing 7>, From Eq.
(4.4) we see that we need to sum over squares of the first
components of the weight vectors corresponding to all the
monomials Py (z) (a = 1,2,...N(m)). Since :g;p,: acts
only on the ¢, and p, variables, we need to know only the
g; and p, content of the basis monomials Pf,”‘) (z). Hence,
we write the general monomial as follows:

P((Im) (Z) =q;"_ k=1 lhk(q2’p2a ,qun), (49)
where 4, stands for a monomial of degree k in the 2n — 2
variables ¢,,p 5,...,7,. The index & varies from 0 to m and
the index / from O to m — k. The total number of mono-
mials 4, of degree k is given by the relation [cf. Eq. (3.5)]

k (4.10)

2n4+k—3

N'(k)= ( ) .

From Eqgs. (3.11) and (4.9) we find the following
expression for the first component 1{%) of the weight vec-
tor corresponding to the monomial P{™ (z):

M= —m+k+2l (4.11)
Since all N'(k) monomials with the same value of £ have
the same weight, we obtain the result

mom—k op i fk_3
IP=n Y X ( )(—m+k+21)2.

k=0 =0
(4.12)
However, the following identity can be proved:
m- k —k+2
> (—m+k+2l)2_2( X 1) (4.13)
P’ —k—
Therefore, we obtain the relation
mol Opt k—3\/m—k+2
(2) _
IP=2p k§=)° ( X )(m_k_ 1) . (4.14)

After some manipulation, this can be shown to equal the
following result:
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(4.15)

2n4+m
I,(,f)=2n( )

2n+1

It is easily verified that this expression gives the correct
second-order indices® for the irreps being studied (apart
from an overall numerical factor).

From Eq. (4.8) the Dynkin index v(m) is given by
the relation

2n4+m

o+ 1 (4.16)

v(m)=( )(2n+2)‘1.

Further, the eigenvalue C,(A) of the second-order

Casimir operator can be calculated using the following

relation:’
C,(A)=NQ2)v(m)/N(m), (4.17)

where N(2) is equal to the dimension of sp (2n,R). We
obtain the following result:

Cy(A)=(m? 4 2nm)/4(n + 1). (4.18)

B. Fourth-order index
The fourth-order index is defined as follows:®

Nm) n 2
I®= Zl 21 (AN . (4.19)
a= =

Using symmetry considerations this can be rewritten as
follows:

N(m)
IP=n Y A +nn—-1)
a=1
N(m)
X 2 (A)2A®)2 (4.20)
a=1

Proceeding as before we find, after some manipula-
tion, the following relation:

N(m) m—l opt+k—3\/m—k+2
(a)y4__
a§=:l (A= ,Eo ( k )( 3 )

X[ —8+412(m—k)
+ 6(m — k*)/5. (4.21)

Evaluating the sums, we obtain the result

N(m) (Zn +m

(a)\4__ 2 2 _
EI (A{@)4=2 2n+1)(2" + 6m? + 12mn — Tn

—3)/2n+3)(n+1). (4.22)

Similarly, we can derive the relation

N(m)
E (Aga))Z(Aéa))Z

a=1

m—1 m—k

= Y (—m+ k4202
k=0 I=0

kol ko (2n+k’—5

_ ' 12
y )( k+ k' + 202

k=0 I'=0
(4.23)
This can be simplified to the following expression:
.N (m)

gl (lga))2(l§a))2

m=l2n+k—2\mk
=2 3 > (—m+k+2D2
fo= 2n—1 1=0

(4.24)

1

Evaluating this double sum, we obtain the result

N(m) 2n+m+1
( ) (425)

(a)y27 9(ady2
El (A4 2(A{1)2=4 2n+3

Substituting Eqs. (4.22) and (4.25) in Eq. (4.20), we
finally get the following relation:

4 2n+4+m
If,,)=2n (2mn? + m?n + 10mn + 5m?
2n+1

—6n—2)/(2n+3)(n+1). (4.26)

Again, it is easily verified that the above expression for
I gives correct results (up to an overall numerical fac-
tor). Comparing Eqs. (4.15) and (4.26) we also obtain
the relation

I =1D 2mn? + m*n + 10mn + 5m* — 6n — 2)

xX[2n+3)(n+1)] L (4.27)

V. SUMMARY

In this paper we discuss a real basis for sp(2#,R). In
this basis the Cartan basis elements are automatically di-
agonal for all irreps carried by homogeneous polynomials
of phase-space variables. This fact facilitates the compu-
tation of various quantities characterizing these irreps. As
an illustration, we calculate the second- and fourth-order
indices of these irreps.
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